Systems with Persistent Memory: the Observation Inequality Problems and Solutions


 Arnold Robertson
 3 years ago
 Views:
Transcription
1 Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w + hw + Kt r)wr)dr + Ft) = w + hw + K w + Ft) w) = u, w ) = v, w = f on Γ, w = on \Γ. 6.2) Theorem 6.1. Let u L 2 ), v H 1 ), F L 1,T ;L 2 )), f L 2,T ;L 2 Γ )). The function w C,T ;L 2 )) C 1,T ;H 1 )) solves Eq. 6.2) if and only if the following equality holds ϕ,w t) + + ϕt),v + ϕ 1 wt)dx = ϕ t)u dx + Γ f s)γ 1 ϕt s))dγ ds + ϕt τ)fτ)dxdτ 6.3) for every solution 1 ϕ of ϕ = ϕ + hϕ + Kt r)ϕr)dr, ϕ) = ϕ D), ϕ ) = ϕ 1 D) and ϕ = on. 6.4) ϕ x), χt) + ϕ 1 x)χx,t)dx 6.5) 1 the equation is the same as??). We rewrite and give a special number to stress that the initial conditions belong to D) and the affine term is zero. 61
2 62 Problems of Chapter 6 Theorem 6.2. Let. Let ϕ L 2 ), ϕ 1 H 1 ) have compact support in. Let ϕt) be the corresponding solution of??). Assume that the observation inequality holds at time T for the wave equation on and that ϕt) = on \, for t,t ]. Then the initial conditions ϕ and ϕ 1 which are zero in \ ) have the following additional regularity: ϕ H 1 ), ϕ 1 L 2 ) so that we have also ϕ C,T ];H 1)) C1,T ];L 2 )). Furthermore, there exists a constant K = K T such that ) ϕ 2 H 1) + ϕ 1 2 L 2 ) K ϕ 2 C,T ;L 2 )). 6.6) Theorem 6.3. Let Γ =. There exists a time T 1 such that system 6.2) is controllable. The time T 1 is the control time of the associated wave equation in any region 1 which contains. For every T T 1 there exist m > and M such that ) ) m ϕ 2 H 1) + ϕ 1 2 L 2 ) γ 1 ϕ 2 dγ dt M ϕ 2 H Γ,T ] 1) + ϕ 1 2 L 2 ). The Problems 6.1. Let w and ϕ solve u = u xx for x >, respectively with initial conditions wx,) =, w x,) =, ϕx,) = ϕ x) D,), ϕ x,) = ϕ 1 x) D,) and boundary conditions w,t) = f t) H 2,), ϕ,t) =. Justify the integration by parts of the left hand side of the equality and show that T ϕx,t s) w x,s) w xx x,s) ] dxds = ϕ x)w x,t ) + ϕ 1 x)wx,t ) ] dx = + ϕ x,t s) f s)ds. Compare with Problem 4.2 and with formula 6.3) and explain the sign of the right hand side Use 6.1) and Picard iteration to prove the direct inequality for system 6.1) In the sufficiency part of the proof of Theorem 6.1, the function t χt), χt)) has been defined. This function takes values in L 2 ) H 1 ) see formula 6.5)). Use the fact that the right hand side of 6.3) is a continuous function of time and prove that χt), χt)) C,T ];L 2 ) H 1 )) This and the next problem show that the inverse inequality is an observability property. Let us consider the problem
3 Problems of Chapter 6 63 ϕ = ϕ xx, x,1), { ϕx,) = ϕ x) C 1,1), ϕ x,) = ϕ,t) = ϕ1,t) =. 6.7) Prove the existence of initial conditions ϕ such that ϕ x 1,t) for t,t ], provided that T < 1 and prove that if ϕ x 1,t) for t,1] then ϕ = Do the same as in Problem 6.4 when the initial conditions are ϕx,) =, ϕ x,) = ϕ 1 x) C,1) Use the results in Problem 2.4. Show that the inverse inequality does not hold for the wave equation if =,π),π) and Γ =,1) {} Let ϕ and ϕ 1 and T be as in Theorem 6.2. Prove the existence of M such that the following holds for every t, T ]: ϕ t) L 2 ) M ϕ C,T ];L 2 )) Let ϕ H 1), ϕ 1 L 2 ). Use the Volterra integral equation 6.1) to represent the solutions of??). For simplicity let c = 1 and h =. Choose any T >. Consider the set K of the solutions such that ϕ H 1 ) 1, ϕ 1 L 2 ) 1. Prove that K is bounded in C,T ];L 2 )) and equicontinuous The set K in Problem 6.8 is both bounded and equicontinuous in C,T ];L 2 )). It is known that boundedness and equicontinuity of a subset C,T ];H) implies compactness if dimh <. Prove that this is not true if dimh = in spite of this negative result the special set K in Problem 6.8 is relatively compact, i.e. any sequence has convergent subsequences in C,T ];L 2 )), since its elements take value in H 1 ), which is compactly embedded in L 2 ), see 1, p. 266]) Both for the system with memory and for the associated wave equation, study the following problem. Let controllability holds at a certain time T with the control acting on Γ. Let H T be the subset of ϕ,ϕ 1 ) H 1 ) L2 ) such that the corresponding solution of 6.1) satisfies for a fixed number M, T γ 1 ϕ 2 dg T M. Γ Prove that H T is closed and decide whether it is also bounded. Discuss the role of the assumption of controllability in this problem The derivation of the inverse inequality for the wave equation uses conservation of energy. So, Theorem 6.3 might suggest conservation of energy for the system with memory. Examine that system ϕ = e αt s) ϕs)ds 6.8) with zero boundary conditions) and show that the quantity
4 64 Problems of Chapter 6 ϕ t) 2 + ϕ 2 dx is not constant along the solutions. The Solutions Solution of Problem 6.1 The equality can be justified as in Problem 4.2, where however we used f ) = and f ) =. It has an interest to rederive the equality without using these conditions. Let H + = { f C 2,)) such that t T = T f implies f t) = }. The space H + is dense in H 2,) and so the required formula can be proved assuming f H +. The formula is then extended by continuity in fact it can be extended also to square integrable controls f ). We integrate by parts and we get T = T T = ϕx,t s)w x,s)dsdx = ϕ x)w x,t ) + ϕ 1 x)wx,t ) ] dx + ϕx,t s)w xx x,s)dxds = T T ϕ x,t s) f s)ds + ϕ xx x,t s)wx,s)dxds in the second line we used ϕ,t) = ). We equate and we get T ϕ x,t s) f s)ds = ϕ x,t s)wx,s)dsdx, ϕ x)w x,t ) + ϕ 1 x)wx,t ) ] dx. We examine the first integral on the right hand side. We note that wx,t) = f t x)ht x), w x,t) = f t x)ht x) + f t x)δt x). Note that the numbers T here and T f in the definition of H + ) are not the same, so that the last term is not zero in general. So, the first integral takes the form
5 Problems of Chapter 6 65 = = T ϕ x)w x,t )dx = ϕ x) f T x)ht x)dx + ϕ x) f T x)δt x) = ϕ x) f T x)dx + ϕ T ) f ) = = ϕ T ) f ) + ϕ ) f T ) + T ] d = dx ϕ x) f T x)dx T ] d dx ϕ x) because ϕ D,) and so ϕ ) =. It is apparent from here that the transformation T ϕ ϕ x)w x,t )dx = f T x)dx + ϕ T ) f ) = d dx ϕ x) ] f T x)dx is a continuous functional on H 1,). Compare with Theorem 6.1. Solution of Problem 6.2 We prove the inequality with ϕ, ϕ 1 in D). The inequality can be extended to H 1) L2 ) by continuity. For simplicity, we confine ourselves to the case F =, c = 1. Let Lϕ)t) = hr t)ϕ + Kt s)r s)ϕds. Picard iteration asserts that s ϕt) = ut) + ha 1 Rt s)us)ds + A 1 R t s) Ks r)ur)dr ds A 1 L 2 A 1 L ) ) k u k= The function ut) solves 2 so that u = u, u) = ϕ, u ) = ϕ ), u = on. 6.9) ut) = R + t)ϕ + A 1 R t)ϕ 1. Hence, ut) C,T ],doma) C 1,T ],doma ). The function u solves a wave equation and so the direct inequality holds for u: ) γ 1 u 2 L 2 G T ) ϕ M 2 H 1) + ϕ 1 2 L 2 ). 2 for consistency with the notations in 6.1) here we use u even if the boundary conditions are zero.
