Calderón problem. Mikko Salo


 Esmond Albert Hunt
 3 years ago
 Views:
Transcription
1 Calderón problem Lecture notes, Spring 2008 Mikko Salo Department of Mathematics and Statistics University of Helsinki
2
3 Contents Chapter 1. Introduction 1 Chapter 2. Multiple Fourier series Fourier series in L Sobolev spaces 11 Chapter 3. Uniqueness Reduction to Schrödinger equation Complex geometrical optics Uniqueness proof 26 Chapter 4. Stability Schrödinger equation More facts on Sobolev spaces Conductivity equation 37 Chapter 5. Partial data Carleman estimates Uniqueness with partial data 50 Bibliography 55 v
4
5 CHAPTER 1 Introduction Electrical Impedance Tomography (EIT) is an imaging method with potential applications in medical imaging and nondestructive testing. The method is based on the following important inverse problem. Calderón problem: Is it possible to determine the electrical conductivity of a medium by making voltage and current measurements on its boundary? In this course we will prove a fundamental uniqueness result due to Sylvester and Uhlmann, which states that the conductivity is determined by the boundary measurements. We will also consider stable dependence of the conductivity on boundary measurements, and the case where measurements are only made on part of the boundary. In addition, we will discuss useful techniques in partial differential equations, Fourier analysis, and inverse problems. Let us begin by recalling the mathematical model of EIT, see [5] for details. The purpose is to determine the electrical conductivity γ(x) at each point x Ω, where Ω R n represents the body which is imaged (in practice n = 3). We assume that Ω is a bounded open subset of R n with C boundary, and that γ is a positive C 2 function in Ω. Under the assumption of no sources or sinks of current in Ω, a voltage potential f at the boundary Ω induces a voltage potential u in Ω, which solves the Dirichlet problem for the conductivity equation, (1.1) { γ u = 0 in Ω, u = f on Ω. Since γ is positive, there is a unique weak solution u H 1 (Ω) for any boundary value f H 1/2 ( Ω). One can define the Dirichlet to Neumann map (DN map) formally as Λ γ f = γ u. ν Ω 1
6 2 1. INTRODUCTION This is the current flowing through the boundary. More precisely, the DN map is defined weakly as (Λ γ f, g) Ω = γ u v dx, f, g H 1/2 ( Ω), Ω where u is the solution of (1.1), and v is any function in H 1 (Ω) with v Ω = g. The pairing on the boundary is integration with respect to the surface measure, (f, g) Ω = fg ds. With this definition Λ γ is a bounded linear map from H 1/2 ( Ω) into H 1/2 ( Ω). The Calderón problem (also called the inverse conductivity problem) is to determine the conductivity function γ from the knowledge of the map Λ γ. That is, if the measured current Λ γ f is known for all boundary voltages f H 1/2 ( Ω), one would like to determine the conductivity γ. There are several aspects of this inverse problem which are interesting both for mathematical theory and practical applications. Ω 1. Uniqueness. If Λ γ1 = Λ γ2, show that γ 1 = γ Reconstruction. Given the boundary measurements Λ γ, find a procedure to reconstruct the conductivity γ. 3. Stability. If Λ γ1 is close to Λ γ2, show that γ 1 and γ 2 are close (in a suitable sense). 4. Partial data. If Γ is a subset of Ω and if Λ γ1 f Γ = Λ γ2 f Γ for all boundary voltages f, show that γ 1 = γ 2. Starting from the work of Calderón in 1980, the inverse conductivity problem has been studied intensively. In the case where n 3 and all conductivities are in C 2 (Ω), the following positive results are an example of what can be proved. Theorem. (SylvesterUhlmann 1987) If Λ γ1 = Λ γ2, then γ 1 = γ 2 in Ω. Theorem. (Nachman 1988) There is a convergent algorithm for reconstructing γ from Λ γ. Theorem. (Alessandrini 1988) Let γ j H s (Ω) for s > n + 2, and 2 assume that γ j H s (Ω) M and 1/M γ j M (j = 1, 2). Then γ 1 γ 2 L (Ω) ω( Λ γ1 Λ γ2 H 1/2 ( Ω) H 1/2 ( Ω))
7 1. INTRODUCTION 3 where ω(t) = C log t σ for small t > 0, with C = C(Ω, M, n, s) > 0, σ = σ(n, s) (0, 1). Theorem. (KenigSjöstrandUhlmann 2007) Assume that Ω is convex and Γ is any open subset of Ω. If Λ γ1 f Γ = Λ γ2 f Γ for all f H 1/2 ( Ω), and if γ 1 Ω = γ 2 Ω, then γ 1 = γ 2 in Ω. During this course we will discuss the methods involved in these results. The main tool will be the construction of special solutions, called complex geometrical optics solutions, to the conductivity equation and related equations. This will involve Fourier analysis, and we will begin the course with a discussion of ndimensional Fourier series. References. This course a continuation of the class Impedanssitomografian perusteet (Principles of EIT) given by Petri Ola [5]. From [5] we will mainly use the solvability of the Dirichlet problem for elliptic equations, the definition of the DN map, and results which state that the boundary values of the conductivity can be recovered from the DN map. Chapter 2 on multiple Fourier series is classical, an excellent reference is Zygmund [8]. In Chapter 3 we prove the uniqueness result of SylvesterUhlmann [6]. The proof of the main estimate, Theorem 3.7, follows Hähner [4]. The stability question is taken up in Chapter 4, where the main results are due to Alessandrini [1]. The treatment also benefited from FeldmanUhlmann [3]. In the final Chapter 5 we introduce Carleman estimates and prove the result in BukhgeimUhlmann [2], which states that it is enough to measure currents on roughly half of the boundary to determine the conductivity.
