Systems with Persistent Memory: the Observation Inequality Problems and Solutions

Size: px
Start display at page:

Download "Systems with Persistent Memory: the Observation Inequality Problems and Solutions"

Transcription

1 Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w + hw + Kt r)wr)dr + Ft) = w + hw + K w + Ft) w) = u, w ) = v, w = f on Γ, w = on \Γ. 6.2) Theorem 6.1. Let u L 2 ), v H 1 ), F L 1,T ;L 2 )), f L 2,T ;L 2 Γ )). The function w C,T ;L 2 )) C 1,T ;H 1 )) solves Eq. 6.2) if and only if the following equality holds ϕ,w t) + + ϕt),v + ϕ 1 wt)dx = ϕ t)u dx + Γ f s)γ 1 ϕt s))dγ ds + ϕt τ)fτ)dxdτ 6.3) for every solution 1 ϕ of ϕ = ϕ + hϕ + Kt r)ϕr)dr, ϕ) = ϕ D), ϕ ) = ϕ 1 D) and ϕ = on. 6.4) ϕ x), χt) + ϕ 1 x)χx,t)dx 6.5) 1 the equation is the same as??). We rewrite and give a special number to stress that the initial conditions belong to D) and the affine term is zero. 61

2 62 Problems of Chapter 6 Theorem 6.2. Let. Let ϕ L 2 ), ϕ 1 H 1 ) have compact support in. Let ϕt) be the corresponding solution of??). Assume that the observation inequality holds at time T for the wave equation on and that ϕt) = on \, for t,t ]. Then the initial conditions ϕ and ϕ 1 which are zero in \ ) have the following additional regularity: ϕ H 1 ), ϕ 1 L 2 ) so that we have also ϕ C,T ];H 1)) C1,T ];L 2 )). Furthermore, there exists a constant K = K T such that ) ϕ 2 H 1) + ϕ 1 2 L 2 ) K ϕ 2 C,T ;L 2 )). 6.6) Theorem 6.3. Let Γ =. There exists a time T 1 such that system 6.2) is controllable. The time T 1 is the control time of the associated wave equation in any region 1 which contains. For every T T 1 there exist m > and M such that ) ) m ϕ 2 H 1) + ϕ 1 2 L 2 ) γ 1 ϕ 2 dγ dt M ϕ 2 H Γ,T ] 1) + ϕ 1 2 L 2 ). The Problems 6.1. Let w and ϕ solve u = u xx for x >, respectively with initial conditions wx,) =, w x,) =, ϕx,) = ϕ x) D,), ϕ x,) = ϕ 1 x) D,) and boundary conditions w,t) = f t) H 2,), ϕ,t) =. Justify the integration by parts of the left hand side of the equality and show that T ϕx,t s) w x,s) w xx x,s) ] dxds = ϕ x)w x,t ) + ϕ 1 x)wx,t ) ] dx = + ϕ x,t s) f s)ds. Compare with Problem 4.2 and with formula 6.3) and explain the sign of the right hand side Use 6.1) and Picard iteration to prove the direct inequality for system 6.1) In the sufficiency part of the proof of Theorem 6.1, the function t χt), χt)) has been defined. This function takes values in L 2 ) H 1 ) see formula 6.5)). Use the fact that the right hand side of 6.3) is a continuous function of time and prove that χt), χt)) C,T ];L 2 ) H 1 )) This and the next problem show that the inverse inequality is an observability property. Let us consider the problem

