Imagine that a wall of your house is hit on one occasion by a boy on a skateboard and on another by a large juggernaut.


 Myrtle Sims
 2 years ago
 Views:
Transcription
1 A Resource for Freestanding Matheatics Qualifications Iagine that a wall of your house is hit on one occasion by a boy on a skateboard and on another by a large juggernaut. Suppose both had a speed of 1 s 1 at ipact. Which daages your house less? 1 s 1 Your answer to this question shows that when you odel a, you ust consider ore than just the velocities of the bodies involved. Their asses are also significant. Moentu When an object of ass kilogras oves with velocity v etres per second, its oentu is v (easured in kg s 1 or Ns). Moentu, like velocity, is a vector having both agnitude and diension. Whenever two objects are in contact, they exert equal and opposite forces on each other. In the case of a in which both objects can ove, the contact produces equal and opposite changes in oentu. Provided that no external force acts on either object, the total oentu of the two objects reains constant. For the Dynaics FSMQ, you will only need to use this property for objects oving in one diension. The Principle of Conservation of Linear Moentu When a occurs between two objects, the total oentu after is equal to the total oentu before the (assuing that there are no external forces). 1 v v 2 = 1 u u 2 u 1 s 1 u 2 s v 1 s 1 v 2 s 1 In soe s the two colliding objects separate after the, whereas in others they join together. In the first case the objects have different velocities after the whereas in the second case they ove together with the sae velocity after the ipact. When solving a proble involving a, draw a clear diagra showing the velocities before and after the ipact. In cases where the objects ove in opposite directions, take care to define one direction as the 'positive' direction an object oving in the opposite direction will have negative velocity. Soe exaples in real contexts follow. The Nuffield Foundation 1
2 A Resource for Freestanding Matheatics Qualifications Bowls In a gae of bowls a wood of ass hits the jack, of ass, which is stationary. The wood has a speed of 1.4 s 1 before the and a speed of 1 s 1 in the sae direction after the. What is the speed of the jack after the? 1.4 s 1 0 s 1 1 s 1 v s 1 By the principle of conservation of linear oentu v = v = = 0.4 v = 2 The jack has speed 2 s 1 after the. Skiers A skier of ass 75 kg who is oving at 8 s 1 collides with a skier of ass 60 kg oving at 4 s 1 in the sae direction. The faster skier's speed is reduced to 6 s 1 after the. What happens to the speed of the other skier? By the principle of conservation of linear oentu v = v = = 390 v = 6.5 The skier's speed is increased to 6.5 s 1 8 s kg 6 s 1 4 s 1 v s kg Tank A tank of ass 27.5 tonnes fires a shell of ass 7.5 kg with a speed of 300 s 1. Find the initial speed of recoil of the tank. By the principle of conservation of linear oentu v = v = 2250 v = The tank recoils with an initial speed of 8.18 cs 1 Toy trucks Two identical trucks, each of ass 200 g collide on a track. the they are oving towards each other as shown. the they ove together along the track at a speed of v s 1. Find v. 3 s 1 7 s kg 7.5 kg 0 s 1 0 s 1 v s s 1 Positive direction By the principle of conservation of linear oentu 0.4v = = 0.8 v = 2 The trucks ove at 2 s 1 in the direction of the faster truck. 200 g 200 g 200 g 200 g v s 1 The Nuffield Foundation 2
3 A Resource for Freestanding Matheatics Qualifications Worksheet 1 A boy and his toboggan have a cobined ass of 65 kg. They slide at a speed of 15 s 1 along a horizontal snow surface and then collide into a girl on her toboggan travelling in the sae direction at a speed of 7 s 1. The girl and her toboggan have a total ass of 50 kg., the speed of the boy and his toboggan is reduced to 9 s 1. The situations before and after the are shown below. Find the new speed, v s 1, of the girl and her toboggan after the. 15 s 1 7 s 1 9 s 1 v s kg 50 kg 65 kg 50 kg 2 A student experients with soe sall trolleys which can ove freely along a plastic track. a) The first which she investigates is arranged so that a trolley oves with initial speed 1 s 1 and collides with another which is stationary, as shown below. Both trolleys are identical and have ass kg. The trolleys stick together at and ove away together with speed v s 1. Use the principle of conservation of oentu to find v. u = 1 s 1 0 s 1 v s 1 b) In the second experient she investigates how the final speed, v s 1, of the cobined trolleys after the varies with the initial speed u s 1 of the oving trolley before ipact as shown below. Find an expression for v in ters of u. u s 1 0 s 1 v s 1 The Nuffield Foundation 3