8
9 CHAPTER 2 Multiple Fourier series 2.1. Fourier series in L 2 Joseph Fourier laid the foundations of the mathematical field now known as Fourier analysis in his 1822 treatise on heat flow. The basic question is to represent periodic functions as sums of elementary pieces. If the period of f is 2π and the elementary pieces are sine and cosine functions, then the desired representation would be f(x) = (a k cos(kx) + b k sin(kx)). k=0 Since e ikx = cos(kx)+i sin(kx), we may alternatively consider the series (2.1) f(x) = c k e ikx. k= We will need to represent functions of n variables as Fourier series. If f is a function in R n which is 2πperiodic in each variable, then a natural analog of (2.1) would be f(x) = k Z n c k e ik x. This is the form of Fourier series which we will study. Note that the terms on the righthand side are 2πperiodic in each variable. There are many subtle issues related to various modes of convergence for the series above. However, we will mostly just need the case of convergence in L 2 norm for Fourier series of L 2 functions, and in this case no problems arise. Consider the cube Q = [ π, π] n, and define an inner product on L 2 (Q) by (f, g) = (2π) n fḡ dx, f, g L 2 (Q). Q With this inner product, L 2 (Q) is a separable infinitedimensional Hilbert space. The space of functions which are locally square integrable and 5
10 6 2. MULTIPLE FOURIER SERIES 2πperiodic in each variable may be identified with L 2 (Q). Therefore, we will consider Fourier series of functions in L 2 (Q). Lemma 2.1. The set {e ik x } is an orthonormal subset of L 2 (Q). Proof. A direct computation: if k, l Z n then (e ik x, e il x ) = (2π) n e i(k l) x dx = (2π) n π = π { 1, k = l, 0, k l. π π Q e i(k 1 l 1 )x1 e i(kn ln)xn dx n dx 1 We recall a Hilbert space fact: if {e j } j=1 is an orthonormal subset of a separable Hilbert space H, then the following are equivalent: (1) {e j } j=1 is an orthonormal basis, in the sense that any f H may be written as the series f = (f, e j )e j with convergence in H, (2) for any f H one has f 2 = j=1 (f, e j ) 2, j=1 (3) if f H and (f, e j ) = 0 for all j, then f 0. If the condition (3) is satisfied, the orthonormal system {e j } is called complete. The main point is that {e ik x } k Z n is complete in L 2 (Q). Lemma 2.2. If f L 2 (Q) satisfies (f, e ik x ) = 0 for all k Z n, then f 0. The proof is given below. The main result on Fourier series of L 2 functions is now immediate. Below we denote by l 2 (Z n ) the space of complex sequences c = (c k ) k Z n with norm ( ) 1/2. c l 2 (Z n ) = k Z n c k 2
11 2.1. FOURIER SERIES IN L 2 7 Theorem 2.3. If f L 2 (Q), then one has the Fourier series f(x) = k Z n ˆf(k)e ik x with convergence in L 2 (Q), where the Fourier coefficients are given by ˆf(k) = (f, e ik x ) = (2π) n f(x)e ik x dx. One has the Plancherel formula f 2 L 2 (Q) = ˆf(k) 2. k Z n Q Conversely, if c = (c k ) l 2 (Z n ), then the series f(x) = k Z n c k e ik x converges in L 2 (Q) to a function f satisfying ˆf(k) = c k. Proof. The facts on the Fourier series of f L 2 (Q) follow directly from the discussion above, since {e ik x } k Z n is a complete orthonormal system in L 2 (Q). For the converse, if (c k ) l 2 (Z n ), then k Zn M k N c k e ik x 2 L 2 (Q) = k Zn M k N c k 2 by orthogonality. Since the right hand side can be made arbitrarily small by choosing M and N large, we see that f N = k Z n, k N c ke ik x is a Cauchy sequence in L 2 (Q), and converges to f L 2 (Q). One obtains ˆf(k) = (f, e ik x ) = c k again by orthogonality. It remains to prove Lemma 2.2. We begin with the most familiar case, n = 1. The partial sums of the Fourier series of a function f L 2 ([ π, π]), extended as a 2πperiodic function into R, are given by S m f(x) = m k= m ˆf(k)e ikx = m k= m ( 1 π ) f(y)e iky dy e ikx 2π π = π π D m (x y)f(y) dy
12 8 2. MULTIPLE FOURIER SERIES where D m (x) is the Dirichlet kernel D m (x) = 1 2π m k= m = 1 ei(2m+1)x 1 2π e imx e ix 1 e ikx = 1 2π e imx (1 + e ix e i2mx ) = 1 e i(m+ 1 2 )x e i(m+ 1 2 )x = 1 sin((m + 1)x) 2 2π e i 1 2 x e i 1 2 x 2π sin( 1x). 2 Thus, definining the convolution of two 2πperiodic locally integrable functions by f g(x) = π π f(x y)g(y) dy, we see that S m f(x) = (D m f)(x). The Dirichlet kernel acts in a similar way as an approximate identity, but is problematic because it takes both positive and negative values. Definition. A sequence (K N (x)) N=1 of 2πperiodic continuous functions on the real line is called an approximate identity if (1) K N 0 for all N, (2) π K π N(x) dx = 1 for all N, and (3) for all δ > 0 one has lim sup N δ x π K N (x) 0. Thus, an approximate identity (K N ) for large N resembles a Dirac delta at 0, extended in a 2πperiodic way. It is possible to approximate L p functions by convolving them against an approximate identity. Lemma 2.4. Let (K N ) be an approximate identity. If f L p ([ π, π]) where 1 p <, or if f is a continuous 2πperiodic function and p =, then K N f f L p ([ π,π]) 0 as N. Proof. Since K N has integral 1, we have (K N f)(x) f(x) = π π K N (y)[f(x y) f(x)] dy
13 2.1. FOURIER SERIES IN L 2 9 Let first f be continuous and p =. To estimate the L norm of K N f f, we fix ε > 0 and compute π (K N f)(x) f(x) K N (y) f(x y) f(x) dy π K N (y) f(x y) f(x) dy+ K N (y) f(x y) f(x) dy. y δ Here δ > 0 is chosen so that δ y π f(x y) f(x) < ε whenever x R and y δ. 2 This is possible because f is uniformly continuous. Further, we use the definition of an approximate identity and choose N 0 so that ε sup K N (x) <, for N N 0. δ x π 4π f L With these choices, we obtain (K N f)(x) f(x) ε 2 y δ K N (y) dy + 4π f L sup K N (x) < ε δ x π whenever N N 0. The result is proved in the case p =. Let now f L p ([ π, π]) and 1 p <. We need the integral form of Minkowski s inequality, ( F (x, y) dν(y) p ) 1/p ( 1/p dµ(x) F (x, y) dµ(x)) p dν(y), X Y which is valid on σfinite measure spaces (X, µ) and (Y, ν), cf. the usual Minkowski inequality y F (, y) L p y F (, y) Lp. Using this, we obtain π K N f f L p ([ π,π]) K N (y) f( y) f L p ([ π,π]) dy π = K N (y) f( y) f L p dy + K N (y) f( y) f L p dy δ y π 4π f L p sup δ x π Y X y δ Now, for any ε > 0, there is δ > 0 such that K N (x) + sup f( y) f L p. y δ f( y) f L p ([ π,π]) < ε whenever y δ. 2 Thus the second term can be made arbitrarily small by choosing δ sufficiently small, and then the first term is also small if N is large. This shows the result.