3 Problems of Chapter 6 63 ϕ = ϕ xx, x,1), { ϕx,) = ϕ x) C 1,1), ϕ x,) = ϕ,t) = ϕ1,t) =. 6.7) Prove the existence of initial conditions ϕ such that ϕ x 1,t) for t,t ], provided that T < 1 and prove that if ϕ x 1,t) for t,1] then ϕ = Do the same as in Problem 6.4 when the initial conditions are ϕx,) =, ϕ x,) = ϕ 1 x) C,1) Use the results in Problem 2.4. Show that the inverse inequality does not hold for the wave equation if =,π),π) and Γ =,1) {} Let ϕ and ϕ 1 and T be as in Theorem 6.2. Prove the existence of M such that the following holds for every t, T ]: ϕ t) L 2 ) M ϕ C,T ];L 2 )) Let ϕ H 1), ϕ 1 L 2 ). Use the Volterra integral equation 6.1) to represent the solutions of??). For simplicity let c = 1 and h =. Choose any T >. Consider the set K of the solutions such that ϕ H 1 ) 1, ϕ 1 L 2 ) 1. Prove that K is bounded in C,T ];L 2 )) and equicontinuous The set K in Problem 6.8 is both bounded and equicontinuous in C,T ];L 2 )). It is known that boundedness and equicontinuity of a subset C,T ];H) implies compactness if dimh <. Prove that this is not true if dimh = in spite of this negative result the special set K in Problem 6.8 is relatively compact, i.e. any sequence has convergent subsequences in C,T ];L 2 )), since its elements take value in H 1 ), which is compactly embedded in L 2 ), see 1, p. 266]) Both for the system with memory and for the associated wave equation, study the following problem. Let controllability holds at a certain time T with the control acting on Γ. Let H T be the subset of ϕ,ϕ 1 ) H 1 ) L2 ) such that the corresponding solution of 6.1) satisfies for a fixed number M, T γ 1 ϕ 2 dg T M. Γ Prove that H T is closed and decide whether it is also bounded. Discuss the role of the assumption of controllability in this problem The derivation of the inverse inequality for the wave equation uses conservation of energy. So, Theorem 6.3 might suggest conservation of energy for the system with memory. Examine that system ϕ = e αt s) ϕs)ds 6.8) with zero boundary conditions) and show that the quantity

4 64 Problems of Chapter 6 ϕ t) 2 + ϕ 2 dx is not constant along the solutions. The Solutions Solution of Problem 6.1 The equality can be justified as in Problem 4.2, where however we used f ) = and f ) =. It has an interest to rederive the equality without using these conditions. Let H + = { f C 2,)) such that t T = T f implies f t) = }. The space H + is dense in H 2,) and so the required formula can be proved assuming f H +. The formula is then extended by continuity in fact it can be extended also to square integrable controls f ). We integrate by parts and we get T = T T = ϕx,t s)w x,s)dsdx = ϕ x)w x,t ) + ϕ 1 x)wx,t ) ] dx + ϕx,t s)w xx x,s)dxds = T T ϕ x,t s) f s)ds + ϕ xx x,t s)wx,s)dxds in the second line we used ϕ,t) = ). We equate and we get T ϕ x,t s) f s)ds = ϕ x,t s)wx,s)dsdx, ϕ x)w x,t ) + ϕ 1 x)wx,t ) ] dx. We examine the first integral on the right hand side. We note that wx,t) = f t x)ht x), w x,t) = f t x)ht x) + f t x)δt x). Note that the numbers T here and T f in the definition of H + ) are not the same, so that the last term is not zero in general. So, the first integral takes the form

5 Problems of Chapter 6 65 = = T ϕ x)w x,t )dx = ϕ x) f T x)ht x)dx + ϕ x) f T x)δt x) = ϕ x) f T x)dx + ϕ T ) f ) = = ϕ T ) f ) + ϕ ) f T ) + T ] d = dx ϕ x) f T x)dx T ] d dx ϕ x) because ϕ D,) and so ϕ ) =. It is apparent from here that the transformation T ϕ ϕ x)w x,t )dx = f T x)dx + ϕ T ) f ) = d dx ϕ x) ] f T x)dx is a continuous functional on H 1,). Compare with Theorem 6.1. Solution of Problem 6.2 We prove the inequality with ϕ, ϕ 1 in D). The inequality can be extended to H 1) L2 ) by continuity. For simplicity, we confine ourselves to the case F =, c = 1. Let Lϕ)t) = hr t)ϕ + Kt s)r s)ϕds. Picard iteration asserts that s ϕt) = ut) + ha 1 Rt s)us)ds + A 1 R t s) Ks r)ur)dr ds A 1 L 2 A 1 L ) ) k u k= The function ut) solves 2 so that u = u, u) = ϕ, u ) = ϕ ), u = on. 6.9) ut) = R + t)ϕ + A 1 R t)ϕ 1. Hence, ut) C,T ],doma) C 1,T ],doma ). The function u solves a wave equation and so the direct inequality holds for u: ) γ 1 u 2 L 2 G T ) ϕ M 2 H 1) + ϕ 1 2 L 2 ). 2 for consistency with the notations in 6.1) here we use u even if the boundary conditions are zero.