6 66 Problems of Chapter 6 Equality??) shows that, when ϕ and ϕ 1 belong to D), γ 1 ϕ = D Aϕ. So, γ 1 A 1 L 2 A 1 L ) )) k u = D L 2 A 1 L ) ) k u k= k= and this depends continuously on ϕ H 1) and ϕ 1 L 2 ). Let us consider γ 1 A 1 Lu) ) = hγ 1 A 1 R t s)us)ds+γ 1 A 1 s note that Kt) is scalar valued). We consider the first integral which is Kt s r)r r)us)dsdr γ 1 A 1 R t s)r + s)ϕ ds + γ 1 A 1 R t s)a 1 R s)ϕ 1 ds. The second integral is a continuous function of ϕ 1. To study the first integral we note that D R t s)r s)ϕ 1 ds, R t s)r + s)ϕ ds = 1 4 tr t)ϕ. This is easily seen because, using the definitions of R t) and R + t), we have Hence the first integral is R τ)r + t) = 1 4 R t + τ) R + t τ)]. t γ 1 A 1 R t)ϕ ) 6.1) which depends continuously on ϕ H 1 ), using the direct inequality of the wave equation. The last term in 6.1) is treated analogously. Solution of Problem 6.3 Use the following properties of a Banach space: separation property, consequence of HahnBanach Theorem): if x 1 x 2 belong to a Banach space B then there exists χ B such that x 1, χ = x 2, χ. consequence of the Closed Graph Theorem) if x n then there exists χ B such that x n, χ.
7 Problems of Chapter 6 67 Identify the dual space of L 2 ) with itself. The dual space of B = L 2 ) H 1 ) is L2 ) H 1 ) and in turn L 2 ) H 1 ) ) = L 2 ) H 1 ) this is a consequence of the fact that H 1 ) and so also H 1 ) are Hilbert spaces). These properties have been used in Section By contradiction, if χt), χt)) is not continuous on,t ] then there exists a sequence t n t in,t ]) such that either χt n ), χt n )) or χt n ), χt n )) χ, χ ) χt ), χt ). The first case is impossible since the right hand side of 6.3) is bounded on,t ] for every ϕ and ϕ 1. Also the second case is impossible. In fact, the separation property would imply the existence of an element ϕ,ϕ 1 ) L 2 ) H 1 ) = L 2 ) H 1 ) ) such that the left hand side of 6.3) is not a continuous function of time while equality to the right hand side shows that it is continuous. Solution of Problem 6.4 As in Problem 4.1, we extend ϕ x) to a function ϕ defined on 1,2) which is odd respect to and respect to 1. I.e. for x,1) we require ϕ x) = ϕ x), ϕx) = ϕ2 x). Then, for t,1], the unique solution of 6.7) is ϕx,t) = 1 ϕx +t) + ϕx t) ]. 6.11) 2 Let { exp 1 ϕ x) = xx 1/n) if < x < 1/n if 1/n) < x < ) Let us fix any T < 1 and consider a time t < T and a number n > n where n satisfies T + 1/n < 1. Then we have ϕx,t) = if x < T + 1/n < 1. So we have also ϕ x 1,t) for t,t + 1/n] in spite of the fact that ϕ x). If ϕ x 1,t) for every t,1] then we have also D x ϕ1 + t) = D x ϕ1 t) and so D x ϕx) is odd respect to 1; but, it is also even, since it is the derivative of an odd function. Hence it is zero. Solution of Problem 6.5 We denote ψ the solution with initial conditions ψx,) = and ψ x,) = ψ 1 x) possibly not zero. An example is easily constructed using the solution ϕ found in Problem 6.4. Let ψx,t) = ϕ x,t). Then ψ1, t) = for t, 1 1/n) and ψ solves the string equation on, 1) with conditions ψx,) = ϕ x,) =, ψ x,) = ϕ xx x,). Let now ψ be a solution such that ψ x 1,t) = for t 1. We prove ψ 1 =. A solution of the problem for t,1] with initial conditions ψx,) =, ψ x,) = ψ 1 x)) is constructed as follows: we extend ψ 1 as an odd function ψx) respect to zero and respect to 1. The solution is