14 10 2. MULTIPLE FOURIER SERIES Now, if the Dirichlet kernels (D m ) were an approximate identity, by Lemma 2.4 one would have S m f f in L 2 for any f L 2. This would in particular imply that any f L 2 which satisfies (f, e ikx ) = ˆf(k) = 0 for all k Z n, would be the zero function. However, D m is not an approximate identity because it takes negative values. One does get an approximate identity if a different summation method used: instead of the partial sums S m f consider the Cesàro sums σ N f(x) = 1 N + 1 N S m f(x). m=0 This can be written in convolution form as σ N f(x) = 1 N + 1 where F N is the Fejér kernel, F N (x) = = = = 1 2π(N + 1) N (D m f)(x) = (F N f)(x) m=0 N e i(m+ 1 2 )x e i(m+ 1 2 )x m=0 e i 1 2 x e i 1 2 x 1 e i 1 2 x ei(n+1)x 1 e i 1 e ix 2 x e i(n+1)x 1 1 e ix 1 2π(N + 1) e i 1 2 x e i 1 2 x 1 e i(n+1)x 1 + e i(n+1)x 1 2π(N + 1) (e i 1 2 x e i 1 2 x ) 2 1 sin 2 ( N+1x) 2 2π(N + 1) sin 2 ( 1x). 2 Clearly this is nonnegative, and in fact F N is an approximate identity (exercise). It follows from Lemma 2.4 that Cesàro sums of the Fourier series an L p function always converge in the L p norm if 1 p <. Lemma 2.5. If f L p ([ π, π]) where 1 p <, or if f is a continuous 2πperiodic function and p =, then σ N f f L p ([ π,π]) 0 as N. Proof of Lemma 2.2. We begin with the case n = 1. If f L 2 ([ π, π]) and (f, e ikx ) = 0 for all k Z, then S m f = 0 and also σ N f = 0 for all N. By Lemma 2.5 it follows that f 0.
15 2.2. SOBOLEV SPACES 11 Now let n 2, and assume that f L 2 (Q) and (f, e ik x ) = 0 for all k Z n. Since e ik x = e ik 1x1 e iknxn, we have π π h(x 1 ; k 2,..., k n )e ik 1x 1 dx 1 = 0 for all k 1 Z, where h(x 1 ; k 2,..., k n ) = f(x 1, x 2,..., x n )e i(k 2x k nx n) dx 2 dx n. [ π,π] n 1 Now h( ; k 2,..., k n ) is in L 2 ([ π, π]) by the CauchySchwarz inequality. By the completeness of the system {e ik 1x 1 } in one dimension, we obtain that h( ; k 2,..., k n ) = 0 for all k 2,..., k n Z. Applying the same argument in the other variables shows that f 0. We have now proved the main facts on Fourier series of L 2 functions Sobolev spaces In this section we wish to consider Sobolev spaces of periodic functions. In fact, most of the results given here will not be used in their present form, but they provide good motivation for the developments in Chapter 3. Let T n = R n /2πZ n be the ndimensional torus. Note that L 2 (Q) above may be identified with L 2 (T n ). However, C(Q) is different from C(T n ); in fact C(T n ) (resp. C (T n )) can be identified with the continuous (resp. C ) 2πperiodic functions in R n. First we need to define weak derivatives of periodic functions. This is similar to the nonperiodic case, except that here the test function space will be C (T n ). We use the notation D j = 1 i x j, D α = D α 1 1 D αn n. Definition. Let f L 2 (T n ). We say that D α f L 2 (T n ) if there is a function v L 2 (T n ) which satisfies fd α ϕ dx = ( 1) α vϕ dx T n T n for all ϕ C (T n ). In this case we define D α f = v. As in the nonperiodic case, weak derivatives are unique, and for smooth functions the definition coincides with the usual derivative.
16 12 2. MULTIPLE FOURIER SERIES This uses the fact that there are no boundary terms arising from integration by parts, because of periodicity. Definition. If m 0 is an integer, we denote by H m (T n ) the space of functions f L 2 (T n ) such that D α f L 2 (T n ) for all α N n satisfying α m. We equip H m (T n ) with the inner product (f, g) H m (T n ) = (D α f, D α g). α m Then H m (T n ) is a Hilbert space. If f and D α f are in L 2 (T n ), one may compute the Fourier coefficients of D α f to be (D α f)ˆ(k) = (2π) n T n D α f(x)e ik x dx = (2π) n ( 1) α T n f(x)d α (e ik x ) dx = k α ˆf(k) by the definition of weak derivative, since e ik x C (T n ). This motivates the following characterization of H m (T n ) in terms of Fourier coefficients. Lemma 2.6. Let f L 2 (T n ). Then f H m (T n ) if and only if k m ˆf l 2 (Z n ), where k = (1 + k k n ) 1/2. Proof. One has f H m (T n ) D α f L 2 (T n ) k α ˆf(k) l 2 (Z n ) for α m for α m (k 2 1,..., k 2 n) α ˆf(k) 2 l 1 (Z n ) for α m. If the last condition is satisfied, then k 2m ˆf(k) 2 = c β (k1, 2..., kn) 2 β ˆf(k) 2 l 1 (Z n ), β m consequently k m ˆf(k) l 2 (Z n ). Conversely, if k m ˆf(k) l 2 (Z n ), then k α ˆf(k) l 2 (Z n ) for α m because k j k. It is now easy to prove a version of the Sobolev embedding theorem. Theorem 2.7. If m > n/2 then H m (T n ) C(T n ).
17 2.2. SOBOLEV SPACES 13 Proof. Let f H m (T n ), so that k m ˆf l 2 (Z n ) and f(x) = k Z n ˆf(k)e ik x. Let M k = ˆf(k)e ik x = k m ( k m ˆf(k)). We have k Z n M k k m l 2 (Z n ) k m ˆf(k) l 2 (Z n ) <, by Lemma 2.6 and since m > n/2. Since the terms in the Fourier series of f are continuous functions, this Fourier series converges absolutely and uniformly into a continuous function in T n by the Weierstrass M test. The final result in this section will be elliptic regularity in the periodic case. Consider a second order differential operator P (D) acting on 2πperiodic functions in R n, P (D) = a α D α, α 2 where a α are complex constants. The principal part of P (D) is P 2 (D) = a α D α. α =2 We say that P (D) is elliptic if P 2 (D) has real coefficients, and P 2 (k) > 0 whenever k Z n {0}. The following proof also indicates how Fourier series are used in the solution of partial differential equations. Theorem 2.8. Let P (D) be an elliptic second order differential operator with constant coefficients, and assume that u L 2 (T n ) solves the equation P (D)u = f in T n, for some f L 2 (T n ). Then u H 2 (T n ). Proof. Taking the Fourier coefficients on both sides of P (D)u = f gives (2.2) P (k)û(k) = ˆf(k), k Z n. We have P 2 (k) = k 2 P 2 (k/ k ) c k 2
18 14 2. MULTIPLE FOURIER SERIES for some c > 0, by ellipticity. Then for k 0, n P (k) = P 2 (k) + a j k j + a 0 P 2 (k) ( j=1 n a j ) k a 0 j=1 c k 2 C k. If C > 0 is sufficiently large, it follows that P (k) 1 2 c k 2, for k C. From (2.2) we obtain û(k) = ˆf(k) 2 P (k) c k ˆf(k), k C. 2 Since ˆf(k) l 2 (Z n ) this shows that k 2 û(k) l 2 (Z n ), which implies u H 2 (T n ) as required.