4 A Resource for Freestanding Matheatics Qualifications 3 In a gae of bowls a wood of ass hits the jack, of ass, which is stationary. The wood has a speed of 1 s 1 before the and a speed of u s 1 after the. The jack has a speed of v s 1 after the as shown below. 1 s 1 u s 1 0 s 1 v s 1 a) Find an expression for v in ters of u. b) Draw a graph showing how v varies with u. Explain what would happen to the wood and jack at each of the points where your graph cuts the axes. 4 A an stands up in a sall rowing boat. He steps out of the rowing boat onto the river bank. he leaves the boat both the an and boat are stationary. The an has a ass 80 kg and the boat has a ass of 250 kg. When the an leaves the boat he has a speed of 1 s 1. The boat travels in the opposite direction with a speed of v s 1 as shown. Find v. 1 s 1 v s 1 5 A bullet is fired fro a gun. The ass of the gun is 2.5 kg; that of the bullet is 50 g. The bullet leaves the gun with speed 500 s 1. Find the initial speed of recoil of the gun. v s s kg 50 g 6 A girl, of ass 60 kg, jups onto a stationary skateboard of ass 3 kg. Just before she hits the skateboard, which is on horizontal ground, the girl is travelling in a horizontal direction with speed 4 s 1. Find the speed of the girl on the skateboard just after the. 7 Two snooker balls, both of ass 150 g collide directly. Just before the they are travelling with the speeds shown in the diagra. the the white snooker ball rebounds with a speed of 1.2 s 1. What happens to the black ball? 2 s 1 4 s 1 v s s 1 8 A 10 tonne train engine, which is rolling at a speed of 0.5 s 1, collides with a 2 tonne truck which is rolling in the opposite direction with a speed of 0.1 s 1. the the train and carriage ove together. Find the speed and the direction in which they ove after the. The Nuffield Foundation 4
5 A Resource for Freestanding Matheatics Qualifications Teacher Notes Unit Advanced Level, Dynaics Notes on Activity Pages 1 and 2 introduce the principle of conservation of oentu and show how this can be used to solve probles involving s. The worksheets on pages 3 and 4 give practice in solving siilar probles. Soe of these originally appeared in the book Mechanics 1 which was funded by the Nuffield Foundation and published by Longan in 1994 (ISBN X). Answers s 1 2 a) v = 1 2 s 1 b) v = 1 2 u 3 a) v = ( 1 u) v 5 b) Point (0, 5) 5 The wood is reduced to rest and the jack oves off with velocity 5 s s s s 1 (to 3 sf) 0 1 u Point (1, 0) The jack is at rest and the wood oves at 1 s 1 (the initial situation) 7 Black ball rebounds with velocity 3.2 s s 1 in the initial direction of the engine's otion. The Nuffield Foundation 5
Lecture L9  Linear Impulse and Momentum. Collisions
J. Peraire, S. Widnall 16.07 Dynaics Fall 009 Version.0 Lecture L9  Linear Ipulse and Moentu. Collisions In this lecture, we will consider the equations that result fro integrating Newton s second law,
More informationAnswer: Same magnitude total momentum in both situations.
Page 1 of 9 CTP1. In which situation is the agnitude of the total oentu the largest? A) Situation I has larger total oentu B) Situation II C) Sae agnitude total oentu in both situations. I: v 2 (rest)
More informationand that of the outgoing water is mv f
Week 6 hoework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign ersions of these probles, arious details hae been changed, so that the answers will coe out differently. The ethod to find the solution is
More informationWork, Energy, Conservation of Energy
This test covers Work, echanical energy, kinetic energy, potential energy (gravitational and elastic), Hooke s Law, Conservation of Energy, heat energy, conservative and nonconservative forces, with soe
More informationOur Dynamic Universe
North Berwick High School Department of Physics Higher Physics Unit 1 Section 3 Our Dynamic Universe Collisions and Explosions Section 3 Collisions and Explosions Note Making Make a dictionary with the
More informationE k = ½ m v 2. (J) (kg) (m s 1 ) FXA KINETIC ENERGY (E k ) 1. Candidates should be able to : This is the energy possessed by a moving object.
