Data Set Generation for Rectangular Placement Problems

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Data Set Generation for Rectangular Placement Problems"

Transcription

1 Data Set Generation for Rectangular Placeent Probles Christine L. Valenzuela (Muford) Pearl Y. Wang School of Coputer Science & Inforatics Departent of Coputer Science MS 4A5 Cardiff University George Mason University 5 The Parade Fairfax, VA Cardiff CF24 3AA U.S.A United Kingdo Published in 21 Abstract This paper describes a recursive process for generating data sets of rigid rectangles that can be placed into rectangular regions with zero waste. The generation procedure can be odified to guarantee that the aspect and area ratios of the rectangles in the generated data sets satisfy user-specified paraeters. This recursive process can thus be eployed to create a variety of data sets that can be used to evaluate the efficiency and scalability of rectangular cutting and packing algoriths. Keywords: cutting, packing, rectangular placeent 1 Introduction Many rectangular cutting and packing algoriths have appeared in the literature in the last three decades. These solution procedures have often been evaluated by using a variety of test data sets. For cutting probles, several popular benchark data sets [1, 4] have been utilized for solving constrained and unconstrained probles. The nuber of rectangles appearing in these data sets typically ranges fro the tens to hundreds of pieces, and the optial solution for each data set ay or ay not be known. Siilarly, any rectangular bin packing heuristics have relied on data sets for deonstrating their effectiveness. For exaple, bin packing data sets have been used in [2, 5, 6, 7]; these contain at ost hundreds of rectangles and several share the property that an optial solution for the data set is known. Other bin packing data sets (e.g. [3]) contain rectangles This work was partially supported by the NASA Goddard Space Flight Center (NAG ) whose heights and widths have been randoly generated and whose optial solution has waste that is unknown but can be bounded below by suing the areas of the rectangles to be packed. The rectangles appearing in the published data sets for both cutting and packing display a range of properties. Soe data sets contain rectangles that appear to be nearly square. Others contain rectangles that are ostly tall and thin or short and fat, while other data sets contain both types of rectangles. Additionally, any contain rectangles that are either very large or very sall in area, while others contain rectangles that all have siilar area. This variety of rectangle sizes and areas enables researchers to deterine if their proposed algoriths are biased towards any particular types of data. However, the sall sizes of these data sets do not enable a deterination to be ade of whether cutting and packing algoriths will scale to large proble sizes, and often, the quality of the solution can only be approxiated since the optial solution is not known. Due to this sparsity of large benchark data sets for the proble of cutting or packing rectangles into rectangular regions, we have developed a recursive routine for generating data sets of rigid rectangles which can be packed into a zero-waste rectangular region. More iportantly, this procedure perits the user to specify a range of variation in the diensions and areas of the generated rectangles. Section 2 describes the basic approach used by the data set generation algorith which, siply stated, recursively cuts a user specified input rectangle into saller subrectangles. This ethod can be odified so that the height-to-width ratios of the resulting rectangles is controlled as proven in section 3. Further, section 4 illustrates how the iposition of restrictions governing the choice of which subrectangles can be recursively sliced will yield data sets where 1

2 H Figure 1: A zero waste packing W the axiu-to-iniu area of resulting rectangles can be liited. Next, we show how these procedures can be cobined to produce data sets containing rectangles whose height-to-width and area ratios are controlled as described in section 5. Section 6 characterizes soe saple data sets that were generated by these procedures. A description of how these algoriths and data sets can be used is presented in section 7. Finally, areas of ongoing research are described in section 8. 2 Generating unconstrained rectangles A basic procedure can be forulated which generates data sets containing n rectangles with no restrictions being placed on the relative height h i and width w i of each rectangle. Recursive slicing of a large (stock) rectangle is perfored by applying vertical or horizontal cuts with equal probability. At each step, slicing positions are chosen with unifor probability. By reversing the slicing process, the rectangles can be reassebled into a zero-waste packing. In this anner, rectangles such as those shown in Figure 1 can easily be generated. At the start of the data set generation process, the user is asked to input the diensions of the stock rectangle and also the precise nuber of rectangular pieces desired. The input paraeters consist of n, the nuber of desired rectangles, and H and W, the height and width of the stock rectangle being cut. Algorith 1 describes the basic technique for generating a data set. It is clear that this Θ(n) process generates a set of rectangles with real-valued diensions that can be reassebled into a stock rectangle of size H W with zero waste. Algorith 1 Generating Unconstrained Rectangles Input: n, H, and W while n rectangles have not yet been generated do choose a rectangle R randoly choose a vertical or horizontal slicing direction randoly choose a rando position to cut R in the chosen direction perfor the cut, generating two subrectangles replace R in the list with the two new subrectangles end while 3 Generating rectangles satisfying the aspect ratio constraint The aspect ratio of a rectangle with height h i and width w i is defined to be the ratio hi w i. Algorith 1 can be odified to produce a set of rectangles whose aspect ratios fall within a user-specified range of [1/ρ, ρ] where ρ 2. To ensure this, additional constraints ust be satisfied during the generation process. First, the input stock rectangle ust satisfy an initial condition based on the value of the ρ paraeter. Next, positions at which successive rando cutting of the initial stock piece and the interediate subrectangles ust be restricted. To prove that the final set of generated rectangles have the desired aspect ratio, the following theores are noted. For convenience, a rectangle R of height H and width W is said to have aspect ratio ρ if 1/ρ H/W ρ. 3.1 Matheatical conditions for aspect ratio cutting Lea 1 Let R be a rectangle having height H and width W that is sliced vertically into two subrectangles R 1 and R 2. If W > 2ρH for a given ρ, then R 1 and R 2 cannot both have aspect ratio ρ. Proof. Suppose R is sliced at position x to for two subrectangles R 1 and R 2 as shown in Figure 2. Let W > 2ρH and assue that R 1 has aspect ratio ρ. It follows that x < W/2 and W x > W/2 because = H/x 1/ρ = x ρh < ρw/(2ρ) = W/2 = x < W/2 = W x > W/2 2