19 CHAPTER 3 Uniqueness In this chapter, we will discuss the proof of the following uniqueness result of Sylvester and Uhlmann. Theorem 3.1. Let Ω R n be a bounded open set with smooth boundary, where n 3, and let γ 1 and γ 2 be two positive functions in C 2 (Ω). If Λ γ1 = Λ γ2, then γ 1 = γ 2 in Ω. In fact, this theorem will be reduced to a uniqueness result for the Schrödinger equation (also due to Sylvester and Uhlmann). Theorem 3.2. Let Ω R n be a bounded open set with smooth boundary, where n 3, and let q 1 and q 2 be two functions in L (Ω) such that the Dirichlet problems for +q 1 and +q 2 in Ω are well posed. If Λ q1 = Λ q2, then q 1 = q 2 in Ω. The reduction of Theorem 3.1 to Theorem 3.2 is presented in Section 3.1 along with the relevant definitions. The proof of the uniqueness results relies on complex geometrical optics (CGO) solutions, which are constructed in Section 3.2 for the Schrödinger equation by Fourier analysis and perturbation arguments. Section 3.3 includes an integral identity relating boundary measurements to interior information about the coefficients, and this identity is used to prove Theorem 3.2 by taking an asymptotic limit with suitable CGO solutions Reduction to Schrödinger equation The first step in the proof is the reduction of the conductivity equation to a Schrödinger equation, ( + q)u = 0 in Ω, where q is a function in L (Ω). This equation turns out to be easier to handle, since the principal part is the Laplacian. 15
20 16 3. UNIQUENESS Lemma 3.3. If γ C 2 (Ω) and u H 1 (Ω) then (3.1) γ (γ 1/2 u) = γ 1/2 ( + q)u in the weak sense, where q = γ γ. Proof. This is a direct computation: if u C 2 (Ω) then j (γ j ( 1 γ u)) = j ( γ j u) + j ( j ( γ)u) = γ 2 j u j ( γ) j u + j ( γ) j u + 2 j ( γ)u. The claim follows by taking the sum over j. The case where u H 1 (Ω) can be proved by approximation 1. If q L (Ω), we consider the Dirichlet problem for the Schrödinger equation, { ( + q)u = 0 in Ω, (3.2) u = f on Ω, where f H 1/2 ( Ω). We say that u H 1 (Ω) is a weak solution of (3.2) if u Ω = f, and if for all ϕ H0(Ω) 1 one has ( u ϕ + quϕ) dx = 0. Ω 1 Let (u k ) C 2 (Ω) be a sequence with u k u in H 1 (Ω). We have γ (γ 1/2 u k ) = γ 1/2 ( + q)u k. If a C 1 (Ω) then u au is a continuous map on H 1 (Ω), since au H1 (Ω) = au L2 (Ω)+ ( a)u+a u L2 (Ω) 2( a L (Ω)+ a L (Ω)) u H1 (Ω). Using that γ is in C 2 (Ω) and that : H m (Ω) H m 1 (Ω) is a continuous map, we have u k u in H 1 (Ω) = γ 1/2 u k γ 1/2 u in H 1 (Ω) = (γ 1/2 u k ) (γ 1/2 u) in L 2 (Ω) = γ (γ 1/2 u k ) γ (γ 1/2 u) in L 2 (Ω) = γ (γ 1/2 u k ) γ (γ 1/2 u) in H 1 (Ω). Similarly, γ 1/2 ( + q)u k γ 1/2 ( + q)u in H 1 (Ω), which shows that (3.1) holds in the sense of H 1 (Ω).
21 3.1. REDUCTION TO SCHRÖDINGER EQUATION 17 The problem (3.2) is said to be wellposed if the following three conditions hold: 1. (existence) there is a weak solution u in H 1 (Ω) for any boundary value f in H 1/2 ( Ω), 2. (uniqueness) the solution u is unique, 3. (stability) the solution operator f u is continuous from H 1/2 ( Ω) H 1 (Ω), that is, u H 1 (Ω) C f H 1/2 ( Ω). If the problem is wellposed, we can define a DN map formally by Λ q : H 1/2 ( Ω) H 1/2 ( Ω), f u. ν Ω This is analogous to the conductivity equation, and also here the precise definition of the DN map is given by the weak formulation (Λ q f, g) Ω = ( u v + quv) dx, f, g H 1/2 ( Ω), Ω where u solves (3.2) and v is any function in H 1 (Ω) with v Ω = g. The next proof shows that this is a valid definition and Λ q is a bounded linear map. Lemma 3.4. If q L (Ω) is such that the problem (3.2) is wellposed, then Λ q is a bounded linear map from H 1/2 ( Ω) to H 1/2 ( Ω), and satisfies by (Λ q f, g) Ω = (f, Λ q g) Ω, f, g H 1/2 ( Ω). Proof. Fix f H 1/2 ( Ω), and define a map T : H 1/2 ( Ω) C T (g) = Ω ( u v + quv) dx, where u solves (3.2) and v is any function in H 1 (Ω) with v Ω = g. Since u is a solution, we have ( u ϕ + quϕ) dx Ω for any ϕ H0(Ω). 1 Therefore we may replace v by v + ϕ in the definition of T (g). If v, ṽ H 1 (Ω) and v Ω = ṽ Ω = g, then v ṽ H0(Ω), 1 so indeed the definition does not depend on the particular choice of v (as long as v H 1 (Ω) and v Ω = g).