6 66 Problems of Chapter 6 Equality??) shows that, when ϕ and ϕ 1 belong to D), γ 1 ϕ = D Aϕ. So, γ 1 A 1 L 2 A 1 L ) )) k u = D L 2 A 1 L ) ) k u k= k= and this depends continuously on ϕ H 1) and ϕ 1 L 2 ). Let us consider γ 1 A 1 Lu) ) = hγ 1 A 1 R t s)us)ds+γ 1 A 1 s note that Kt) is scalar valued). We consider the first integral which is Kt s r)r r)us)dsdr γ 1 A 1 R t s)r + s)ϕ ds + γ 1 A 1 R t s)a 1 R s)ϕ 1 ds. The second integral is a continuous function of ϕ 1. To study the first integral we note that D R t s)r s)ϕ 1 ds, R t s)r + s)ϕ ds = 1 4 tr t)ϕ. This is easily seen because, using the definitions of R t) and R + t), we have Hence the first integral is R τ)r + t) = 1 4 R t + τ) R + t τ)]. t γ 1 A 1 R t)ϕ ) 6.1) which depends continuously on ϕ H 1 ), using the direct inequality of the wave equation. The last term in 6.1) is treated analogously. Solution of Problem 6.3 Use the following properties of a Banach space: separation property, consequence of Hahn-Banach Theorem): if x 1 x 2 belong to a Banach space B then there exists χ B such that x 1, χ = x 2, χ. consequence of the Closed Graph Theorem) if x n then there exists χ B such that x n, χ.

7 Problems of Chapter 6 67 Identify the dual space of L 2 ) with itself. The dual space of B = L 2 ) H 1 ) is L2 ) H 1 ) and in turn L 2 ) H 1 ) ) = L 2 ) H 1 ) this is a consequence of the fact that H 1 ) and so also H 1 ) are Hilbert spaces). These properties have been used in Section By contradiction, if χt), χt)) is not continuous on,t ] then there exists a sequence t n t in,t ]) such that either χt n ), χt n )) or χt n ), χt n )) χ, χ ) χt ), χt ). The first case is impossible since the right hand side of 6.3) is bounded on,t ] for every ϕ and ϕ 1. Also the second case is impossible. In fact, the separation property would imply the existence of an element ϕ,ϕ 1 ) L 2 ) H 1 ) = L 2 ) H 1 ) ) such that the left hand side of 6.3) is not a continuous function of time while equality to the right hand side shows that it is continuous. Solution of Problem 6.4 As in Problem 4.1, we extend ϕ x) to a function ϕ defined on 1,2) which is odd respect to and respect to 1. I.e. for x,1) we require ϕ x) = ϕ x), ϕx) = ϕ2 x). Then, for t,1], the unique solution of 6.7) is ϕx,t) = 1 ϕx +t) + ϕx t) ]. 6.11) 2 Let { exp 1 ϕ x) = xx 1/n) if < x < 1/n if 1/n) < x < ) Let us fix any T < 1 and consider a time t < T and a number n > n where n satisfies T + 1/n < 1. Then we have ϕx,t) = if x < T + 1/n < 1. So we have also ϕ x 1,t) for t,t + 1/n] in spite of the fact that ϕ x). If ϕ x 1,t) for every t,1] then we have also D x ϕ1 + t) = D x ϕ1 t) and so D x ϕx) is odd respect to 1; but, it is also even, since it is the derivative of an odd function. Hence it is zero. Solution of Problem 6.5 We denote ψ the solution with initial conditions ψx,) = and ψ x,) = ψ 1 x) possibly not zero. An example is easily constructed using the solution ϕ found in Problem 6.4. Let ψx,t) = ϕ x,t). Then ψ1, t) = for t, 1 1/n) and ψ solves the string equation on, 1) with conditions ψx,) = ϕ x,) =, ψ x,) = ϕ xx x,). Let now ψ be a solution such that ψ x 1,t) = for t 1. We prove ψ 1 =. A solution of the problem for t,1] with initial conditions ψx,) =, ψ x,) = ψ 1 x)) is constructed as follows: we extend ψ 1 as an odd function ψx) respect to zero and respect to 1. The solution is