8 68 Problems of Chapter 6 ψx,t) = 1 2 x+t x t ψs)ds. If ψ x 1,t) = then we have ψ1 +t) ψ1 t) = and so ψ is both even and odd respect to 1. Hence it is zero. Solution of Problem 6.6 Let the initial conditions be Then, ϕx,y,t) = 2 π ϕx,y,) = ϕ x,y), ϕ x,y,) =. n,m=1 ) ϕ n,m cos n 2 + m 2 t sinnxsinmy. The coefficients ϕ n,m are the Fourier coefficients of ϕ x,y). We recall: and we note that: γ 1 ϕx,,t) = ϕ 2 H 1 Q) = 2 π n,m=1 So, the inverse inequality would be m n 2 + m 2) ϕn,m 2 n,m=1 T n,m=1 m 2 ϕ 2 n,m = π 4 m 2 ϕ 2 n,m { n,m=1 n 2 + m 2) ϕ 2 n,m 6.13) ) mϕ n,m )cos n 2 + m 2 t sinnx ) ) cos n m 2 t dt T + sin2t n 2 + m 2 2 n 2 + m 2 }. ] π sin 2 nx ) dx = It is clear that this inequality cannot hold for every sequence {ϕ nm } for which the series 6.13) converges. For example, for every fixed M let us consider the sequence {ϕ n,m } such that ϕ M 2,M = 1, ϕ n,m = otherwise. Then the inverse inequality would imply the existence of m > and T > such that the following inequality holds for every M: m M 4 + M 2) T + 1)π M 2, 4
9 Problems of Chapter 6 69 This is clearly impossible. A second example is as follows: let ) ϕ n,m x,y,t) = sin t n 2 + m 2 sinnxsinmy. This is a solution which corresponds to the initial conditions ϕ x,y) =, ϕ 1 x,y) = n 2 + m 2 sinnxsinmy. Substituting in the inverse inequality we find the following inequality, which should hold for every n and every m: m n 2 + m 2) π π T π ) sin 2 nxsin 2 mydxdy n 2 sin 2 t n 2 + m 2 sin 2 mydy. The integrals can be easily computed and it is to see that the inequality can hold only if m =. Hence, the system is not controllable whathever the time T, when the active part of the boundary is one side of the square. Solution of Problem 6.7 We use formula 6.1) that we rewrite as s ] ϕt) = R + t)ϕ +A 1 R t)ϕ 1 +A 1 R t s) hϕs) + Ks r)ϕr)dr ds. It follows from Theorem 6.2 that ϕ H 1) = doma, ϕ 1 L 2 ) so that ϕ C,T ];L 2 )) the proof is similar to the proof of Theorem??, where the condition ϕ doma and ϕ 1 doma are used to compute a second derivative, not needed here). So we have s ] ϕ t) = R t)a ϕ + R + t)ϕ 1 + R + t s) hϕs) + Ks r)ϕr)dr ds. Hence, ] ϕ t) M ϕ H 1 ) + ϕ 1 L 2 ) + ϕ C,T ];L 2 ). The required inequality follows from 6.6). Solution of Problem 6.8 The solution ϕ solves the Volterra integral equation ϕt) = R + t)ϕ + A 1 R t)ϕ 1 + A 1 s R t s) Ks r)ϕr)dr ds. Gronwall inequality shows boundedness of K. A sufficient condition for equicontinuity is boundedness of the set of the derivatives. Computing the derivative we see that s ϕ t) = R t)a ϕ + R + t)ϕ 1 + R + t s) Ks r)ϕr)dr ds.