3 H fro which R 1 R 2 x W-x Figure 2: Vertical slicing of an H W rectangle = H/(W x) < H/(W/2) = H/(W x) < 2H/W < 2H/(2ρH) = 1/ρ = H/(W x) < 1/ρ which iplies that R 2 does not have aspect ratio ρ. A siilar arguent can be used to establish that R 1 will not have aspect ratio ρ if W > 2ρH and R 2 has aspect ratio ρ. Lea 2 Let R be a rectangle having height H and width W that is sliced vertically into two subrectangles R 1 and R 2. If W < 2H/ρ for a given ρ, then R 1 and R 2 cannot both have aspect ratio ρ. Proof. Let W < 2H/ρ and assue that R 1 has aspect ratio ρ. Then it can be shown that x > W/2 and W x < W/2: so that = H/x ρ = H ρx = ρw/2 < H ρx = W/2 < x = W x < W/2 = H/(W x) 2H/W > 2H/(2H/ρ) = ρ = H/(W x) > ρ which iplies that R 2 does not have aspect ratio ρ. Siilarly, if W < 2H/ρ and R 2 has aspect ratio ρ, then it can be shown that R 1 does not have aspect ratio ρ. Lea 3 Let R be a rectangle having height H and width W that is sliced horizontally into two subrectangles R 1 and R 2. If H > 2ρW or if H < 2W/ρ for a given ρ value, then R 1 and R 2 cannot both have aspect ratio ρ. Proof. This lea can be established by first observing that 1/ρ H/W ρ iplies that 1/ρ W/H ρ and then applying the sae arguents used in the proofs of Leas 1 and 2 with H and W interchanged. The proof techniques used for the above leas provide clues for obtaining soe conditions which guarantee that a rectangle can be vertically (or horizontally) sliced into two subrectangles, each having an aspect ratio of ρ. For exaple, note that Leas 1 and 2 have indicated that if there is to be a chance that a rectangle can be cut vertically into two acceptable subrectangles, then it should probably have height H and width W satisfying 2H ρ W 2ρH. We now show that this ust be the case. Theore 1 A rectangle with height H and width W can be sliced vertically into two subrectangles with aspect ratio ρ if W satisfies 2H ρ W 2ρH. Proof. If the height H and width W of the rectangle to be cut satisfy any of the conditions in Leas 1, 2 or 3, then the two resulting subrectangles cannot both have aspect ratio ρ. Thus, suppose that the width W of a rectangle satisfies 2H ρ W 2ρH. (Note that this is equivalent to H ρ W/2 ρh.) Now observe that any vertical cut at position x definitely dictates that H/ρ x ρh: if not, then x < H/ρ iplies that H/x > ρ and x > ρh iplies that H/x < 1/ρ. These conditions cause the left subrectangle, R 1, which is fored by the cut at x, to lack the desired aspect ratio property. However, it is not clear that cutting the rectangle at position x where H/ρ x ρh will guarantee that R 1 has aspect ratio ρ. To verify this, first assue that H/ρ x W/2. If this is true, then H/x 2H/W 1/ρ and H/x H/(H/ρ) = ρ, and so R 1 will have aspect ratio ρ. For a cut position x, W/2 < x ρh, H/x < H/(W/2) ρ so H/x < ρ. Also H/x H/ρH = 1/ρ. Thus the resulting R 1 will again have aspect ratio ρ. Cutting the rectangle at position x where H/ρ x ρh does not, however, necessarily guarantee that the subrectangle created to the right of the x cut will also have aspect ratio ρ. In order for this to be true, the x cut will have to be liited to the range W ρh x W H/ρ as seen in Figure 3. Arguents siilar to those used above can be applied to prove this restriction, since cutting at these positions is syetric with respect to the idpoint W/2 of the rectangle width. It follows that in order to cut the rectangle so that both subrectangles have aspect ratio ρ, the vertical cut ust be 3

4 W - ρ H R 2 cuts W - H/ ρ Theore 3 If the height H and width W of a rectangle satisfies the relation 2H/ρ W Hρ/2 where ρ 2, then it can be cut horizontally and vertically to yield two subrectangles with aspect ratio ρ. H Proof. Using the inequalities 2H/ρ W Hρ/2 and 1/2 < 2, it follows that H/(2ρ) 2H/ρ W Hρ/2 2ρH. H/ρ R 1 cuts ρ H W < 2ρ H Figure 3: Legal vertical slicing positions of an H W rectangle restricted to positions ax(h/ρ, W Hρ) x in(hρ, W H/ρ). Note that if W = 2H/ρ or W = 2ρH, it can easily be shown that only one vertical cut position of x = W/2 can be used which will produce two subrectangles with aspect ratios of ρ. Corollary 1 If an H W rectangle with 2H ρ is sliced vertically at any position x where ax(h/ρ, W Hρ) x in(hρ, W H/ρ) W 2ρH then the resulting two subrectangles have aspect ratio ρ. Equivalent results can also be derived for horizontally cutting a rectangle of height H and width W so that two resulting subrectangles with aspect ratio ρ are obtained. These results can be obtained by interchanging H and W in the above proof, hence Theore 2 and Corollary 2. Theore 2 A rectangle with height H and width W can be sliced horizontally into two subrectangles with aspect ratio ρ if H satisfies 2W ρ H 2ρW. Corollary 2 If an H W rectangle with 2W ρ H 2ρW is sliced horizontally at any position y where ax(w/ρ, H W ρ) y in(w ρ, H W/ρ) then the resulting two subrectangles have aspect ratio ρ. We can cobine these two theores to obtain a condition that will guarantee that both horizontal and vertical slicing will yield two subrectangles with aspect ratio ρ. which eets the conditions of both Theores 1 and 2. Theore 3 can be used to ensure that the initial stock rectangle to be recursively cut by our revised algorith will generate two resulting rectangles with aspect ratio ρ. What reains to be proved is that the recursive cutting of these resulting rectangles will continue to generate subrectangles with aspect ratio ρ. We now show that this is the case if ρ is chosen so that ρ 2. Theore 4 Suppose a rectangle R has aspect ratio ρ where ρ 2. If R cannot be sliced vertically (horizontally) to produce subrectangles with aspect ratio ρ, then it can be sliced horizontally (vertically) to yield subrectangles with aspect ratio ρ. Proof. Suppose R has aspect ratio ρ 2 and R cannot be sliced vertically to yield two subrectangles with aspect ratio ρ. By Theore 1, its diensions satisfy either W < 2H/ρ or W > 2Hρ. The only possibility is W < 2H/ρ since the second inequality would contradict the assuption that R has aspect ρ: W > 2Hρ iplies that H/W < 1/(2ρ) < 1/ρ. Now assuing that W < 2H/ρ and ρ 2, we have ρ 2 4 so that W 4W/ρ 2. Cobining this with the first inequality, then 2H/ρ > 4W/ρ 2 or H > 2W/ρ. We saw earlier in Theore 2 that if 2W/ρ H 2ρW then R can be cut horizontally to give two subrectangles with aspect ratio ρ. So it reains to show that H 2ρW. If H > 2ρW, then H/W > 2ρ > ρ contradicting the initial assuption that R has aspect ratio ρ, thus R satisfies the conditions of Theore 2 and can be cut horizontally to produce subrectangles with aspect ratio ρ. Analogously, it can be shown if that if R has aspect ratio ρ and it cannot be sliced horizontally, then it can be sliced vertically. If R cannot be cut horizontally, then H < 2W/ρ or H > 2ρW. The case where H > 2ρW conflicts with the assuption that H/W ρ. Now assuing that H < 2W/ρ and ρ 2, we have ρ 2 4 so that H 4H/ρ 2. Cobining this with the first inequality, then 2W/ρ > 4H/ρ 2 or W > 2H/ρ. We saw 4