8 68 Problems of Chapter 6 ψx,t) = 1 2 x+t x t ψs)ds. If ψ x 1,t) = then we have ψ1 +t) ψ1 t) = and so ψ is both even and odd respect to 1. Hence it is zero. Solution of Problem 6.6 Let the initial conditions be Then, ϕx,y,t) = 2 π ϕx,y,) = ϕ x,y), ϕ x,y,) =. n,m=1 ) ϕ n,m cos n 2 + m 2 t sinnxsinmy. The coefficients ϕ n,m are the Fourier coefficients of ϕ x,y). We recall: and we note that: γ 1 ϕx,,t) = ϕ 2 H 1 Q) = 2 π n,m=1 So, the inverse inequality would be m n 2 + m 2) ϕn,m 2 n,m=1 T n,m=1 m 2 ϕ 2 n,m = π 4 m 2 ϕ 2 n,m { n,m=1 n 2 + m 2) ϕ 2 n,m 6.13) ) mϕ n,m )cos n 2 + m 2 t sinnx ) ) cos n m 2 t dt T + sin2t n 2 + m 2 2 n 2 + m 2 }. ] π sin 2 nx ) dx = It is clear that this inequality cannot hold for every sequence {ϕ nm } for which the series 6.13) converges. For example, for every fixed M let us consider the sequence {ϕ n,m } such that ϕ M 2,M = 1, ϕ n,m = otherwise. Then the inverse inequality would imply the existence of m > and T > such that the following inequality holds for every M: m M 4 + M 2) T + 1)π M 2, 4

9 Problems of Chapter 6 69 This is clearly impossible. A second example is as follows: let ) ϕ n,m x,y,t) = sin t n 2 + m 2 sinnxsinmy. This is a solution which corresponds to the initial conditions ϕ x,y) =, ϕ 1 x,y) = n 2 + m 2 sinnxsinmy. Substituting in the inverse inequality we find the following inequality, which should hold for every n and every m: m n 2 + m 2) π π T π ) sin 2 nxsin 2 mydxdy n 2 sin 2 t n 2 + m 2 sin 2 mydy. The integrals can be easily computed and it is to see that the inequality can hold only if m =. Hence, the system is not controllable whathever the time T, when the active part of the boundary is one side of the square. Solution of Problem 6.7 We use formula 6.1) that we rewrite as s ] ϕt) = R + t)ϕ +A 1 R t)ϕ 1 +A 1 R t s) hϕs) + Ks r)ϕr)dr ds. It follows from Theorem 6.2 that ϕ H 1) = doma, ϕ 1 L 2 ) so that ϕ C,T ];L 2 )) the proof is similar to the proof of Theorem??, where the condition ϕ doma and ϕ 1 doma are used to compute a second derivative, not needed here). So we have s ] ϕ t) = R t)a ϕ + R + t)ϕ 1 + R + t s) hϕs) + Ks r)ϕr)dr ds. Hence, ] ϕ t) M ϕ H 1 ) + ϕ 1 L 2 ) + ϕ C,T ];L 2 ). The required inequality follows from 6.6). Solution of Problem 6.8 The solution ϕ solves the Volterra integral equation ϕt) = R + t)ϕ + A 1 R t)ϕ 1 + A 1 s R t s) Ks r)ϕr)dr ds. Gronwall inequality shows boundedness of K. A sufficient condition for equicontinuity is boundedness of the set of the derivatives. Computing the derivative we see that s ϕ t) = R t)a ϕ + R + t)ϕ 1 + R + t s) Ks r)ϕr)dr ds.

10 7 Problems of Chapter 6 Hence the set of the derivatives of the elements of K is bounded in L 2 ). Solution of Problem 6.9 We must exibit a sequence of functions in C,T ];H), with dimh =, which is bounded and equicontinuous, but which does not have convergent subsequences. Let H be any Hilbert space and let {e n } be an orthonormal basis. We consider the constant functions ϕ n t) e n. The sequence {ϕ n } is bounded every element has norm 1) and it is equicontinuous since every element is constan). But, for every n and m we have So, there is no convergent subsequence. ϕ n ϕ m C,T ];H) = 2. Solution of Problem 6.1 Let {ϕ n,ϕ 1n )} be a sequence in H T which is convergent to ϕ,ϕ 1 ) H 1 ) L2 ). We must prove that it converges to an element of H T. Let ϕ n be the solution which correspond to the initial conditions ϕ n,ϕ 1n ) and ϕ be the one whose initial data are ϕ,ϕ 1 ). The direct inequality shows that ϕ,ϕ 1 ) γ 1 ϕ is continuous, and the norm is continuous too. Hence γ 1 ϕ 2 L 2 G T ) = lim γ 1ϕ n 2 L 2 G T ) M. This proves that H T is closed. The set H T is not bouded in general, without the assumption of controllability. For example, in the case of Problem 6.4 with T < 1 it contains every multiple of ϕ,). The set is bounded if the system is controllable at time T with controls acting on Γ, thanks to the inverse inequality. So, the set H T is bounded if the system is exactly controllable at time T. These facts hold both for the system with and without memory. Solution of Problem 6.11 Eq. 6.8) is a generalized) telegraph equation, ϕ = ϕ + αϕ Multiply both the sides with ϕ and integrate on. Using ϕ = on we get 1 d 2 dt Integrate both the sides on,t ] and get Hence ϕ t) 2 + ϕt) 2] dx = ϕ t) 2 + ϕt) 2] dx = α ϕ t) 2 dx. ϕ1 2 + ϕ 2] dx + α ϕ s) 2 dxds.