10 7 Problems of Chapter 6 Hence the set of the derivatives of the elements of K is bounded in L 2 ). Solution of Problem 6.9 We must exibit a sequence of functions in C,T ];H), with dimh =, which is bounded and equicontinuous, but which does not have convergent subsequences. Let H be any Hilbert space and let {e n } be an orthonormal basis. We consider the constant functions ϕ n t) e n. The sequence {ϕ n } is bounded every element has norm 1) and it is equicontinuous since every element is constan). But, for every n and m we have So, there is no convergent subsequence. ϕ n ϕ m C,T ];H) = 2. Solution of Problem 6.1 Let {ϕ n,ϕ 1n )} be a sequence in H T which is convergent to ϕ,ϕ 1 ) H 1 ) L2 ). We must prove that it converges to an element of H T. Let ϕ n be the solution which correspond to the initial conditions ϕ n,ϕ 1n ) and ϕ be the one whose initial data are ϕ,ϕ 1 ). The direct inequality shows that ϕ,ϕ 1 ) γ 1 ϕ is continuous, and the norm is continuous too. Hence γ 1 ϕ 2 L 2 G T ) = lim γ 1ϕ n 2 L 2 G T ) M. This proves that H T is closed. The set H T is not bouded in general, without the assumption of controllability. For example, in the case of Problem 6.4 with T < 1 it contains every multiple of ϕ,). The set is bounded if the system is controllable at time T with controls acting on Γ, thanks to the inverse inequality. So, the set H T is bounded if the system is exactly controllable at time T. These facts hold both for the system with and without memory. Solution of Problem 6.11 Eq. 6.8) is a generalized) telegraph equation, ϕ = ϕ + αϕ Multiply both the sides with ϕ and integrate on. Using ϕ = on we get 1 d 2 dt Integrate both the sides on,t ] and get Hence ϕ t) 2 + ϕt) 2] dx = ϕ t) 2 + ϕt) 2] dx = α ϕ t) 2 dx. ϕ1 2 + ϕ 2] dx + α ϕ s) 2 dxds.
11 References 71 ϕ t) 2 + ϕt) 2] dx ϕ1 2 + ϕ 2] dx. We have ϕ t) 2 + ϕt) 2] dx ϕ1 2 + ϕ 2] dx. when α which is the case encountered in applications. So, in practice, the memory term introduces a dissipation. References 1. Dunford, N., Schwartz, J.T.: Linear operators part I: general theory. Wiley Classic Library Edition, John Wiley and Sons, New York 1988)
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
More informationChapter 5: Application: Fourier Series
321 28 9 Chapter 5: Application: Fourier Series For lack of time, this chapter is only an outline of some applications of Functional Analysis and some proofs are not complete. 5.1 Definition. If f L 1
More informationA MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASEFIELD MODEL WITH MEMORY
Guidetti, D. and Lorenzi, A. Osaka J. Math. 44 (27), 579 613 A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASEFIELD MODEL WITH MEMORY DAVIDE GUIDETTI and ALFREDO LORENZI (Received January 23, 26,
More informationMATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
More informationGeneral Theory of Differential Equations Sections 2.8, 3.13.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.13.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More informationChapter 7 Nonlinear Systems
Chapter 7 Nonlinear Systems Nonlinear systems in R n : X = B x. x n X = F (t; X) F (t; x ; :::; x n ) B C A ; F (t; X) =. F n (t; x ; :::; x n ) When F (t; X) = F (X) is independent of t; it is an example
More informationChapter 5. Banach Spaces
9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on
More informationBOUNDED, ASYMPTOTICALLY STABLE, AND L 1 SOLUTIONS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS. Muhammad N. Islam
Opuscula Math. 35, no. 2 (215), 181 19 http://dx.doi.org/1.7494/opmath.215.35.2.181 Opuscula Mathematica BOUNDED, ASYMPTOTICALLY STABLE, AND L 1 SOLUTIONS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS Muhammad
More informationCylinder Maps and the Schwarzian
Cylinder Maps and the Schwarzian John Milnor Stony Brook University (www.math.sunysb.edu) Bremen June 16, 2008 Cylinder Maps 1 work with Araceli Bonifant Let C denote the cylinder (R/Z) I. (.5, 1) fixed
More informationMath 317 HW #5 Solutions
Math 317 HW #5 Solutions 1. Exercise 2.4.2. (a) Prove that the sequence defined by x 1 = 3 and converges. x n+1 = 1 4 x n Proof. I intend to use the Monotone Convergence Theorem, so my goal is to show
More informationNotes on weak convergence (MAT Spring 2006)
Notes on weak convergence (MAT4380  Spring 2006) Kenneth H. Karlsen (CMA) February 2, 2006 1 Weak convergence In what follows, let denote an open, bounded, smooth subset of R N with N 2. We assume 1 p
More information5.2 Accuracy and Stability for u t = c u x
c 006 Gilbert Strang 5. Accuracy and Stability for u t = c u x This section begins a major topic in scientific computing: Initialvalue problems for partial differential equations. Naturally we start with
More information1 Fixed Point Iteration and Contraction Mapping Theorem
1 Fixed Point Iteration and Contraction Mapping Theorem Notation: For two sets A,B we write A B iff x A = x B. So A A is true. Some people use the notation instead. 1.1 Introduction Consider a function
More information1. Periodic Fourier series. The Fourier expansion of a 2πperiodic function f is:
CONVERGENCE OF FOURIER SERIES 1. Periodic Fourier series. The Fourier expansion of a 2πperiodic function f is: with coefficients given by: a n = 1 π f(x) a 0 2 + a n cos(nx) + b n sin(nx), n 1 f(x) cos(nx)dx
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationTensor product of vector spaces
Tensor product of vector spaces Construction Let V,W be vector spaces over K = R or C. Let F denote the vector space freely generated by the set V W and let N F denote the subspace spanned by the elements
More informationLecture 3: Fourier Series: pointwise and uniform convergence.