KINETIC ENERGY (E k ) 1 Candidates should be able to : This is the energy possessed by a oing object. Select and apply the equation for kinetic energy : E k = ½ 2 KINETIC ENERGY = ½ x MASS x SPEED 2 E
More informationChapter 13 Simple Harmonic Motion
We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances. Isaac Newton 13.1 Introduction to Periodic Motion Periodic otion is any otion that
More informationWork, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
More informationLesson 44: Acceleration, Velocity, and Period in SHM
Lesson 44: Acceleration, Velocity, and Period in SHM Since there is a restoring force acting on objects in SHM it akes sense that the object will accelerate. In Physics 20 you are only required to explain
More informationPhys101 Lectures 14, 15, 16 Momentum and Collisions
Phs0 Lectures 4, 5, 6 Moentu and ollisions Ke points: Moentu and ipulse ondition for conservation of oentu and wh How to solve collision probles entre of ass Ref: 9,,3,4,5,6,7,8,9. Page Moentu is a vector:
More informationPHYSICS 151 Notes for Online Lecture 2.2
PHYSICS 151 otes for Online Lecture. A freebod diagra is a wa to represent all of the forces that act on a bod. A freebod diagra akes solving ewton s second law for a given situation easier, because
More informationChapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
More informationLecture L263D Rigid Body Dynamics: The Inertia Tensor
J. Peraire, S. Widnall 16.07 Dynaics Fall 008 Lecture L63D Rigid Body Dynaics: The Inertia Tensor Version.1 In this lecture, we will derive an expression for the angular oentu of a 3D rigid body. We shall
More informationPlane Trusses. Section 7: Flexibility Method  Trusses. A plane truss is defined as a twodimensional
lane Trusses A plane truss is defined as a twodiensional fraework of straight prisatic ebers connected at their ends by frictionless hinged joints, and subjected to loads and reactions that act only at
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationA Gas Law And Absolute Zero
A Gas Law And Absolute Zero Equipent safety goggles, DataStudio, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution This experient deals with aterials that are very
More information( C) CLASS 10. TEMPERATURE AND ATOMS
CLASS 10. EMPERAURE AND AOMS 10.1. INRODUCION Boyle s understanding of the pressurevolue relationship for gases occurred in the late 1600 s. he relationships between volue and teperature, and between
More informationOn the Mutual Coefficient of Restitution in Two Car Collinear Collisions
//006 On the Mutual Coefficient of Restitution in Two Car Collinear Collisions Milan Batista Uniersity of Ljubljana, Faculty of Maritie Studies and Transportation Pot poorscako 4, Sloenia, EU ilan.batista@fpp.edu
More informationA uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed?
A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed? 1 2 PHYS 1021: Chap. 9, Pg 2 Page 1 1 A uranium nucleus
More informationA Gas Law And Absolute Zero Lab 11
HB 040605 A Gas Law And Absolute Zero Lab 11 1 A Gas Law And Absolute Zero Lab 11 Equipent safety goggles, SWS, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution
More informationFrom Last Time Newton s laws. Question. Acceleration of the moon. Velocity of the moon. How has the velocity changed?