5 earlier in Theore 1 that if 2H/ρ W 2ρH then R can be cut horizontally to give two subrectangles with aspect ratio ρ. So it reains to show that W 2ρH. If W > 2ρH, then H/W < 1/(2ρ) < 1/ρ contradicting the initial assuption that R has aspect ratio ρ, thus R satisfies the conditions of Theore 1 and can be cut vertically to produce subrectangles with aspect ratio ρ. Thus, any rectangle R with aspect ratio ρ 2 can be sliced vertically or horizontally, (or both ways) if the conditions of Theore 4 are et. 3.2 Algorith for generating aspect ratio data sets It is now possible to design an algorith that slices a stock rectangle into a set of subrectangles having the sae aspect ratio ρ 2. First, start with a rectangle R having aspect ratio ρ whose height and width satisfy the conditions of Theore 3. R can be sliced either vertically or horizontally to yield two subrectangles with the sae aspect ratio ρ: after selecting a direction randoly, choose a rando slicing position dictated by the appropriate Corollary (1 or 2). The resulting two subrectangles will have aspect ratio ρ. Next, randoly select a subrectangle and deterine a slicing direction: (horizontal, vertical, or either if possible). Having chosen the direction to slice, select an appropriate rando position and cut the subrectangle. Replace the rectangle in the list with these two subrectangles. This process is then re-applied to the list of subrectangles: since each subrectangle has aspect ratio ρ, its subrectangles will also have aspect ratio ρ (Theore 4) and these slicing steps can be repeated. The process terinates when the list contains the desired nuber of subrectangles. The second Θ(n) data generation procedure can be written as expressed in Algorith 2. 4 Generating rectangles satisfying the area ratio constraint The data sets generated by Algorith 2 consist of rectangles h i w i with aspect ratio ρ (i.e. 1/ρ h i /w i ρ). The areas of these rectangles, however, often vary as widely as those produced by the basic algorith alone. To control the range of areas, a second paraeter, γ is now introduced. A odification to Algorith 1 can be ade to generate data sets whose rectangles satisfy a user-specified area ratio γ 2. That is, the ratio of the areas of any two rectangles in the Algorith 2 Controlling the Aspect Ratio Input the paraeters n, ρ 2, H, and then W where 2H/ρ W ρh/2 while n rectangles not yet generated do choose a rectangle R at rando {Theore 4 guarantees that it can be cut in at least one direction} randoly choose a vertical or horizontal slicing direction, if possible; otherwise select the vertical or horizontal direction as appropriate {Theore 2 or 3} randoly choose a cutting position within the legal range of slicing positions {Corollary 1 or 2} perfor the cut on R, generating two subrectangles replace R in the list with the two subrectangles end while data set ust fall in the interval [1/γ, γ]. To ensure that the generated rectangles satisfy this constraint, the following properties are noted. Theore 5 Let γ 2 and {R i } be a set of n rectangles with area ratio γ which are ordered by non-increasing areas: area (R ) area (R 1 ) area (R 2 )... area (R n 1 ) Any R j where area (R j ) 2 area (R )/γ can be sliced vertically into two subrectangles so that the resulting set of n + 1 subrectangles will have area ratio γ. Proof. Assue that rectangle R j is selected for cutting, and let the vertical slicing of R j take place at position x. Since cuts at x and w j x yield syetric subrectangles, we liit the choice of x to x w j /2. To ensure that the two subrectangles resulting fro this slicing both have areas of at least area (R )/γ when γ 2, we restrict x further so that x area (R ). It is possible to restrict x this way because area (R j ) = h j w j 2 area (R )/γ, i.e. w j /2 area (R ). (1) The initial set of n sorted rectangles were assued to have area ratio γ; in particular 1/γ area (R p )/ area (R q ) γ for all p, q j and this expression still holds after R j has been sliced. Let A and B denote the resulting subrectangles fro the slicing of R j as shown in Figure 4. The reaining area 5

6 h j and A B area (B) area (R )/γ cobine to yield area (A)/ area (B) γ, and so 1/γ area (A)/ area (B) γ. x w j Figure 4: Vertical slicing of rectangle R j = h j w j rectangle ratios that ust be exained are: (i) area (R i )/ area (A) and area (R i )/ area (B) for all i j and (ii) area (A)/ area (B) case(i) Since area (A) area (R j ) and area (R j )/ area (R n 1 ) γ, then area (A)/ area (R n 1 ) γ and area (R n 1 )/ area (A) 1/γ. But area (R i ) area (R n 1 ), so area (R i )/ area (A) 1/γ for all i j. Furtherore, the vertical cut position x was chosen so that area (A) area (R )/γ, iplying that area (A)/ area (R ) 1/γ so that area (R )/ area (A) γ. Since area (R i ) area (R ), we have area (R i )/ area (A) γ for all i j. Thus, 1/γ area (R i )/ area (A) γ for all i j and siilarly, 1/γ area (R i )/ area (B) γ for all i j. case (ii) The vertical cut position guarantees that area (A) area (R )/γ so area (A)/ area (B) area (R )/(γ area (B)). Further, area (B) area (R j ) area (R ) yields area (R )/ area (B) 1, so area (A)/ area (B) 1/γ. Siilarly, This copletes the proof that the set of n + 1 resulting subrectangles satisfies the area ratio constraint. Corollary 3 Let denote the area of the rectangle having the axiu area in a list of n rectangles with area ratio γ. Select any rectangle R j where area (R j ) 2/γ and slice it vertically at position x where x w j /2. The resulting set of n + 1 rectangles has area ratio γ. It can be shown that a siilar condition for horizontal cutting exists. For brevity, we state only the corresponding corollary. Corollary 4 Let denote the area of the rectangle having the axiu area in a list of n rectangles with area ratio γ. Select any rectangle R j where area (R j ) 2/γ and slice it horizontally at position y where γw j y h j /2. The resulting set of n + 1 rectangles has area ratio γ. By incorporating these observations into the basic algorith, an O(n 2 ) data generation procedure that creates a set of rectangles satisfying the area ratio constraint can be written as expressed in Algorith 3. Algorith 3 Controlling the Area Ratio Input the paraeters n, γ 2, H, and W while n rectangles not yet generated do let be the area of the largest rectangle in the current set choose a rectangle R fro all subrectangles whose areas are greater than 2/γ randoly choose a vertical or horizontal slicing direction randoly choose a cutting position within the legal range of slicing positions {Corollary 3 or 4} perfor the cut on R, generating two subrectangles replace R in the list with the two subrectangles end while area (A) area (R j ) area (R ) 6