22 18 3. UNIQUENESS Now, for g H 1/2 ( Ω), use the onesided inverse to the trace operator to obtain v g H 1 (Ω) with v g H 1 (Ω) C g H ( Ω). Then by 1/2 CauchySchwarz T (g) u v g + quv g dx C u H 1 (Ω) v g H 1 (Ω) Ω C f H 1/2 ( Ω) g H 1/2 ( Ω). Thus T : H 1/2 ( Ω) C is a continuous map, and there is an element Λ q f H 1/2 ( Ω) satisfying (Λ q f, g) = T (g). Consequently, the map Λ q : f Λ q f is a bounded linear map H 1/2 ( Ω) H 1/2 ( Ω). To show the last identity, let f, g H 1/2 (Ω), and let u, v be solutions of (3.2) with boundary values u Ω = f, v Ω = g. Then (Λ q f, g) Ω = ( u v + quv) dx = ( v u + qvu) dx = (Λ q g, f) Ω by the definition of Λ q. The problem (3.2) is not always wellposed, consider for instance the case q = λ where λ > 0 is an eigenvalue of the Laplacian in Ω (then there exists a nonzero u H 1 (Ω) with u = λu in Ω and u Ω = 0). However, for potentials q coming from conductivities, the Dirichlet problem is always wellposed, and there is a relation between the DN maps Λ γ and Λ q. Lemma 3.5. If γ C 2 (Ω) and q = γ/ γ, then the Dirichlet problem (3.2) is wellposed and Λ q f = γ 1/2 Λ γ (γ 1/2 f) + 1 γ γ 1 2 ν f Ω, Ω f H 1/2 (Ω). Proof. Fix f H 1/2 ( Ω). We need to show that there is u in H 1 (Ω) which solves (3.2). Motivated by Lemma 3.3, we take v be the solution of γ v = 0 in Ω with v Ω = γ 1/2 f. Then u = γ 1/2 v is a function in H 1 (Ω) which solves ( + q)u = 0 with the right boundary values. The same argument with f = 0 shows that the solution is unique. Further, since γ C 2 (Ω), we have the estimate u H 1 (Ω) C v H 1 (Ω) C γ 1/2 f H 1/2 ( Ω) C f H 1/2 ( Ω). If u solves (3.2), then v = γ 1/2 u solves the conductivity equation and Λ γ (γ 1/2 f) = γ v ν u = γ1/2 ν 1 γ γ 1/2 2 ν f.
23 3.1. REDUCTION TO SCHRÖDINGER EQUATION 19 Since Λ q f = u/ ν, we obtain the relation between Λ γ and Λ q. We may now show that uniqueness in the inverse conductivity problem can be deduced from the corresponding result for the Schrödinger equation. Proof that Theorem 3.2 implies Theorem 3.1. Let γ 1, γ 2 be positive functions in C 2 (Ω), and assume that Λ γ1 = Λ γ2. If q j = γ j / γ j, then q j L (Ω) and by Theorem 3.5 the Dirichlet problems for + q j are well posed. Also, the boundary reconstruction result ([5], Theorem 6.6.1) implies that γ 1 = γ 2 and γ 1 / ν = γ 2 / ν on Ω. Thus, for any f in H 1/2 ( Ω) one has Λ q1 f = γ 1/2 1 Λ γ1 (γ 1/2 1 f) + 1 γ 1 2 γ 1 1 ν f Ω = γ 1/2 2 Λ γ2 (γ 1/2 = Λ q2 f. 2 f) γ 1 Theorem 3.2 gives that q 1 = q 2 in Ω. Therefore, 2 γ 2 ν f Ω (3.3) γ 1 γ1 = γ 2 γ2 in Ω. We would like to conclude from (3.3) that γ 1 = γ 2. Let q = γ 1/2 1 γ 1 = γ 1/2 2 γ 2, and consider the equation ( + q)u = 0 in Ω. Both γ 1 and γ 2 solve this equation, and γ 1 Ω = γ 2 Ω by boundary determination. Since the Schrödinger equation with potential q coming from a conductivity is wellposed, we obtain γ 1 = γ 2 by uniqueness of solutions. Remark 3.6. We record for later use another argument showing that (3.3) implies γ 1 = γ 2. The equation (3.3) looks like a nonlinear PDE involving γ 1 and γ 2. To simplify the equation, we note that (log γ) = The equation becomes n j=1 j ( 1 γ j γ) = γ γ (log γ) 2. (log γ 1 log γ 2 ) + (log γ 1 ) 2 (log γ 2 ) 2 = 0.
24 20 3. UNIQUENESS Rewriting slightly, we get γ1 γ1 (log ) + a (log ) = 0, γ2 γ2 where a = log γ 1 γ 2. This is a linear equation for the C 2 function v = log γ 1 γ2. Further, noting the identity (e a v) = e a ( v + a v), and using the fact that γ 1 = γ 2 on Ω, we see that v solves the Dirichlet problem { ((γ1 γ 2 ) 1/2 v) = 0 in Ω, v = 0 on Ω. This problem is wellposed, and we get v 0 and γ 1 γ Complex geometrical optics In this section, we will construct complex geometrical optics (CGO) solutions to the Schrödinger equation ( + q)u = 0 in Ω. The potential q is assumed to be in L (Ω). Motivation. First let q = 0. We try as a solution to the equation u = 0 the complex exponential at frequency ζ C n, This satisfies u(x) = e iζ x. Du(x) = ζe iζ x, D 2 u(x) = (ζ ζ)e iζ x. Thus, if ζ C n satisfies ζ ζ = 0, then u(x) = e iζ x solves u = 0. Writing ζ = Re ζ + i Im ζ, we see that ζ ζ = 0 Re ζ = Im ζ, Re ζ Im ζ = 0. Now suppose q is nonzero. The function u = e iζ x is not an exact solution of ( + q)u = 0 anymore, but we can find solutions which resemble complex exponentials. These are the CGO solutions, which have the form (3.4) u(x) = e iζ x (1 + r(x)). Here r is a correction term which is needed to convert the approximate solution e iζ x to an exact solution.