Fro Last Tie Newton s laws Law of inertia F=a ( or a=f/ ) Action and reaction Forces are equal and opposite, but response to force (accel.) depends on ass (a=f/). e.g. Gravitational force on apple fro
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
More informationACTIVITY SIX CONSERVATION OF MOMENTUM ELASTIC COLLISIONS
1 PURPOSE ACTIVITY SIX CONSERVATION OF MOMENTUM ELASTIC COLLISIONS For this experiment, the Motion Visualizer (MV) is used to capture the motion of two frictionless carts moving along a flat, horizontal
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity
More informationB) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B
Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time
More informationThe Mathematics of Pumping Water
The Matheatics of Puping Water AECOM Design Build Civil, Mechanical Engineering INTRODUCTION Please observe the conversion of units in calculations throughout this exeplar. In any puping syste, the role
More informationPHYSICS 111 HOMEWORK SOLUTION #8. March 24, 2013
PHYSICS 111 HOMEWORK SOLUTION #8 March 24, 2013 0.1 A particle of mass m moves with momentum of magnitude p. a) Show that the kinetic energy of the particle is: K = p2 2m (Do this on paper. Your instructor
More informationAnswer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Hoework 7 David McIntyre 453 Mar 5, 004 This printout should have 4 questions. Multiplechoice questions ay continue on the next colun or page find all choices before aking your selection.
More informationLAWS OF MOTION PROBLEM AND THEIR SOLUTION
http://www.rpauryascienceblog.co/ LWS OF OIO PROBLE D HEIR SOLUIO. What is the axiu value of the force F such that the F block shown in the arrangeent, does not ove? 60 = =3kg 3. particle of ass 3 kg oves
More informationThe Virtual Spring Mass System
The Virtual Spring Mass Syste J. S. Freudenberg EECS 6 Ebedded Control Systes Huan Coputer Interaction A force feedbac syste, such as the haptic heel used in the EECS 6 lab, is capable of exhibiting a
More informationExam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
More informationScaling of Seepage Flow Velocity in Centrifuge Models CUED/DSOILS/TR326 (March 2003) N.I.Thusyanthan 1 & S.P.G.Madabhushi 2
Scaling of Seepage Flow Velocity in Centrifuge Models CUED/DSOILS/TR326 (March 2003) N.I.Thusyanthan 1 & S.P.G.Madabhushi 2 Research Student 1, Senior Lecturer 2, Cabridge University Engineering Departent
More informationP211 Midterm 2 Spring 2004 Form D
1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m
More informationNEWTON S LAWS OF MOTION
Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict
More informationVersion 001 test 1 review tubman (IBII201516) 1
Version 001 test 1 review tuban (IBII01516) 1 This printout should have 44 questions. Multiplechoice questions ay continue on the next colun or page find all choices before answering. Crossbow Experient
More informationLesson 13: Voltage in a Uniform Field
Lesson 13: Voltage in a Unifor Field Most of the tie if we are doing experients with electric fields, we use parallel plates to ensure that the field is unifor (the sae everywhere). This carries over to
More informationExam Three Momentum Concept Questions
Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:
More informationConservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension
14 Conservation of Conservation of Using PASCO TM Carts and Track to Study s in One Dimension OBJECTIVE Students will collide two PASCO TM carts on a track to determine the momentum before and after a
More informationF=ma From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, morin@physics.harvard.edu
Chapter 4 F=a Fro Probles and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, orin@physics.harvard.edu 4.1 Introduction Newton s laws In the preceding two chapters, we dealt
More information1. Newton s Laws of Motion and their Applications Tutorial 1
1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationChapter 11 Relative Velocity
Chapter 11 Relatie Velocity 11 Relatie Velocity Vector add like ector, not like nuber. Except in that ery pecial cae in which the ector you are adding lie along one and the ae line, you can t jut add the
More informationElectric Forces between Charged Plates
CP.1 Goals of this lab Electric Forces between Charged Plates Overview deterine the force between charged parallel plates easure the perittivity of the vacuu (ε 0 ) In this experient you will easure the
More informationExercises on Work, Energy, and Momentum. A B = 20(10)cos98 A B 28
Exercises on Work, Energy, and Momentum Exercise 1.1 Consider the following two vectors: A : magnitude 20, direction 37 North of East B : magnitude 10, direction 45 North of West Find the scalar product
More informationEngineered Solutions To Help Prevent LCD Failures
Engineered Solutions To Help Prevent LCD Failures By Bruce Chew Senior Applications Engineer EAR Specialty Coposites Indianapolis, Indiana ENGINEERED SOLUTIONS TO HELP PREVENT LCD FAILURES A liquid crystal
More informationKinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.