7 5 Cobining aspect and area ratio constraints The algoriths developed thus far generate data sets where the sizes and areas of the rectangles can be constrained by either aspect ratio or area ratio. In any instances, it is desirable to eploy data sets where both the aspect ratio and the axiu-to-iniu area ratio are bounded. To accoplish this, the algoriths derived in sections 3 and 4 can be cobined. However, erging the two ethods requires that the conditions in Corollaries 1, 2, 3 and 4 be et. To prove that these conditions do not conflict, the following theore is established. where = area (R ). If the vertical slicing position x can be selected to satisfy both inequalities 3 and 4, then the resulting set of rectangles will have aspect ratio ρ and area ratio γ. A proof by contradiction establishes that x can be so chosen. Suppose there is no x that satisfies both inequalities (3) and (4). Then either (i) w j /2 < ax(h j /ρ, w j h j ρ) or (ii) > in(h j ρ, w j h j /ρ). Theore 6 Let ρ, γ 2 and {R i } be a set of n rectangles with aspect ratio ρ and area ratio γ which are ordered by non-increasing areas: area (R ) area (R 1 ) area (R 2 )... area (R n 1 ) Any R j where area (R j ) 2 area (R )/γ can be sliced into two subrectangles so that the resulting set of n + 1 subrectangles will have aspect ratio ρ and area ratio γ. Proof. Assue that rectangle R j = h j w j is selected for cutting because R j eets the condition area (R j ) 2 area (R )/γ. Note this iplies that inequality (1) in Section 4 holds. Fro Theore 4, we know that R j can also be sliced either vertically or horizontally. (If Theore 3 is satisfied, R j can be sliced in either direction.) Specifically, if the conditions of Theore 1 hold, then R j can be sliced vertically; if the conditions of Theore 2 hold, then R j can be sliced horizontally. Suppose that the conditions of Theore 1 hold: 2h j ρ w j 2ρh j, (2) and so Corollary 1 defines the positions x for slicing vertically so that the resulting two subrectangles will have aspect ratio ρ: ax(h j /ρ, w j h j ρ) x in(h j ρ, w j h j /ρ) (3) Siilarly, in order to ensure that the n + 1 subrectangles resulting fro the cut will have area ratio γ, Corollary 3 dictates the slicing positions as x w j /2 (4) case(i) If w j /2 < ax(h j /ρ, w j h j ρ), then either (a) w j /2 < h j /ρ or (b) w j /2 < w j h j ρ. Inequality (a) iplies that w j < 2h j /ρ and (b) iplies that 2ρh j < w j which both contradict inequality (2). case(ii) If that w j > h j ρ or (b) > hjρ w j 1 ρ, this leads to the con- and since γ tradiction that 1 > 1. > in(h j ρ, w j h j /ρ), then either (a) > w j h j /ρ. Inequality (a) iplies h jw j and h j w j Since w j h j /ρ w j /2 using inequality (2), inequality (b) siplifies to > w j /2 which contradicts inequality (1) in section 4. Thus, x can be chose to satisfy both conditions of Corollaries 1 and 3. Using siilar techniques, a proof for the case where R j is to be sliced horizontally can be derived by applying Theore 2 and Corollaries 2 and 4. Corollary 5 Let denote the area of the rectangle having the axiu area in a list of n rectangles with aspect ratio ρ and area ratio γ. Select any rectangle R j where area (R j ) 2/γ and slice it vertically at position x where ax(h j /ρ, w j h j ρ, ) x in(h j ρ, w j h j /ρ, w j /2). The resulting set of n + 1 rectangles has aspect ratio ρ and area ratio γ. Corollary 6 Let denote the area of the rectangle having the axiu area in a list of n rectangles with aspect 7

8 Data Set Height Width Nae n ax in avg ax in avg path path path path e path path e path e e path 1t e e path 2t e e path 5t e e nice nice nice nice nice nice nice nice 1t nice 2t nice 5t Table 1: Height and width statistics for exaple data sets ratio ρ and area ratio γ. Select any rectangle R j where area (R j ) 2/γ and slice it horizontally at position y where ax(w j /ρ, h j w j ρ, γw j ) y in(w j ρ, h j w j /ρ, h j /2). The resulting set of n + 1 rectangles has aspect ratio ρ and area ratio γ. A fourth O(n 2 ) data generation procedure can now be written as expressed in Algorith 4. 6 Saple Data Sets To illustrate the differences in the data sets that can be generated by the approaches described in this paper, we exaine soe saple data sets that were produced by Algoriths 1 and 4. For each of these sets, an initial rectangle of size 1 2 was recursively sliced as discussed in sections 2 and 5. The characteristics of the resulting data sets are suarized in this section. Algorith 4 Controlling the Aspect and Area Ratio Input the paraeters n, {γ, ρ 2}, H, and then W, where 2H/ρ W ρh/2 while n rectangles not yet generated do let be the area of the largest rectangle in the current set choose a rectangle R fro all subrectangles whose areas are greater than 2/γ if possible, randoly choose a vertical or horizontal slicing direction; otherwise select the vertical or horizontal direction as appropriate {Theore 2 or 3} randoly choose a cutting position within the legal range of slicing positions {Corollary 5 or 6} perfor the cut on R, generating two subrectangles replace R in the list with the two subrectangles end while The first group of data sets shown in Table 1 were generated by the basic routine given in Algorith 1. Recall that no restrictions are placed on aspect ratio or area ratio in this case rectangles are randoly selected for cutting, and slices are equally likely to be ade in rando directions. This procedure results in generating the rectangles whose height and width diensions are shown in Figure 5 for n = 5, n = 5, and n = 5. We refer to these sets as pathological data sets because there is a large variance in the heights and widths of the generated rectangles. As the data sets get larger in size, 8

9 Data Set Aspect ratio = Height/Width Area Nae n ax in ax in γ = ax/in path path path path e e e+8 path e e+7 path e e e+9 path e e e+12 path 1t e e e+1 path 2t e e e e+15 path 5t e e e e+17 nice nice nice nice nice nice nice nice 1t nice 2t nice 5t Table 2: Height/Width and area ratios for saple data sets either the height or width of the rectangles also see to get very sall. The second group of data sets shown in Table 1 were generated using Algorith 4 where the slicing positions are controlled so that resulting rectangles will have aspect ratio ρ and the data set will have area ratio γ. The values ρ = 4 and γ = 7 were selected for these data sets. Thus each generated rectangle has a height/width ratio lying between [.25,4]. Siilarly, the ratio of the largest area to sallest rectangle area in any data set does not exceed 7. Figure 6 plots the rectangles for the data sets of size n = 5, n = 5, and n = 5. The sets can be thought of as nice data sets because the rectangles characteristics fall within specified ranges: there are no long flat or tall thin rectangles and the areas of the rectangles are of the sae agnitude. The characteristics of these two types of data sets are further illustrated by regarding their observed values of ρ and γ. Note that in Table 2 there tends to be at least two agnitudes of difference in the rectangles height/width ratios within every pathological data set where n > 3. For the nice data sets generated by Algorith 4, each rectangle s aspect ratios is at ost 4 and no less than.25 for all data sets. Figure 7 plots the sorted height/width ratios for rectangles in the pathological and nice data sets where n = 5. The graphs shows how the height/width ratios are distributed within each data set and reflects the difference in agnitude shown in Table 2. The distribution of height/width ratios for the pathological rectangles range fro any sall ratios to several larger ratios. The aspect ratios for the nice data sets fall only between.25 and 4. The differences in the areas of the rectangles belonging to the pathological and nice data sets are also shown in Table 2. For the pathological data sets, the ratio of the largest rectangle area to sallest rectangle area appears to increase by orders of agnitude as the nuber of rectangles in the sets grows larger. For the nice data sets, this ratio is at ost 7, the value specified as the input paraeter γ. In addition to finding the axiu and iniu area values for each data set, the average rectangle area could be calculated, but this value will always equal the total area of the initial rectangle divided by the nuber of rectangles generated and so does not provide uch any additional inforation about the data set. However, the areas of the rectangles in each data set can easily be plotted to show the range of their distribution. In Figure 8, the distribution of area values includes any sall and soe very large rectangles for the pathological data set. As expected, the area variance in the nice data set is far saller due to its being bounded by a axiu area ratio equal to 7. 9