11 References 71 ϕ t) 2 + ϕt) 2] dx ϕ1 2 + ϕ 2] dx. We have ϕ t) 2 + ϕt) 2] dx ϕ1 2 + ϕ 2] dx. when α which is the case encountered in applications. So, in practice, the memory term introduces a dissipation. References 1. Dunford, N., Schwartz, J.T.: Linear operators part I: general theory. Wiley Classic Library Edition, John Wiley and Sons, New York 1988)

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Chapter 5: Application: Fourier Series

Chapter 5: Application: Fourier Series 321 28 9 Chapter 5: Application: Fourier Series For lack of time, this chapter is only an outline of some applications of Functional Analysis and some proofs are not complete. 5.1 Definition. If f L 1

More information

A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY

A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY Guidetti, D. and Lorenzi, A. Osaka J. Math. 44 (27), 579 613 A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY DAVIDE GUIDETTI and ALFREDO LORENZI (Received January 23, 26,

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

Chapter 7 Nonlinear Systems

Chapter 7 Nonlinear Systems Chapter 7 Nonlinear Systems Nonlinear systems in R n : X = B x. x n X = F (t; X) F (t; x ; :::; x n ) B C A ; F (t; X) =. F n (t; x ; :::; x n ) When F (t; X) = F (X) is independent of t; it is an example

More information

Chapter 5. Banach Spaces

Chapter 5. Banach Spaces 9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on

More information

BOUNDED, ASYMPTOTICALLY STABLE, AND L 1 SOLUTIONS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS. Muhammad N. Islam

BOUNDED, ASYMPTOTICALLY STABLE, AND L 1 SOLUTIONS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS. Muhammad N. Islam Opuscula Math. 35, no. 2 (215), 181 19 http://dx.doi.org/1.7494/opmath.215.35.2.181 Opuscula Mathematica BOUNDED, ASYMPTOTICALLY STABLE, AND L 1 SOLUTIONS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS Muhammad

More information

Cylinder Maps and the Schwarzian

Cylinder Maps and the Schwarzian Cylinder Maps and the Schwarzian John Milnor Stony Brook University (www.math.sunysb.edu) Bremen June 16, 2008 Cylinder Maps 1 work with Araceli Bonifant Let C denote the cylinder (R/Z) I. (.5, 1) fixed

More information

Math 317 HW #5 Solutions

Math 317 HW #5 Solutions Math 317 HW #5 Solutions 1. Exercise 2.4.2. (a) Prove that the sequence defined by x 1 = 3 and converges. x n+1 = 1 4 x n Proof. I intend to use the Monotone Convergence Theorem, so my goal is to show

More information

Notes on weak convergence (MAT Spring 2006)

Notes on weak convergence (MAT Spring 2006) Notes on weak convergence (MAT4380 - Spring 2006) Kenneth H. Karlsen (CMA) February 2, 2006 1 Weak convergence In what follows, let denote an open, bounded, smooth subset of R N with N 2. We assume 1 p

More information

5.2 Accuracy and Stability for u t = c u x

5.2 Accuracy and Stability for u t = c u x c 006 Gilbert Strang 5. Accuracy and Stability for u t = c u x This section begins a major topic in scientific computing: Initial-value problems for partial differential equations. Naturally we start with

More information

1 Fixed Point Iteration and Contraction Mapping Theorem

1 Fixed Point Iteration and Contraction Mapping Theorem 1 Fixed Point Iteration and Contraction Mapping Theorem Notation: For two sets A,B we write A B iff x A = x B. So A A is true. Some people use the notation instead. 1.1 Introduction Consider a function

More information

1. Periodic Fourier series. The Fourier expansion of a 2π-periodic function f is:

1. Periodic Fourier series. The Fourier expansion of a 2π-periodic function f is: CONVERGENCE OF FOURIER SERIES 1. Periodic Fourier series. The Fourier expansion of a 2π-periodic function f is: with coefficients given by: a n = 1 π f(x) a 0 2 + a n cos(nx) + b n sin(nx), n 1 f(x) cos(nx)dx

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Tensor product of vector spaces

Tensor product of vector spaces Tensor product of vector spaces Construction Let V,W be vector spaces over K = R or C. Let F denote the vector space freely generated by the set V W and let N F denote the subspace spanned by the elements

More information

Lecture 3: Fourier Series: pointwise and uniform convergence.