Lecture 3: Fourier Series: pointwise and uniform convergence. 1. Introduction. At the end of the second lecture we saw that we had for each function f L ([, π]) a Fourier series f a + (a k cos kx + b k
More informationLecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
More informationARBITRAGEFREE OPTION PRICING MODELS. Denis Bell. University of North Florida
ARBITRAGEFREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic
More informationMATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π
MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 4: Fourier Series and L ([, π], µ) Square Integrable Functions Definition. Let f : [, π] R be measurable. We say that f
More information20 Applications of Fourier transform to differential equations
20 Applications of Fourier transform to differential equations Now I did all the preparatory work to be able to apply the Fourier transform to differential equations. The key property that is at use here
More informationChapter 2 Limits Functions and Sequences sequence sequence Example
Chapter Limits In the net few chapters we shall investigate several concepts from calculus, all of which are based on the notion of a limit. In the normal sequence of mathematics courses that students
More informationTHE PRIME NUMBER THEOREM
THE PRIME NUMBER THEOREM NIKOLAOS PATTAKOS. introduction In number theory, this Theorem describes the asymptotic distribution of the prime numbers. The Prime Number Theorem gives a general description
More informationSolutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
More information7. Continuously Varying Interest Rates
7. Continuously Varying Interest Rates 7.1 The Continuous Varying Interest Rate Formula. Suppose that interest is continuously compounded with a rate which is changing in time. Let the present time be
More informationFourier Series Representations
Fourier Series Representations Introduction Before we discuss the technical aspects of Fourier series representations, it might be well to discuss the broader question of why they are needed We ll begin
More informationAnalysis via Uniform Error Bounds Hermann Karcher, Bonn. Version May 2001
Analysis via Uniform Error Bounds Hermann Karcher, Bonn. Version May 2001 The standard analysis route proceeds as follows: 1.) Convergent sequences and series, completeness of the reals, 2.) Continuity,
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationLS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
More informationRate of convergence towards Hartree dynamics
Rate of convergence towards Hartree dynamics Benjamin Schlein, LMU München and University of Cambridge Universitá di Milano Bicocca, October 22, 2007 Joint work with I. Rodnianski 1. Introduction boson
More informationOPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov
DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics
More informationExtremal equilibria for reaction diffusion equations in bounded domains and applications.
Extremal equilibria for reaction diffusion equations in bounded domains and applications. Aníbal RodríguezBernal Alejandro VidalLópez Departamento de Matemática Aplicada Universidad Complutense de Madrid,
More informationFourier series. Jan Philip Solovej. English summary of notes for Analysis 1. May 8, 2012
Fourier series Jan Philip Solovej English summary of notes for Analysis 1 May 8, 2012 1 JPS, Fourier series 2 Contents 1 Introduction 2 2 Fourier series 3 2.1 Periodic functions, trigonometric polynomials
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationIdeal Class Group and Units
Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals
More information1. the function must be periodic; 3. it must have only a finite number of maxima and minima within one periodic;
Fourier Series 1 Dirichlet conditions The particular conditions that a function f(x must fulfil in order that it may be expanded as a Fourier series are known as the Dirichlet conditions, and may be summarized
More information1.3 Induction and Other Proof Techniques
4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationFourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks
Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results
More informationCollege of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions
College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More information1. Let X and Y be normed spaces and let T B(X, Y ).