10 2 path_5 8 nice_ Width 1 Width Height Height 2 path_5 8 nice_ Width 1 Width Height Height 2 path_5t 8 nice_5t Width 1 Width Height Height Figure 5: Height and width of rectangles in pathological data sets 7 Using the Algoriths to Generate Test Data Sets The procedures outlined in this report perit the generation of sets of n rigid rectangles which can be packed or cut fro rectangular regions with zero waste. The sizes and areas of these rectangles ay have large variance as produced by Algorith 1 or can be restricted to satisfy user specified aspect and axiu-to-iniu area ratios using Algoriths 2, 3 or 4. Data sets of any size can be obtained in this anner. Figure 6: Height and width of rectangles in soe nice data sets These data sets can be used to evaluate the perforance of algoriths which are intended to solve the proble of packing a given set of rectangles into a single larger twodiensional rectangular region with iniu total waste, or equivalently, inial total height in the case of twodiensional strip packing. Several data sets can also be replicated or cobined to yield test suites for solving cutting stock probles. Individual rectangles can be rotated, or different stock sizes could be used when generating the data. In these cases, a range of aspect or area ratios ight also be specified. The optial solution would still have zero 1

11 4 "path_5" "nice_5" 35 3 Height/Width Ratio Figure 7: Height/Width coparisons for data sets of size n = 5 Figure 9: A pathological data set of 5 rectangles with integer diensions 8 7 "path_5" "nice_5" 6 5 Area Rectangles Sorted by Area Figure 8: Area coparisons for data sets of size n = 5 waste as it would consist of all the original rectangles that were sliced to generate the data sets. The zero waste property, while not reflective of real-world cutting probles, still provides researchers with a eans for coparing the quality of their solutions against a known optial. One characteristic of the exaple data sets described in the previous section is clearly that the diensions of the rectangles are given as real values. The precision of these values is dictated by the default arithetic precision of the prograing language and coputer syste on which the algoriths are ipleented and executed. By liiting the precision of the output stateents to the nuber of desired decial places (i.e. by rounding the values), we have found that we can usually overcoe the difficulties inherent with finite precision arithetic. It is also possible to utilize our algoriths to generate data Figure 1: A nice data set of 5 rectangles with integer diensions sets containing integer valued rectangles, i.e. rectangles whose heights and widths are integers. One way to accoplish this is by rounding the cut positions to the nearest integer. Two exaples of data sets that were generated by rounding the cut positions are shown in Figures 9 and 1 which were generated using Algoriths 1 and 4, respectively. However, it is not guaranteed that a rounded cut position will satisfy the conditions needed to ensure that the aspect and area ratios of the final rectangles will fall within the specified ranges. For exaple, if the input rectangle to be sliced has size 1 5, the axiu nuber of integer diension rectangles that could be generated by arbitrarily slicing this rectangle would be n = 5 rectangles of size 1 1. Requesting that the procedure generate 1 rectangles with integer dien- 11

12 sions would result in at least 5 final rectangles having a height or width of zero. Thus, the choice of the size of the input rectangle ust be carefully considered along with the corresponding n value. In Figures 9 and 1, a 1 1 rectangle was sliced to generate the data sets of n = 5 rectangles. The ρ and γ values that were input to Algorith 4 to obtain the data in Figure 1 were 4 and 7, respectively. The algoriths successfully generated rectangles having nonzero integer diensions. However, because of the rounding process, the data set generated by Algorith 4 has an aspect ratio of 4.18 and an area ratio of 7.32 which are greater than the specified values. Nevertheless, the generated data sets still have bounded aspect and area ratios, and we believe that soe additional analysis of our ethods will show that the aspect and area ratios of the generated data sets can be predicted when the rectangles are rounded to integer diensions. 8 Ongoing Research Current versions of our algoriths give the user control over the range of variation within data sets for aspect ratio and area, but no control over the distribution of shapes and sizes. It is possible that sall alterations to our data generation algoriths would result in different types of data sets which a researcher ay prefer. There are any possibilities here: for exaple, the largest rectangle at any stage could be the one chosen to be sliced, or slicing positions could be restricted to favor ore or less extree aspect ratios. The distribution of rectangle sizes and areas generated by our algoriths depends on the probability distributions which govern the rando choices for the rectangles to be recursively sliced as well as the direction and the position of the slice, to the extent dictated by the appropriate theores and corollaries. A probabilistic analysis of the size distribution of the final rectangles, or an analysis of the ipact of changing the slicing probabilities would be interesting to pursue. Extensions of our general ethod can also be ade so that data sets can be generated (with bounded aspect and/or area ratios) whose optial packing (or cutting) solutions consist of non-slicing (i.e. non-guillotine) patterns. This research area is currently under study. In addition we are also considering odifications to our software that will ake it possible to generate data sets with known optia for testing algoriths for VLSI floorplanning. Acknowledgeents We would like to thank Yun You for odifying the software and the PLT drawing tool which were used to create the illustrations used in this paper. The authors would also like to thank the reviewers for their insightful coents and suggestions for iproving the paper. References [1] J.E. Beasley. OR-Library: distributing test probles by electronic ail. Journal of the Operational Research Society, 41(11): , 199. url: astjjb/jeb/info.htl [2] Bengt-Erik Bengtsson. Packing Rectangular Pieces A Heuristic Approach. The Coputer Journal, 25(3): , [3] J.O. Berkey and P.Y. Wang. Two-Diensional Finite Bin-Packing. Journal of the Operational Research Society, 38(5): , [4] ESICUP- The Special Interest Group on Cutting and Packing. esicup/tiki-index.php. [5] S.S. Israni and J.L. Sanders. Perforance testing of rectangular parts-nesting heuristics. International Journal of Production Research, 23: , [6] Stefan Jakobs. On Genetic Algoriths for the Packing of Polygons. European Journal of Operational Research, 88: , [7] Dequan Liu and Hongfei Teng. An Iproved BLalgorith for Genetic Algorith of the Orthogonal Packing of Rectangles. European Journal of Operational Research, 112:412 42, Finally, a public doain software package consisting of the algoriths described in this paper as well as visualization tools for drawing the data sets are under developent and will be distributed in the near future. 12

arxiv:0805.1434v1 [math.pr] 9 May 2008

arxiv:0805.1434v1 [math.pr] 9 May 2008 Degree-distribution stability of scale-free networs Zhenting Hou, Xiangxing Kong, Dinghua Shi,2, and Guanrong Chen 3 School of Matheatics, Central South University, Changsha 40083, China 2 Departent of