1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationAP physics C Web Review Ch 6 Momentum
Name: Class: _ Date: _ AP physics C Web Review Ch 6 Momentum Please do not write on my tests Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The dimensional
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationThe Fundamentals of Modal Testing
The Fundaentals of Modal Testing Application Note 2433 Η(ω) = Σ n r=1 φ φ i j / 2 2 2 2 ( ω n  ω ) + (2ξωωn) Preface Modal analysis is defined as the study of the dynaic characteristics of a echanical
More informationChapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary.
Chapter 9 9.2 Figure 937 shows a three particle system with masses m 1 3.0 kg, m 2 4.0 kg, and m 3 8.0 kg. The scales are set by x s 2.0 m and y s 2.0 m. What are (a) the x coordinate and (b) the y coordinate
More informationNewton s Wagon Newton s Laws
Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?
More informationChapter 7 Momentum and Impulse
Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time
More informationMomentum, Impulse and Momentum Change
Name: Momentum, Impulse and Momentum Change Read from Lesson 1 of the Momentum and Collisions chapter at The Physics Classroom: http://www.physicsclassroom.com/class/momentum/u4l1a.html http://www.physicsclassroom.com/class/momentum/u4l1b.html
More informationPhysics I Honors: Chapter 4 Practice Exam
Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe
More informationReview Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
More informationAP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationAP Physics Energy and Springs
AP Physics Energy and Springs Another major potential energy area that AP Physics is enamored of is the spring (the wire coil deals, not the ones that produce water for thirsty humanoids). Now you ve seen
More informationChapter 9. particle is increased.
Chapter 9 9. Figure 936 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass
More informationPractice TEST 2. Explain your reasoning
Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant
More informationThe Velocities of Gas Molecules
he Velocities of Gas Molecules by Flick Colean Departent of Cheistry Wellesley College Wellesley MA 8 Copyright Flick Colean 996 All rights reserved You are welcoe to use this docuent in your own classes
More informationVectors & Newton's Laws I
Physics 6 Vectors & Newton's Laws I Introduction In this laboratory you will eplore a few aspects of Newton s Laws ug a force table in Part I and in Part II, force sensors and DataStudio. By establishing
More information4 Impulse and Impact. Table of contents:
4 Impulse and Impact At the end of this section you should be able to: a. define momentum and impulse b. state principles of conseration of linear momentum c. sole problems inoling change and conseration
More informationExperiment 2: Conservation of Momentum
Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations
More informationDescription: Conceptual questions about projectile motion and some easy calculations. (uses applets)
Week 3: Chapter 3 [ Edit ] Overview Suary View Diagnotic View Print View with Anwer Week 3: Chapter 3 Due: 11:59p on Sunday, February 8, 2015 To undertand how point are awarded, read the Grading Policy
More informationNewton s Third Law. Newton s Third Law of Motion. ActionReaction Pairs
Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum
More informationDescribe the relationship between gravitational force and distance as shown in the diagram.
Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read
More informationSimple Harmonic Motion MC Review KEY
Siple Haronic Motion MC Review EY. A block attache to an ieal sprin uneroes siple haronic otion. The acceleration of the block has its axiu anitue at the point where: a. the spee is the axiu. b. the potential
More informationUnits DEMO spring scales masses
Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring
More information1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.
Base your answers to questions 1 through 5 on the diagram below which represents a 3.0kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the
More informationMomentum & Energy Extra Study Questions
Momentum & Energy Extra Study Questions Short Answer 1. What is the momentum of a 1000 kg car moving at 15 m/s [E]? 2. Calculate the momentum of each of the following objects. (a) a 0.50 kg ball thrown
More informationNEWTON S LAWS OF MOTION
NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied
More informationMedia Adaptation Framework in Biofeedback System for Stroke Patient Rehabilitation
Media Adaptation Fraework in Biofeedback Syste for Stroke Patient Rehabilitation Yinpeng Chen, Weiwei Xu, Hari Sundara, Thanassis Rikakis, ShengMin Liu Arts, Media and Engineering Progra Arizona State
More informationHomework 8. problems: 10.40, 10.73, 11.55, 12.43
Hoework 8 probles: 0.0, 0.7,.55,. Proble 0.0 A block of ass kg an a block of ass 6 kg are connecte by a assless strint over a pulley in the shape of a soli isk having raius R0.5 an ass M0 kg. These blocks
More information1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?