25 3.2. COMPLEX GEOMETRICAL OPTICS 21 In fact, we are interested in solutions in the asymptotic limit as ζ. This follows the principle that it is usually not possible to obtain explicit formulas for solutions to general equations, but in suitable asymptotic limits explicit expressions for solutions may exist. We note that (3.4) is a solution of ( + q)u = 0 iff (3.5) e iζ x ( + q)e iζ x (1 + r) = 0. It will be convenient to conjugate the exponentials e iζ x into the Laplacian. By this we mean that We can rewrite (3.5) as e iζ x D j (e iζ x v) = (D j + ζ j )v, e iζ x D 2 (e iζ x v) = (D + ζ) 2 v = (D 2 + 2ζ D)v. (D 2 + 2ζ D + q)(1 + r) = 0. This implies the following equation for r: (3.6) (D 2 + 2ζ D + q)r = q. The solvability of (3.6) is the most important step in the construction of CGO solutions. We proceed in several steps Basic estimate. We first consider the free case in which there is no potential on the left hand side of (3.6). Theorem 3.7. There is a constant C 0 depending only on Ω and n, such that for any ζ C n satisfying ζ ζ = 0 and ζ 1, and for any f L 2 (Ω), the equation (3.7) (D 2 + 2ζ D)r = f in Ω has a solution r H 1 (Ω) satisfying r L 2 (Ω) C 0 ζ f L 2 (Ω), r L 2 (Ω) C 0 f L 2 (Ω). The idea of the proof is that (3.7) is a linear equation with constant coefficients, so one can try to solve it by the Fourier transform. Since (D j u)ˆ(ξ) = ξ j û(ξ), the Fourier transformed equation is (ξ 2 + 2ζ ξ)ˆr(ξ) = ˆf(ξ).
26 22 3. UNIQUENESS We would like to divide by ξ 2 + 2ζ ξ and use the inverse Fourier transform to get a solution r. However, the symbol ξ 2 + 2ζ ξ vanishes for some ξ R n, and the division cannot be done directly. It turns out that we can divide by the symbol if we use Fourier series in a large cube instead of the Fourier transform, and moreover take the Fourier coefficients in a shifted lattice instead of the usual integer coordinate lattice. Proof of Theorem 3.7. Write ζ = s(ω 1 +iω 2 ) where s = ζ / 2 and ω 1 and ω 2 are orthogonal unit vectors in R n. By rotating coordinates in a suitable way, we can assume that ω 1 = e 1 and ω 2 = e 2 (the first and second coordinate vectors). Thus we need to solve the equation (D 2 + 2s(D 1 + id 2 ))r = f. We assume for simplicity that Ω is contained in the cube Q = [ π, π] n. Extend f by zero outside Ω into Q, which gives a function in L 2 (Q) also denoted by f. We need to solve (3.8) (D 2 + 2s(D 1 + id 2 ))r = f in Q. Let w k (x) = e i(k+ 1 2 e2) x for k Z n. That is, we consider Fourier series in the lattice Z n + 1e 2 2. Writing (u, v) = (2π) n u v dx, u, v L 2 (Q), Q we see that (w k, w l ) = 0 if k l and (w k, w k ) = 1, so {w k } is an orthonormal set in L 2 (Q). It is also complete: if v L 2 (Q) and (v, w k ) = 0 for all k Z n then (ve 1 2 ix 2, e ik x ) = 0 for all k Z n, which implies v = 0. Hilbert space theory gives that f can be written as the series f = k Z n f k w k, where f k = (f, w k ) and f 2 L 2 (Q) = k Z n f k 2. Seeking also r in the form r = k Z n r k w k, and using that the equation (3.8) results in Dw k = (k e 2)w k, p k r k = f k, k Z n, where p k := (k e 2) 2 + 2s(k 1 + i(k )).
27 3.2. COMPLEX GEOMETRICAL OPTICS 23 Note that Im p k = 2s(k ) is never zero, which was the reason for 2 considering the shifted lattice. We define r k := 1 p k f k and r := k Z n r k w k. The last series converges in L 2 (Q) to a function r L 2 (Q) since r k 1 p k f k and then ( ) 1/2 r L 2 (Q) = r k 2 1 s k 1 2s(k ) f k 1 s f k, ( k f k 2 ) 1/2 = 1 s f L 2 (Q). This shows the desired estimate in L 2 (Q). It remains to show that Dr L 2 (Q) with correct bounds. We have Dr = k Z n (k e 2)r k w k. The derivative is justified since this is a convergent series in L 2 (Q): we claim (3.9) (k e 2)r k 4 f k, k Z n, which implies that Dr L 2 (Q) 4 f L 2 (Q). To show (3.9) we consider two cases: if k e 2 4s we have (k e 2)r k and if k e 2 4s then 4s 2s k 2 + 1/2 f k 4 f k, k e sk 1 k e 2 2 2s k e k e 2 2 which implies The statement is proved. (k e 2)r k k e k e 2 2 f k 1 2s f k.
DISTRIBUTIONS AND FOURIER TRANSFORM
DISTRIBUTIONS AND FOURIER TRANSFORM MIKKO SALO Introduction. The theory of distributions, or generalized functions, provides a unified framework for performing standard calculus operations on nonsmooth
More informationMATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π
MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 4: Fourier Series and L ([, π], µ) Square Integrable Functions Definition. Let f : [, π] R be measurable. We say that f
More informationFourier series. Jan Philip Solovej. English summary of notes for Analysis 1. May 8, 2012
Fourier series Jan Philip Solovej English summary of notes for Analysis 1 May 8, 2012 1 JPS, Fourier series 2 Contents 1 Introduction 2 2 Fourier series 3 2.1 Periodic functions, trigonometric polynomials
More information1. Periodic Fourier series. The Fourier expansion of a 2πperiodic function f is:
CONVERGENCE OF FOURIER SERIES 1. Periodic Fourier series. The Fourier expansion of a 2πperiodic function f is: with coefficients given by: a n = 1 π f(x) a 0 2 + a n cos(nx) + b n sin(nx), n 1 f(x) cos(nx)dx
More informationFourier Series and Fejér s Theorem
wwu@ocf.berkeley.edu June 4 Introduction : Background and Motivation A Fourier series can be understood as the decomposition of a periodic function into its projections onto an orthonormal basis. More
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationChapter 5: Application: Fourier Series
321 28 9 Chapter 5: Application: Fourier Series For lack of time, this chapter is only an outline of some applications of Functional Analysis and some proofs are not complete. 5.1 Definition. If f L 1
More informationMATH 461: Fourier Series and Boundary Value Problems
MATH 461: Fourier Series and Boundary Value Problems Chapter III: Fourier Series Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2015 fasshauer@iit.edu MATH 461 Chapter
More informationA MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASEFIELD MODEL WITH MEMORY
Guidetti, D. and Lorenzi, A. Osaka J. Math. 44 (27), 579 613 A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASEFIELD MODEL WITH MEMORY DAVIDE GUIDETTI and ALFREDO LORENZI (Received January 23, 26,
More informationFourier Series and SturmLiouville Eigenvalue Problems
Fourier Series and SturmLiouville Eigenvalue Problems 2009 Outline Functions Fourier Series Representation Halfrange Expansion Convergence of Fourier Series Parseval s Theorem and Mean Square Error Complex
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More informationIdeal Class Group and Units
Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationExtremal equilibria for reaction diffusion equations in bounded domains and applications.