More information

MINIMUM VERTEX DEGREE THRESHOLD FOR LOOSE HAMILTON CYCLES IN 3-UNIFORM HYPERGRAPHS

MINIMUM VERTEX DEGREE THRESHOLD FOR LOOSE HAMILTON CYCLES IN 3-UNIFORM HYPERGRAPHS MINIMUM VERTEX DEGREE THRESHOLD FOR LOOSE HAMILTON CYCLES IN 3-UNIFORM HYPERGRAPHS JIE HAN AND YI ZHAO Abstract. We show that for sufficiently large n, every 3-unifor hypergraph on n vertices with iniu

More information

Preference-based Search and Multi-criteria Optimization

Preference-based Search and Multi-criteria Optimization Fro: AAAI-02 Proceedings. Copyright 2002, AAAI (www.aaai.org). All rights reserved. Preference-based Search and Multi-criteria Optiization Ulrich Junker ILOG 1681, route des Dolines F-06560 Valbonne ujunker@ilog.fr

More information

Machine Learning Applications in Grid Computing

Machine Learning Applications in Grid Computing Machine Learning Applications in Grid Coputing George Cybenko, Guofei Jiang and Daniel Bilar Thayer School of Engineering Dartouth College Hanover, NH 03755, USA gvc@dartouth.edu, guofei.jiang@dartouth.edu

More information

ON SELF-ROUTING IN CLOS CONNECTION NETWORKS. BARRY G. DOUGLASS Electrical Engineering Department Texas A&M University College Station, TX 77843-3128

ON SELF-ROUTING IN CLOS CONNECTION NETWORKS. BARRY G. DOUGLASS Electrical Engineering Department Texas A&M University College Station, TX 77843-3128 ON SELF-ROUTING IN CLOS CONNECTION NETWORKS BARRY G. DOUGLASS Electrical Engineering Departent Texas A&M University College Station, TX 778-8 A. YAVUZ ORUÇ Electrical Engineering Departent and Institute

More information

Airline Yield Management with Overbooking, Cancellations, and No-Shows JANAKIRAM SUBRAMANIAN

Airline Yield Management with Overbooking, Cancellations, and No-Shows JANAKIRAM SUBRAMANIAN Airline Yield Manageent with Overbooking, Cancellations, and No-Shows JANAKIRAM SUBRAMANIAN Integral Developent Corporation, 301 University Avenue, Suite 200, Palo Alto, California 94301 SHALER STIDHAM

More information

Semi-invariants IMOTC 2013 Simple semi-invariants

Semi-invariants IMOTC 2013 Simple semi-invariants Sei-invariants IMOTC 2013 Siple sei-invariants These are soe notes (written by Tejaswi Navilarekallu) used at the International Matheatical Olypiad Training Cap (IMOTC) 2013 held in Mubai during April-May,

More information

Reliability Constrained Packet-sizing for Linear Multi-hop Wireless Networks

Reliability Constrained Packet-sizing for Linear Multi-hop Wireless Networks Reliability Constrained acket-sizing for inear Multi-hop Wireless Networks Ning Wen, and Randall A. Berry Departent of Electrical Engineering and Coputer Science Northwestern University, Evanston, Illinois

More information

RECURSIVE DYNAMIC PROGRAMMING: HEURISTIC RULES, BOUNDING AND STATE SPACE REDUCTION. Henrik Kure

RECURSIVE DYNAMIC PROGRAMMING: HEURISTIC RULES, BOUNDING AND STATE SPACE REDUCTION. Henrik Kure RECURSIVE DYNAMIC PROGRAMMING: HEURISTIC RULES, BOUNDING AND STATE SPACE REDUCTION Henrik Kure Dina, Danish Inforatics Network In the Agricultural Sciences Royal Veterinary and Agricultural University

More information

Algorithmica 2001 Springer-Verlag New York Inc.

Algorithmica 2001 Springer-Verlag New York Inc. Algorithica 2001) 30: 101 139 DOI: 101007/s00453-001-0003-0 Algorithica 2001 Springer-Verlag New York Inc Optial Search and One-Way Trading Online Algoriths R El-Yaniv, 1 A Fiat, 2 R M Karp, 3 and G Turpin

More information

Draft Evaluation Approach for Shade Impact Mitigation Devices

Draft Evaluation Approach for Shade Impact Mitigation Devices Draft Evaluation Approach for Shade Ipact Mitigation Devices Prepared For: California Energy Coission Prepared By: BEW Engineering, Inc. 2303 Caino Raon, Suite 220 San Raon, CA 94583 (925)867-3330 www.bewengineering.co

More information

Information Processing Letters

Information Processing Letters Inforation Processing Letters 111 2011) 178 183 Contents lists available at ScienceDirect Inforation Processing Letters www.elsevier.co/locate/ipl Offline file assignents for online load balancing Paul

More information

Lecture L9 - Linear Impulse and Momentum. Collisions

Lecture L9 - Linear Impulse and Momentum. Collisions J. Peraire, S. Widnall 16.07 Dynaics Fall 009 Version.0 Lecture L9 - Linear Ipulse and Moentu. Collisions In this lecture, we will consider the equations that result fro integrating Newton s second law,

More information

Factor Model. Arbitrage Pricing Theory. Systematic Versus Non-Systematic Risk. Intuitive Argument

Factor Model. Arbitrage Pricing Theory. Systematic Versus Non-Systematic Risk. Intuitive Argument Ross [1],[]) presents the aritrage pricing theory. The idea is that the structure of asset returns leads naturally to a odel of risk preia, for otherwise there would exist an opportunity for aritrage profit.

More information

Searching strategy for multi-target discovery in wireless networks

Searching strategy for multi-target discovery in wireless networks Searching strategy for ulti-target discovery in wireless networks Zhao Cheng, Wendi B. Heinzelan Departent of Electrical and Coputer Engineering University of Rochester Rochester, NY 467 (585) 75-{878,

More information

A Case Study of Bee Algorithm for Ready Mixed Concrete Problem W. Wongthatsanekorn, N. Matheekrieangkrai

A Case Study of Bee Algorithm for Ready Mixed Concrete Problem W. Wongthatsanekorn, N. Matheekrieangkrai A Case Study of ee Algorith for Ready Mixed Concrete Proble W. Wongthatsanekorn, N. Matheekrieangkrai Abstract This research proposes ee Algorith (A) to optiize Ready Mixed Concrete (RMC) truck scheduling

More information

This paper studies a rental firm that offers reusable products to price- and quality-of-service sensitive

This paper studies a rental firm that offers reusable products to price- and quality-of-service sensitive MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol., No. 3, Suer 28, pp. 429 447 issn 523-464 eissn 526-5498 8 3 429 infors doi.287/so.7.8 28 INFORMS INFORMS holds copyright to this article and distributed

More information

Example: Suppose that we deposit $1000 in a bank account offering 3% interest, compounded monthly. How will our money grow?