Physics 2A, Sec C00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationcharge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the
This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2D collisions, and centerofmass, with some problems requiring
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationSection 3 Newton s Laws of Motion
Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that
More informationPREDICTION OF MILKLINE FILL AND TRANSITION FROM STRATIFIED TO SLUG FLOW
PREDICTION OF MILKLINE FILL AND TRANSITION FROM STRATIFIED TO SLUG FLOW ABSTRACT: by Douglas J. Reineann, Ph.D. Assistant Professor of Agricultural Engineering and Graee A. Mein, Ph.D. Visiting Professor
More informationb. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.
I. What is Motion? a. Motion  is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far
More information9. Momentum and Collisions in One Dimension*
9. Momentum and Collisions in One Dimension* The motion of objects in collision is difficult to analyze with force concepts or conservation of energy alone. When two objects collide, Newton s third law
More informationThe Concept of the Effective Mass Tensor in GR. The Equation of Motion
The Concept of the Effective Mass Tensor in GR The Equation of Motion Mirosław J. Kubiak Zespół Szkół Technicznych, Gruziąz, Polan Abstract: In the papers [, ] we presente the concept of the effective
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More information356 CHAPTER 12 Bob Daemmrich
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationExperimental and Theoretical Modeling of Moving Coil Meter
Experiental and Theoretical Modeling of Moving Coil Meter Prof. R.G. Longoria Updated Suer 010 Syste: Moving Coil Meter FRONT VIEW Electrical circuit odel Mechanical odel Meter oveent REAR VIEW needle
More informationDynamics Extra Study Questions Short Answer
Dynamics Extra Study Questions Short Answer 1. An object with a mass of 15 kg rests on a frictionless horizontal plane and is acted upon by a horizontal force of 30 N. (a) What is its acceleration? (b)
More informationWorkEnergy Bar Charts
Name: WorkEnergy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:
More informationData Set Generation for Rectangular Placement Problems
Data Set Generation for Rectangular Placeent Probles Christine L. Valenzuela (Muford) Pearl Y. Wang School of Coputer Science & Inforatics Departent of Coputer Science MS 4A5 Cardiff University George
More informationPHYSICS 151 Notes for Online Lecture #11
PHYSICS 151 ote for Online Lecture #11 A freebod diagra i a wa to repreent all of the force that act on a bod. A freebod diagra ake olving ewton econd law for a given ituation eaier, becaue ou re odeling
More informationEngine turning moment diagram:
Chapter 3 Flywheel Application of slidercrank echanis can be found in reciprocating (stea) engines in the power plant i.e. internal cobustion engines, generators to centrifugal pups, etc. Output is nonunifor
More informationPhysics 211: Lab Oscillations. Simple Harmonic Motion.
Physics 11: Lab Oscillations. Siple Haronic Motion. Reading Assignent: Chapter 15 Introduction: As we learned in class, physical systes will undergo an oscillatory otion, when displaced fro a stable equilibriu.
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationReview Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
More informationNewton s Laws of Motion. Presented by:  Rakhi Gupta(166) Tamanpreet Kaur(211)
Newton s Laws of Motion Presented by:  Rakhi Gupta(166) Tamanpreet Kaur(211) Contents of the Presentation Newton s First law of Motion Balance and Unbalanced Force Newton s Second law of Motion Free Falling
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More informationCalculusBased Physics I by Jeffrey W. Schnick
Chapter Matheatical Prelude Calculusased Physics I by Jeffrey W. Schnick cbphysicsia8.doc Copyright 005008, Jeffrey W. Schnick, Creatie Coons Attribution ShareAlike License 3.0. You can copy, odify,
More information11  KINETIC THEORY OF GASES Page 1
 KIETIC THEORY OF GASES Page Introduction The constituent partices of the atter ike atos, oecues or ions are in continuous otion. In soids, the partices are very cose and osciate about their ean positions.
More information