Lecture 3: Fourier Series: pointwise and uniform convergence. Lecture 3: Fourier Series: pointwise and uniform convergence. 1. Introduction. At the end of the second lecture we saw that we had for each function f L ([, π]) a Fourier series f a + (a k cos kx + b k

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 4: Fourier Series and L ([, π], µ) Square Integrable Functions Definition. Let f : [, π] R be measurable. We say that f

More information

20 Applications of Fourier transform to differential equations

20 Applications of Fourier transform to differential equations 20 Applications of Fourier transform to differential equations Now I did all the preparatory work to be able to apply the Fourier transform to differential equations. The key property that is at use here

More information

Chapter 2 Limits Functions and Sequences sequence sequence Example

Chapter 2 Limits Functions and Sequences sequence sequence Example Chapter Limits In the net few chapters we shall investigate several concepts from calculus, all of which are based on the notion of a limit. In the normal sequence of mathematics courses that students

More information

THE PRIME NUMBER THEOREM

THE PRIME NUMBER THEOREM THE PRIME NUMBER THEOREM NIKOLAOS PATTAKOS. introduction In number theory, this Theorem describes the asymptotic distribution of the prime numbers. The Prime Number Theorem gives a general description

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

7. Continuously Varying Interest Rates

7. Continuously Varying Interest Rates 7. Continuously Varying Interest Rates 7.1 The Continuous Varying Interest Rate Formula. Suppose that interest is continuously compounded with a rate which is changing in time. Let the present time be

More information

Fourier Series Representations

Fourier Series Representations Fourier Series Representations Introduction Before we discuss the technical aspects of Fourier series representations, it might be well to discuss the broader question of why they are needed We ll begin

More information

Analysis via Uniform Error Bounds Hermann Karcher, Bonn. Version May 2001

Analysis via Uniform Error Bounds Hermann Karcher, Bonn. Version May 2001 Analysis via Uniform Error Bounds Hermann Karcher, Bonn. Version May 2001 The standard analysis route proceeds as follows: 1.) Convergent sequences and series, completeness of the reals, 2.) Continuity,

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

Rate of convergence towards Hartree dynamics

Rate of convergence towards Hartree dynamics Rate of convergence towards Hartree dynamics Benjamin Schlein, LMU München and University of Cambridge Universitá di Milano Bicocca, October 22, 2007 Joint work with I. Rodnianski 1. Introduction boson

More information

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics

More information

Extremal equilibria for reaction diffusion equations in bounded domains and applications.

Extremal equilibria for reaction diffusion equations in bounded domains and applications. Extremal equilibria for reaction diffusion equations in bounded domains and applications. Aníbal Rodríguez-Bernal Alejandro Vidal-López Departamento de Matemática Aplicada Universidad Complutense de Madrid,

More information

Fourier series. Jan Philip Solovej. English summary of notes for Analysis 1. May 8, 2012

Fourier series. Jan Philip Solovej. English summary of notes for Analysis 1. May 8, 2012 Fourier series Jan Philip Solovej English summary of notes for Analysis 1 May 8, 2012 1 JPS, Fourier series 2 Contents 1 Introduction 2 2 Fourier series 3 2.1 Periodic functions, trigonometric polynomials

More information

Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 126 Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

1. the function must be periodic; 3. it must have only a finite number of maxima and minima within one periodic;

1. the function must be periodic; 3. it must have only a finite number of maxima and minima within one periodic; Fourier Series 1 Dirichlet conditions The particular conditions that a function f(x must fulfil in order that it may be expanded as a Fourier series are known as the Dirichlet conditions, and may be summarized

More information

1.3 Induction and Other Proof Techniques

1.3 Induction and Other Proof Techniques 4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

Fourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks

Fourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results

More information

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

More information

1. Let X and Y be normed spaces and let T B(X, Y ).

1. Let X and Y be normed spaces and let T B(X, Y ). Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

More information

Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series

Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series 1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

The SIS Epidemic Model with Markovian Switching

The SIS Epidemic Model with Markovian Switching The SIS Epidemic with Markovian Switching Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH (Joint work with A. Gray, D. Greenhalgh and J. Pan) Outline Motivation 1 Motivation

More information

x pn x qn 0 as n. Every convergent sequence is Cauchy. Not every Cauchy sequence in a normed space E converges to a vector in

x pn x qn 0 as n. Every convergent sequence is Cauchy. Not every Cauchy sequence in a normed space E converges to a vector in 78 CHAPTER 3. BANACH SPACES 3.2 Banach Spaces Cauchy Sequence. A sequence of vectors (x n ) in a normed space is a Cauchy sequence if for everyε > 0 there exists M N such that for all n, m M, x m x n

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

) + ˆf (n) sin( 2πnt. = 2 u x 2, t > 0, 0 < x < 1. u(0, t) = u(1, t) = 0, t 0. (x, 0) = 0 0 < x < 1.