Example: Suppose that we deposit $1000 in a bank account offering 3% interest, compounded monthly. How will our money grow? Finance 111 Finance We have to work with oney every day. While balancing your checkbook or calculating your onthly expenditures on espresso requires only arithetic, when we start saving, planning for retireent,

More information

An Innovate Dynamic Load Balancing Algorithm Based on Task

An Innovate Dynamic Load Balancing Algorithm Based on Task An Innovate Dynaic Load Balancing Algorith Based on Task Classification Hong-bin Wang,,a, Zhi-yi Fang, b, Guan-nan Qu,*,c, Xiao-dan Ren,d College of Coputer Science and Technology, Jilin University, Changchun

More information

Online Bagging and Boosting

Online Bagging and Boosting Abstract Bagging and boosting are two of the ost well-known enseble learning ethods due to their theoretical perforance guarantees and strong experiental results. However, these algoriths have been used

More information

Exact Matrix Completion via Convex Optimization

Exact Matrix Completion via Convex Optimization Exact Matrix Copletion via Convex Optiization Eanuel J. Candès and Benjain Recht Applied and Coputational Matheatics, Caltech, Pasadena, CA 91125 Center for the Matheatics of Inforation, Caltech, Pasadena,

More information

Calculating the Return on Investment (ROI) for DMSMS Management. The Problem with Cost Avoidance

Calculating the Return on Investment (ROI) for DMSMS Management. The Problem with Cost Avoidance Calculating the Return on nvestent () for DMSMS Manageent Peter Sandborn CALCE, Departent of Mechanical Engineering (31) 45-3167 sandborn@calce.ud.edu www.ene.ud.edu/escml/obsolescence.ht October 28, 21

More information

Lecture L26-3D Rigid Body Dynamics: The Inertia Tensor

Lecture L26-3D Rigid Body Dynamics: The Inertia Tensor J. Peraire, S. Widnall 16.07 Dynaics Fall 008 Lecture L6-3D Rigid Body Dynaics: The Inertia Tensor Version.1 In this lecture, we will derive an expression for the angular oentu of a 3D rigid body. We shall

More information

Plane Trusses. Section 7: Flexibility Method - Trusses. A plane truss is defined as a twodimensional

Plane Trusses. Section 7: Flexibility Method - Trusses. A plane truss is defined as a twodimensional lane Trusses A plane truss is defined as a twodiensional fraework of straight prisatic ebers connected at their ends by frictionless hinged joints, and subjected to loads and reactions that act only at

More information

Energy Efficient VM Scheduling for Cloud Data Centers: Exact allocation and migration algorithms

Energy Efficient VM Scheduling for Cloud Data Centers: Exact allocation and migration algorithms Energy Efficient VM Scheduling for Cloud Data Centers: Exact allocation and igration algoriths Chaia Ghribi, Makhlouf Hadji and Djaal Zeghlache Institut Mines-Téléco, Téléco SudParis UMR CNRS 5157 9, Rue

More information

Design of Model Reference Self Tuning Mechanism for PID like Fuzzy Controller

Design of Model Reference Self Tuning Mechanism for PID like Fuzzy Controller Research Article International Journal of Current Engineering and Technology EISSN 77 46, PISSN 347 56 4 INPRESSCO, All Rights Reserved Available at http://inpressco.co/category/ijcet Design of Model Reference

More information

The AGA Evaluating Model of Customer Loyalty Based on E-commerce Environment

The AGA Evaluating Model of Customer Loyalty Based on E-commerce Environment 6 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 009 The AGA Evaluating Model of Custoer Loyalty Based on E-coerce Environent Shaoei Yang Econoics and Manageent Departent, North China Electric Power University,

More information

On Computing Nearest Neighbors with Applications to Decoding of Binary Linear Codes

On Computing Nearest Neighbors with Applications to Decoding of Binary Linear Codes On Coputing Nearest Neighbors with Applications to Decoding of Binary Linear Codes Alexander May and Ilya Ozerov Horst Görtz Institute for IT-Security Ruhr-University Bochu, Gerany Faculty of Matheatics

More information

Optimal Resource-Constraint Project Scheduling with Overlapping Modes

Optimal Resource-Constraint Project Scheduling with Overlapping Modes Optial Resource-Constraint Proect Scheduling with Overlapping Modes François Berthaut Lucas Grèze Robert Pellerin Nathalie Perrier Adnène Hai February 20 CIRRELT-20-09 Bureaux de Montréal : Bureaux de

More information

Dynamic Placement for Clustered Web Applications

Dynamic Placement for Clustered Web Applications Dynaic laceent for Clustered Web Applications A. Karve, T. Kibrel, G. acifici, M. Spreitzer, M. Steinder, M. Sviridenko, and A. Tantawi IBM T.J. Watson Research Center {karve,kibrel,giovanni,spreitz,steinder,sviri,tantawi}@us.ib.co

More information

Media Adaptation Framework in Biofeedback System for Stroke Patient Rehabilitation

Media Adaptation Framework in Biofeedback System for Stroke Patient Rehabilitation Media Adaptation Fraework in Biofeedback Syste for Stroke Patient Rehabilitation Yinpeng Chen, Weiwei Xu, Hari Sundara, Thanassis Rikakis, Sheng-Min Liu Arts, Media and Engineering Progra Arizona State

More information

A Fast Algorithm for Online Placement and Reorganization of Replicated Data

A Fast Algorithm for Online Placement and Reorganization of Replicated Data A Fast Algorith for Online Placeent and Reorganization of Replicated Data R. J. Honicky Storage Systes Research Center University of California, Santa Cruz Ethan L. Miller Storage Systes Research Center

More information

Modeling operational risk data reported above a time-varying threshold

Modeling operational risk data reported above a time-varying threshold Modeling operational risk data reported above a tie-varying threshold Pavel V. Shevchenko CSIRO Matheatical and Inforation Sciences, Sydney, Locked bag 7, North Ryde, NSW, 670, Australia. e-ail: Pavel.Shevchenko@csiro.au

More information

Factored Models for Probabilistic Modal Logic

Factored Models for Probabilistic Modal Logic Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008 Factored Models for Probabilistic Modal Logic Afsaneh Shirazi and Eyal Air Coputer Science Departent, University of Illinois

More information

ASIC Design Project Management Supported by Multi Agent Simulation

ASIC Design Project Management Supported by Multi Agent Simulation ASIC Design Project Manageent Supported by Multi Agent Siulation Jana Blaschke, Christian Sebeke, Wolfgang Rosenstiel Abstract The coplexity of Application Specific Integrated Circuits (ASICs) is continuously

More information

A Scalable Application Placement Controller for Enterprise Data Centers

A Scalable Application Placement Controller for Enterprise Data Centers W WWW 7 / Track: Perforance and Scalability A Scalable Application Placeent Controller for Enterprise Data Centers Chunqiang Tang, Malgorzata Steinder, Michael Spreitzer, and Giovanni Pacifici IBM T.J.