Extremal equilibria for reaction diffusion equations in bounded domains and applications. Aníbal RodríguezBernal Alejandro VidalLópez Departamento de Matemática Aplicada Universidad Complutense de Madrid,
More informationCourse 221: Analysis Academic year , First Semester
Course 221: Analysis Academic year 200708, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................
More information) + ˆf (n) sin( 2πnt. = 2 u x 2, t > 0, 0 < x < 1. u(0, t) = u(1, t) = 0, t 0. (x, 0) = 0 0 < x < 1.
Introduction to Fourier analysis This semester, we re going to study various aspects of Fourier analysis. In particular, we ll spend some time reviewing and strengthening the results from Math 425 on Fourier
More informationFrom Fourier Series to Fourier Integral
From Fourier Series to Fourier Integral Fourier series for periodic functions Consider the space of doubly differentiable functions of one variable x defined within the interval x [ L/2, L/2]. In this
More informationA PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of RouHuai Wang
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of RouHuai Wang 1. Introduction In this note we consider semistable
More informationReference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.
5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2
More informationFIELDSMITACS Conference. on the Mathematics of Medical Imaging. Photoacoustic and Thermoacoustic Tomography with a variable sound speed
FIELDSMITACS Conference on the Mathematics of Medical Imaging Photoacoustic and Thermoacoustic Tomography with a variable sound speed Gunther Uhlmann UC Irvine & University of Washington Toronto, Canada,
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationApplications of Fourier series
Chapter Applications of Fourier series One of the applications of Fourier series is the evaluation of certain infinite sums. For example, n= n,, are computed in Chapter (see for example, Remark.4.). n=
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More informationOutline of Complex Fourier Analysis. 1 Complex Fourier Series
Outline of Complex Fourier Analysis This handout is a summary of three types of Fourier analysis that use complex numbers: Complex Fourier Series, the Discrete Fourier Transform, and the (continuous) Fourier
More informationINTRODUCTION TO FOURIER ANALYSIS AND WAVELETS
#. INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS Mark A. Pinsky Northwestern University BROOKS/COLE * THOMSON LEARNING Australia Canada Mexico Singapore Spain United Kingdom United States 1 FOURIER SERIES
More informationAdaptive Online Gradient Descent
Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650
More informationRieszFredhölm Theory
RieszFredhölm Theory T. Muthukumar tmk@iitk.ac.in Contents 1 Introduction 1 2 Integral Operators 1 3 Compact Operators 7 4 Fredhölm Alternative 14 Appendices 18 A AscoliArzelá Result 18 B Normed Spaces
More informationMATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform
MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish
More informationSouth Carolina College and CareerReady (SCCCR) PreCalculus
South Carolina College and CareerReady (SCCCR) PreCalculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More information, < x < Using separation of variables, u(x, t) = Φ(x)h(t) (4) we obtain the differential equations. d 2 Φ = λφ (6) Φ(± ) < (7)
Chapter1: Fourier Transform Solutions of PDEs In this chapter we show how the method of separation of variables may be extended to solve PDEs defined on an infinite or semiinfinite spatial domain. Several
More informationFourier Series. A Fourier series is an infinite series of the form. a + b n cos(nωx) +
Fourier Series A Fourier series is an infinite series of the form a b n cos(nωx) c n sin(nωx). Virtually any periodic function that arises in applications can be represented as the sum of a Fourier series.
More information6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, )
6. Metric spaces In this section we review the basic facts about metric spaces. Definitions. A metric on a nonempty set X is a map with the following properties: d : X X [0, ) (i) If x, y X are points
More informationSystems with Persistent Memory: the Observation Inequality Problems and Solutions
Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +
More informationMath 5311 Gateaux differentials and Frechet derivatives
Math 5311 Gateaux differentials and Frechet derivatives Kevin Long January 26, 2009 1 Differentiation in vector spaces Thus far, we ve developed the theory of minimization without reference to derivatives.
More informationHermitian Operators An important property of operators is suggested by considering the Hamiltonian for the particle in a box: d 2 dx 2 (1)
CHAPTER 4 PRINCIPLES OF QUANTUM MECHANICS In this Chapter we will continue to develop the mathematical formalism of quantum mechanics, using heuristic arguments as necessary. This will lead to a system
More informationLECTURE NOTES: FINITE ELEMENT METHOD
LECTURE NOTES: FINITE ELEMENT METHOD AXEL MÅLQVIST. Motivation The finite element method has two main strengths... Geometry. Very complex geometries can be used. This is probably the main reason why finite
More information1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition
MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More informationMetric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
More informationCHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
More informationGeneral Theory of Differential Equations Sections 2.8, 3.13.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.13.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
More informationThe Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
More information8.1 Examples, definitions, and basic properties
8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A kform ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)form σ Ω k 1 (M) such that dσ = ω.
More informationChapter 5. Banach Spaces
9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on
More informationNotes on weak convergence (MAT Spring 2006)
Notes on weak convergence (MAT4380  Spring 2006) Kenneth H. Karlsen (CMA) February 2, 2006 1 Weak convergence In what follows, let denote an open, bounded, smooth subset of R N with N 2. We assume 1 p
More informationNonlinear Fourier series and applications to PDE
CNRS/Cergy CIRM Sept 26, 2013 I. Introduction In this talk, we shall describe a new method to analyze Fourier series. The motivation comes from solving nonlinear PDE s. These PDE s are evolution equations,
More informationTHE DIFFUSION EQUATION
THE DIFFUSION EQUATION R. E. SHOWALTER 1. Heat Conduction in an Interval We shall describe the diffusion of heat energy through a long thin rod G with uniform cross section S. As before, we identify G
More informationSection 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
More informationDistributions, the Fourier Transform and Applications. Teodor Alfson, Martin Andersson, Lars Moberg
Distributions, the Fourier Transform and Applications Teodor Alfson, Martin Andersson, Lars Moberg 1 Contents 1 Distributions 2 1.1 Basic Definitions......................... 2 1.2 Derivatives of Distributions...................
More informationRESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS
RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS T. J. CHRISTIANSEN Abstract. We consider scattering by an obstacle in R d, d 3 odd. We show that for the Neumann Laplacian if
More informationClass Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES  CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
More informationFourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks
Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results
More informationINTRODUCTION TO FOURIER ANALYSIS
NTRODUCTON TO FOURER ANALYSS SAGAR TKOO Abstract. n this paper we introduce basic concepts of Fourier analysis, develop basic theory of it, and provide the solution of Basel problem as its application.