) + ˆf (n) sin( 2πnt. = 2 u x 2, t > 0, 0 < x < 1. u(0, t) = u(1, t) = 0, t 0. (x, 0) = 0 0 < x < 1. Introduction to Fourier analysis This semester, we re going to study various aspects of Fourier analysis. In particular, we ll spend some time reviewing and strengthening the results from Math 425 on Fourier

More information

The one dimensional heat equation: Neumann and Robin boundary conditions

The one dimensional heat equation: Neumann and Robin boundary conditions The one dimensional heat equation: Neumann and Robin boundary conditions Ryan C. Trinity University Partial Differential Equations February 28, 2012 with Neumann boundary conditions Our goal is to solve:

More information

Functional analysis and its applications

Functional analysis and its applications Department of Mathematics, London School of Economics Functional analysis and its applications Amol Sasane ii Introduction Functional analysis plays an important role in the applied sciences as well as

More information

Chapter 8 - Power Density Spectrum

Chapter 8 - Power Density Spectrum EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is

More information

Chapter 11 Fourier Analysis

Chapter 11 Fourier Analysis Chapter 11 Fourier Analysis Advanced Engineering Mathematics Wei-Ta Chu National Chung Cheng University wtchu@cs.ccu.edu.tw 1 2 11.1 Fourier Series Fourier Series Fourier series are infinite series that

More information

TRIPLE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION. Communicated by Mohammad Asadzadeh

TRIPLE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION. Communicated by Mohammad Asadzadeh Bulletin of the Iranian Mathematical Society Vol. 33 No. 2 (27), pp -. TRIPLE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION R. DEHGHANI AND K. GHANBARI*

More information

MATH 461: Fourier Series and Boundary Value Problems

MATH 461: Fourier Series and Boundary Value Problems MATH 461: Fourier Series and Boundary Value Problems Chapter III: Fourier Series Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2015 fasshauer@iit.edu MATH 461 Chapter

More information

3.7 Non-autonomous linear systems of ODE. General theory

3.7 Non-autonomous linear systems of ODE. General theory 3.7 Non-autonomous linear systems of ODE. General theory Now I will study the ODE in the form ẋ = A(t)x + g(t), x(t) R k, A, g C(I), (3.1) where now the matrix A is time dependent and continuous on some

More information

Applications of Fourier series

Applications of Fourier series Chapter Applications of Fourier series One of the applications of Fourier series is the evaluation of certain infinite sums. For example, n= n,, are computed in Chapter (see for example, Remark.4.). n=

More information

Homework One Solutions. Keith Fratus

Homework One Solutions. Keith Fratus Homework One Solutions Keith Fratus June 8, 011 1 Problem One 1.1 Part a In this problem, we ll assume the fact that the sum of two complex numbers is another complex number, and also that the product

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

CHAPTER 2. Inequalities

CHAPTER 2. Inequalities CHAPTER 2 Inequalities In this section we add the axioms describe the behavior of inequalities (the order axioms) to the list of axioms begun in Chapter 1. A thorough mastery of this section is essential

More information

DISTRIBUTIONS AND FOURIER TRANSFORM

DISTRIBUTIONS AND FOURIER TRANSFORM DISTRIBUTIONS AND FOURIER TRANSFORM MIKKO SALO Introduction. The theory of distributions, or generalized functions, provides a unified framework for performing standard calculus operations on nonsmooth

More information

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

Fourier Series and Sturm-Liouville Eigenvalue Problems

Fourier Series and Sturm-Liouville Eigenvalue Problems Fourier Series and Sturm-Liouville Eigenvalue Problems 2009 Outline Functions Fourier Series Representation Half-range Expansion Convergence of Fourier Series Parseval s Theorem and Mean Square Error Complex

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

Tangent and normal lines to conics

Tangent and normal lines to conics 4.B. Tangent and normal lines to conics Apollonius work on conics includes a study of tangent and normal lines to these curves. The purpose of this document is to relate his approaches to the modern viewpoints

More information

Engineering Mathematics II

Engineering Mathematics II PSUT Engineering Mathematics II Fourier Series and Transforms Dr. Mohammad Sababheh 4/14/2009 11.1 Fourier Series 2 Fourier Series and Transforms Contents 11.1 Fourier Series... 3 Periodic Functions...