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 20050314 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
More informationProblem 1 (10 pts) Find the radius of convergence and interval of convergence of the series
1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,
More informationScalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
More informationThe SIS Epidemic Model with Markovian Switching
The SIS Epidemic with Markovian Switching Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH (Joint work with A. Gray, D. Greenhalgh and J. Pan) Outline Motivation 1 Motivation
More informationx pn x qn 0 as n. Every convergent sequence is Cauchy. Not every Cauchy sequence in a normed space E converges to a vector in
78 CHAPTER 3. BANACH SPACES 3.2 Banach Spaces Cauchy Sequence. A sequence of vectors (x n ) in a normed space is a Cauchy sequence if for everyε > 0 there exists M N such that for all n, m M, x m x n
More informationCITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
More information) + ˆf (n) sin( 2πnt. = 2 u x 2, t > 0, 0 < x < 1. u(0, t) = u(1, t) = 0, t 0. (x, 0) = 0 0 < x < 1.
Introduction to Fourier analysis This semester, we re going to study various aspects of Fourier analysis. In particular, we ll spend some time reviewing and strengthening the results from Math 425 on Fourier
More informationThe one dimensional heat equation: Neumann and Robin boundary conditions
The one dimensional heat equation: Neumann and Robin boundary conditions Ryan C. Trinity University Partial Differential Equations February 28, 2012 with Neumann boundary conditions Our goal is to solve:
More informationFunctional analysis and its applications
Department of Mathematics, London School of Economics Functional analysis and its applications Amol Sasane ii Introduction Functional analysis plays an important role in the applied sciences as well as
More informationChapter 8  Power Density Spectrum
EE385 Class Notes 8/8/03 John Stensby Chapter 8  Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is
More informationChapter 11 Fourier Analysis
Chapter 11 Fourier Analysis Advanced Engineering Mathematics WeiTa Chu National Chung Cheng University wtchu@cs.ccu.edu.tw 1 2 11.1 Fourier Series Fourier Series Fourier series are infinite series that
More informationTRIPLE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION. Communicated by Mohammad Asadzadeh
Bulletin of the Iranian Mathematical Society Vol. 33 No. 2 (27), pp . TRIPLE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION R. DEHGHANI AND K. GHANBARI*
More informationMATH 461: Fourier Series and Boundary Value Problems
MATH 461: Fourier Series and Boundary Value Problems Chapter III: Fourier Series Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2015 fasshauer@iit.edu MATH 461 Chapter
More information3.7 Nonautonomous linear systems of ODE. General theory
3.7 Nonautonomous linear systems of ODE. General theory Now I will study the ODE in the form ẋ = A(t)x + g(t), x(t) R k, A, g C(I), (3.1) where now the matrix A is time dependent and continuous on some
More informationApplications of Fourier series
Chapter Applications of Fourier series One of the applications of Fourier series is the evaluation of certain infinite sums. For example, n= n,, are computed in Chapter (see for example, Remark.4.). n=
More informationHomework One Solutions. Keith Fratus
Homework One Solutions Keith Fratus June 8, 011 1 Problem One 1.1 Part a In this problem, we ll assume the fact that the sum of two complex numbers is another complex number, and also that the product
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationCHAPTER 2. Inequalities
CHAPTER 2 Inequalities In this section we add the axioms describe the behavior of inequalities (the order axioms) to the list of axioms begun in Chapter 1. A thorough mastery of this section is essential
More informationDISTRIBUTIONS AND FOURIER TRANSFORM
DISTRIBUTIONS AND FOURIER TRANSFORM MIKKO SALO Introduction. The theory of distributions, or generalized functions, provides a unified framework for performing standard calculus operations on nonsmooth
More informationProblem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.
Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More informationPUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
More informationIntroduction to the Finite Element Method (FEM)
Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the onedimensional
More informationFourier Series and SturmLiouville Eigenvalue Problems
Fourier Series and SturmLiouville Eigenvalue Problems 2009 Outline Functions Fourier Series Representation Halfrange Expansion Convergence of Fourier Series Parseval s Theorem and Mean Square Error Complex
More informationRAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS PART A
RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I  ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:
More informationTangent and normal lines to conics
4.B. Tangent and normal lines to conics Apollonius work on conics includes a study of tangent and normal lines to these curves. The purpose of this document is to relate his approaches to the modern viewpoints
More informationEngineering Mathematics II
PSUT Engineering Mathematics II Fourier Series and Transforms Dr. Mohammad Sababheh 4/14/2009 11.1 Fourier Series 2 Fourier Series and Transforms Contents 11.1 Fourier Series... 3 Periodic Functions...