More informationLecture 3: Fourier Series: pointwise and uniform convergence.
Lecture 3: Fourier Series: pointwise and uniform convergence. 1. Introduction. At the end of the second lecture we saw that we had for each function f L ([, π]) a Fourier series f a + (a k cos kx + b k
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationFourier Series, Integrals, and Transforms
Chap. Sec.. Fourier Series, Integrals, and Transforms Fourier Series Content: Fourier series (5) and their coefficients (6) Calculation of Fourier coefficients by integration (Example ) Reason hy (6) gives
More informationMaths 361 Fourier Series Notes 2
Today s topics: Even and odd functions Real trigonometric Fourier series Section 1. : Odd and even functions Consider a function f : [, ] R. Maths 361 Fourier Series Notes f is odd if f( x) = f(x) for
More informationFourier Transforms The Fourier Transform Properties of the Fourier Transform Some Special Fourier Transform Pairs 27
24 Contents Fourier Transforms 24.1 The Fourier Transform 2 24.2 Properties of the Fourier Transform 14 24.3 Some Special Fourier Transform Pairs 27 Learning outcomes In this Workbook you will learn about
More information2 Complex Functions and the CauchyRiemann Equations
2 Complex Functions and the CauchyRiemann Equations 2.1 Complex functions In onevariable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)
More informationAn optimal transportation problem with import/export taxes on the boundary
An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint
More informationFUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
More informationMATH 289 PROBLEM SET 1: INDUCTION. 1. The induction Principle The following property of the natural numbers is intuitively clear:
MATH 89 PROBLEM SET : INDUCTION The induction Principle The following property of the natural numbers is intuitively clear: Axiom Every nonempty subset of the set of nonnegative integers Z 0 = {0,,, 3,
More informationLinear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus ndimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
More informationFourier Series Chapter 3 of Coleman
Fourier Series Chapter 3 of Coleman Dr. Doreen De eon Math 18, Spring 14 1 Introduction Section 3.1 of Coleman The Fourier series takes its name from Joseph Fourier (1768183), who made important contributions
More informationA constructive solution to the inverse scattering problem of the wave equation at one frequency and plane wave irradiation
A constructive solution to the inverse scattering problem of the wave equation at one frequency and plane wave irradiation F. Natterer August 1989 Summary: This is a tutorial paper reporting essentially
More informationANALYTICAL MATHEMATICS FOR APPLICATIONS 2016 LECTURE NOTES Series
ANALYTICAL MATHEMATICS FOR APPLICATIONS 206 LECTURE NOTES 8 ISSUED 24 APRIL 206 A series is a formal sum. Series a + a 2 + a 3 + + + where { } is a sequence of real numbers. Here formal means that we don
More informationProblem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS
Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection
More informationThe Ideal Class Group
Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationFourier Series and Integrals
Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [,] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x) can be
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationMATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
More informationEXISTENCE AND NONEXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION
Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7669. UL: http://ejde.math.txstate.edu
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More informationHOLOMORPHIC FRAMES FOR WEAKLY CONVERGING HOLOMORPHIC VECTOR BUNDLES
HOLOMORPHIC FRAMES FOR WEAKLY CONVERGING HOLOMORPHIC VECTOR BUNDLES GEORGIOS D. DASKALOPOULOS AND RICHARD A. WENTWORTH Perhaps the most useful analytic tool in gauge theory is the Uhlenbeck compactness
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationMICROLOCAL ANALYSIS OF THE BOCHNERMARTINELLI INTEGRAL
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 00029939(XX)00000 MICROLOCAL ANALYSIS OF THE BOCHNERMARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationSolvability of Laplace s Equation Kurt Bryan MA 436
1 Introduction Solvability of Laplace s Equation Kurt Bryan MA 436 Let D be a bounded region in lr n, with x = (x 1,..., x n ). We see a function u(x) which satisfies u = in D, (1) u n u = h on D (2) OR
More informationCHAPTER 3. Fourier Series
`A SERIES OF CLASS NOTES FOR 20052006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL
More informationarxiv:0904.4794v1 [math.ap] 30 Apr 2009
arxiv:0904.4794v [math.ap] 30 Apr 009 Reconstruction in the Calderón Problem with Partial Data Adrian Nachman and Brian Street Abstract We consider the problem of recovering the coefficient σ (x of the
More informationModule MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions
Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions D. R. Wilkins Copyright c David R. Wilkins 2016 Contents 3 Functions 43 3.1 Functions between Sets...................... 43 3.2 Injective
More informationIntroduction to Fourier Series
Introduction to Fourier Series A function f(x) is called periodic with period T if f(x+t)=f(x) for all numbers x. The most familiar examples of periodic functions are the trigonometric functions sin and
More informationLecture 1: Schur s Unitary Triangularization Theorem
Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections
More informationClassification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
More informationDuality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
More informationRecall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:
Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1
More informationAPPLICATIONS OF FOURIER ANALYSIS TO NONANALYTIC FIELDS. Contents 1. Introduction 1
APPLICATIOS OF FOURIER AALYSIS TO OAALYTIC FIELDS KEVI QIA Abstract. Fourier analysis, a classical topic in analysis, can be applied to many nonanalytic fields. This paper explores Fourier analysis in
More informationHarmonic Oscillator Physics
Physics 34 Lecture 9 Harmonic Oscillator Physics Lecture 9 Physics 34 Quantum Mechanics I Friday, February th, 00 For the harmonic oscillator potential in the timeindependent Schrödinger equation: d ψx
More informationChapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
More informationCourse Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics
Course Notes for Math 16: Mathematical Statistics Approximation Methods in Statistics Adam Merberg and Steven J. Miller August 18, 6 Abstract We introduce some of the approximation methods commonly used
More information1 Polyhedra and Linear Programming
CS 598CSC: Combinatorial Optimization Lecture date: January 21, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im 1 Polyhedra and Linear Programming In this lecture, we will cover some basic material
More information1 Review of complex numbers
1 Review of complex numbers 1.1 Complex numbers: algebra The set C of complex numbers is formed by adding a square root i of 1 to the set of real numbers: i = 1. Every complex number can be written uniquely
More informationCurrent Density Impedance Imaging with Complete Electrode Model
Current Density Impedance Imaging with Complete Electrode Model Alexandru Tamasan jointly with A. Nachman & J. Veras University of Central Florida Work supported by NSF BIRS Workshop on Hybrid Methods
More informationTensor product of vector spaces
Tensor product of vector spaces Construction Let V,W be vector spaces over K = R or C. Let F denote the vector space freely generated by the set V W and let N F denote the subspace spanned by the elements
More information