More information

Rate of growth of D-frequently hypercyclic functions

Rate of growth of D-frequently hypercyclic functions Rate of growth of D-frequently hypercyclic functions A. Bonilla Departamento de Análisis Matemático Universidad de La Laguna Hypercyclic Definition A (linear and continuous) operator T in a topological

More information

ON THE EXPONENTIAL FUNCTION

ON THE EXPONENTIAL FUNCTION ON THE EXPONENTIAL FUNCTION ROBERT GOVE AND JAN RYCHTÁŘ Abstract. The natural exponential function is one of the most important functions students should learn in calculus classes. The applications range

More information

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

1. Please write your name in the blank above, and sign & date below. 2. Please use the space provided to write your solution.

1. Please write your name in the blank above, and sign & date below. 2. Please use the space provided to write your solution. Name : Instructor: Marius Ionescu Instructions: 1. Please write your name in the blank above, and sign & date below. 2. Please use the space provided to write your solution. 3. If you need extra pages

More information

Solutions series for some non-harmonic motion equations

Solutions series for some non-harmonic motion equations Fifth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 10, 2003, pp 115 122. http://ejde.math.swt.edu or http://ejde.math.unt.edu

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.

More information

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

More information

I. Pointwise convergence

I. Pointwise convergence MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

More information

Lecture 12 Basic Lyapunov theory

Lecture 12 Basic Lyapunov theory EE363 Winter 2008-09 Lecture 12 Basic Lyapunov theory stability positive definite functions global Lyapunov stability theorems Lasalle s theorem converse Lyapunov theorems finding Lyapunov functions 12

More information

The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

PDE and Boundary-Value Problems Winter Term 2014/2015

PDE and Boundary-Value Problems Winter Term 2014/2015 PDE and Boundary-Value Problems Winter Term 2014/2015 Lecture 15 Saarland University 12. Januar 2015 c Daria Apushkinskaya (UdS) PDE and BVP lecture 15 12. Januar 2015 1 / 42 Purpose of Lesson To show

More information

Examination paper for Solutions to Matematikk 4M and 4N

Examination paper for Solutions to Matematikk 4M and 4N Department of Mathematical Sciences Examination paper for Solutions to Matematikk 4M and 4N Academic contact during examination: Trygve K. Karper Phone: 99 63 9 5 Examination date:. mai 04 Examination

More information

Course 221: Analysis Academic year , First Semester

Course 221: Analysis Academic year , First Semester Course 221: Analysis Academic year 2007-08, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................

More information

3(vi) B. Answer: False. 3(vii) B. Answer: True

3(vi) B. Answer: False. 3(vii) B. Answer: True Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Mathematical Finance

Mathematical Finance Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

4.3 Limit of a Sequence: Theorems

4.3 Limit of a Sequence: Theorems 4.3. LIMIT OF A SEQUENCE: THEOREMS 5 4.3 Limit of a Sequence: Theorems These theorems fall in two categories. The first category deals with ways to combine sequences. Like numbers, sequences can be added,

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

Preliminary Version: December 1998

Preliminary Version: December 1998 On the Number of Prime Numbers less than a Given Quantity. (Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.) Bernhard Riemann [Monatsberichte der Berliner Akademie, November 859.] Translated

More information

1. R In this and the next section we are going to study the properties of sequences of real numbers.

1. R In this and the next section we are going to study the properties of sequences of real numbers. +a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

Math 315: Linear Algebra Solutions to Midterm Exam I

Math 315: Linear Algebra Solutions to Midterm Exam I Math 35: Linear Algebra s to Midterm Exam I # Consider the following two systems of linear equations (I) ax + by = k cx + dy = l (II) ax + by = 0 cx + dy = 0 (a) Prove: If x = x, y = y and x = x 2, y =

More information

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter Infinite series, improper integrals, and Taylor series. Introduction This chapter has several important and challenging goals. The first of these is to understand how concepts that were discussed

More information

1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form

1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form 1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

TMA4213/4215 Matematikk 4M/N Vår 2013

TMA4213/4215 Matematikk 4M/N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA43/45 Matematikk 4M/N Vår 3 Løsningsforslag Øving a) The Fourier series of the signal is f(x) =.4 cos ( 4 L x) +cos ( 5 L

More information