More informationRate of growth of Dfrequently hypercyclic functions
Rate of growth of Dfrequently hypercyclic functions A. Bonilla Departamento de Análisis Matemático Universidad de La Laguna Hypercyclic Definition A (linear and continuous) operator T in a topological
More informationON THE EXPONENTIAL FUNCTION
ON THE EXPONENTIAL FUNCTION ROBERT GOVE AND JAN RYCHTÁŘ Abstract. The natural exponential function is one of the most important functions students should learn in calculus classes. The applications range
More informationON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. GacovskaBarandovska
Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. GacovskaBarandovska Smirnov (1949) derived four
More informationSection 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 35 odd, 237 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More information1. Please write your name in the blank above, and sign & date below. 2. Please use the space provided to write your solution.
Name : Instructor: Marius Ionescu Instructions: 1. Please write your name in the blank above, and sign & date below. 2. Please use the space provided to write your solution. 3. If you need extra pages
More informationSolutions series for some nonharmonic motion equations
Fifth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 10, 2003, pp 115 122. http://ejde.math.swt.edu or http://ejde.math.unt.edu
More informationORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
More informationEXISTENCE AND NONEXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION
Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7669. UL: http://ejde.math.txstate.edu
More informationI. Pointwise convergence
MATH 40  NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
More informationLecture 12 Basic Lyapunov theory
EE363 Winter 200809 Lecture 12 Basic Lyapunov theory stability positive definite functions global Lyapunov stability theorems Lasalle s theorem converse Lyapunov theorems finding Lyapunov functions 12
More informationThe integrating factor method (Sect. 2.1).
The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable
More informationPDE and BoundaryValue Problems Winter Term 2014/2015
PDE and BoundaryValue Problems Winter Term 2014/2015 Lecture 15 Saarland University 12. Januar 2015 c Daria Apushkinskaya (UdS) PDE and BVP lecture 15 12. Januar 2015 1 / 42 Purpose of Lesson To show
More informationExamination paper for Solutions to Matematikk 4M and 4N
Department of Mathematical Sciences Examination paper for Solutions to Matematikk 4M and 4N Academic contact during examination: Trygve K. Karper Phone: 99 63 9 5 Examination date:. mai 04 Examination
More informationCourse 221: Analysis Academic year , First Semester
Course 221: Analysis Academic year 200708, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................
More information3(vi) B. Answer: False. 3(vii) B. Answer: True
Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationMathematical Finance
Mathematical Finance Option Pricing under the RiskNeutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
More informationNotes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
More information4.3 Limit of a Sequence: Theorems
4.3. LIMIT OF A SEQUENCE: THEOREMS 5 4.3 Limit of a Sequence: Theorems These theorems fall in two categories. The first category deals with ways to combine sequences. Like numbers, sequences can be added,
More informationFUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
More informationPreliminary Version: December 1998
On the Number of Prime Numbers less than a Given Quantity. (Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.) Bernhard Riemann [Monatsberichte der Berliner Akademie, November 859.] Translated
More information1. R In this and the next section we are going to study the properties of sequences of real numbers.
+a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real
More informationEquations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
More informationMath 315: Linear Algebra Solutions to Midterm Exam I
Math 35: Linear Algebra s to Midterm Exam I # Consider the following two systems of linear equations (I) ax + by = k cx + dy = l (II) ax + by = 0 cx + dy = 0 (a) Prove: If x = x, y = y and x = x 2, y =
More informationA PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of RouHuai Wang
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of RouHuai Wang 1. Introduction In this note we consider semistable
More informationInfinite series, improper integrals, and Taylor series
Chapter Infinite series, improper integrals, and Taylor series. Introduction This chapter has several important and challenging goals. The first of these is to understand how concepts that were discussed
More information1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form
1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationTMA4213/4215 Matematikk 4M/N Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA43/45 Matematikk 4M/N Vår 3 Løsningsforslag Øving a) The Fourier series of the signal is f(x) =.4 cos ( 4 L x) +cos ( 5 L
More information