More information

Trading Regret for Efficiency: Online Convex Optimization with Long Term Constraints

Trading Regret for Efficiency: Online Convex Optimization with Long Term Constraints Journal of Machine Learning Research 13 2012) 2503-2528 Subitted 8/11; Revised 3/12; Published 9/12 rading Regret for Efficiency: Online Convex Optiization with Long er Constraints Mehrdad Mahdavi Rong

More information

Efficient Key Management for Secure Group Communications with Bursty Behavior

Efficient Key Management for Secure Group Communications with Bursty Behavior Efficient Key Manageent for Secure Group Counications with Bursty Behavior Xukai Zou, Byrav Raaurthy Departent of Coputer Science and Engineering University of Nebraska-Lincoln Lincoln, NE68588, USA Eail:

More information

Construction Economics & Finance. Module 3 Lecture-1

Construction Economics & Finance. Module 3 Lecture-1 Depreciation:- Construction Econoics & Finance Module 3 Lecture- It represents the reduction in arket value of an asset due to age, wear and tear and obsolescence. The physical deterioration of the asset

More information

Multi-Class Deep Boosting

Multi-Class Deep Boosting Multi-Class Deep Boosting Vitaly Kuznetsov Courant Institute 25 Mercer Street New York, NY 002 vitaly@cis.nyu.edu Mehryar Mohri Courant Institute & Google Research 25 Mercer Street New York, NY 002 ohri@cis.nyu.edu

More information

2. FINDING A SOLUTION

2. FINDING A SOLUTION The 7 th Balan Conference on Operational Research BACOR 5 Constanta, May 5, Roania OPTIMAL TIME AND SPACE COMPLEXITY ALGORITHM FOR CONSTRUCTION OF ALL BINARY TREES FROM PRE-ORDER AND POST-ORDER TRAVERSALS

More information

An Expert Decision Support System for Crisis Management. Boumediene Belkhouche Reda Bakeer Salah Al-Saleh

An Expert Decision Support System for Crisis Management. Boumediene Belkhouche Reda Bakeer Salah Al-Saleh An Expert Decision Support Syste for Crisis Manageent Bouediene Belkhouche Reda Bakeer Salah Al-Saleh EECS Departent Tulane University New Orleans, LA 70118 (504) 862-3372 (phone) (504) 862-3293 (fax)

More information

Keywords: Educational Timetabling; Integer Programming; Shift assignment

Keywords: Educational Timetabling; Integer Programming; Shift assignment School Tietabling for Quality Student and Teacher Schedules T. Birbas a ( ), S. Daskalaki b, E. Housos a a Departent of Electrical & Coputer Engineering b Departent of Engineering Sciences University of

More information

Modified Latin Hypercube Sampling Monte Carlo (MLHSMC) Estimation for Average Quality Index

Modified Latin Hypercube Sampling Monte Carlo (MLHSMC) Estimation for Average Quality Index Analog Integrated Circuits and Signal Processing, vol. 9, no., April 999. Abstract Modified Latin Hypercube Sapling Monte Carlo (MLHSMC) Estiation for Average Quality Index Mansour Keraat and Richard Kielbasa

More information

Binary Embedding: Fundamental Limits and Fast Algorithm

Binary Embedding: Fundamental Limits and Fast Algorithm Binary Ebedding: Fundaental Liits and Fast Algorith Xinyang Yi The University of Texas at Austin yixy@utexas.edu Eric Price The University of Texas at Austin ecprice@cs.utexas.edu Constantine Caraanis

More information

Introduction to Unit Conversion: the SI

Introduction to Unit Conversion: the SI The Matheatics 11 Copetency Test Introduction to Unit Conversion: the SI In this the next docuent in this series is presented illustrated an effective reliable approach to carryin out unit conversions

More information

Fixed-Income Securities and Interest Rates

Fixed-Income Securities and Interest Rates Chapter 2 Fixed-Incoe Securities and Interest Rates We now begin a systeatic study of fixed-incoe securities and interest rates. The literal definition of a fixed-incoe security is a financial instruent

More information

5.7 Chebyshev Multi-section Matching Transformer

5.7 Chebyshev Multi-section Matching Transformer /9/ 5_7 Chebyshev Multisection Matching Transforers / 5.7 Chebyshev Multi-section Matching Transforer Reading Assignent: pp. 5-55 We can also build a ultisection atching network such that Γ f is a Chebyshev

More information

SAMPLING METHODS LEARNING OBJECTIVES

SAMPLING METHODS LEARNING OBJECTIVES 6 SAMPLING METHODS 6 Using Statistics 6-6 2 Nonprobability Sapling and Bias 6-6 Stratified Rando Sapling 6-2 6 4 Cluster Sapling 6-4 6 5 Systeatic Sapling 6-9 6 6 Nonresponse 6-2 6 7 Suary and Review of

More information

Fuzzy Sets in HR Management

Fuzzy Sets in HR Management Acta Polytechnica Hungarica Vol. 8, No. 3, 2011 Fuzzy Sets in HR Manageent Blanka Zeková AXIOM SW, s.r.o., 760 01 Zlín, Czech Republic blanka.zekova@sezna.cz Jana Talašová Faculty of Science, Palacký Univerzity,

More information

REQUIREMENTS FOR A COMPUTER SCIENCE CURRICULUM EMPHASIZING INFORMATION TECHNOLOGY SUBJECT AREA: CURRICULUM ISSUES

REQUIREMENTS FOR A COMPUTER SCIENCE CURRICULUM EMPHASIZING INFORMATION TECHNOLOGY SUBJECT AREA: CURRICULUM ISSUES REQUIREMENTS FOR A COMPUTER SCIENCE CURRICULUM EMPHASIZING INFORMATION TECHNOLOGY SUBJECT AREA: CURRICULUM ISSUES Charles Reynolds Christopher Fox reynolds @cs.ju.edu fox@cs.ju.edu Departent of Coputer

More information

The Circle Method on the Binary Goldbach Conjecture

The Circle Method on the Binary Goldbach Conjecture The Circle Method on the Binary Goldbach Conjecture Jeff Law April 3, 2005 Matheatics Departent Princeton University Princeton, J 08544 The Goldbach Conjecture The Goldbach Conjecture, appears to be very

More information

SOME APPLICATIONS OF FORECASTING Prof. Thomas B. Fomby Department of Economics Southern Methodist University May 2008

SOME APPLICATIONS OF FORECASTING Prof. Thomas B. Fomby Department of Economics Southern Methodist University May 2008 SOME APPLCATONS OF FORECASTNG Prof. Thoas B. Foby Departent of Econoics Southern Methodist University May 8 To deonstrate the usefulness of forecasting ethods this note discusses four applications of forecasting

More information

The Mathematics of Pumping Water

The Mathematics of Pumping Water The Matheatics of Puping Water AECOM Design Build Civil, Mechanical Engineering INTRODUCTION Please observe the conversion of units in calculations throughout this exeplar. In any puping syste, the role

More information

Physics 211: Lab Oscillations. Simple Harmonic Motion.

Physics 211: Lab Oscillations. Simple Harmonic Motion. Physics 11: Lab Oscillations. Siple Haronic Motion. Reading Assignent: Chapter 15 Introduction: As we learned in class, physical systes will undergo an oscillatory otion, when displaced fro a stable equilibriu.

More information

Pricing Asian Options using Monte Carlo Methods

Pricing Asian Options using Monte Carlo Methods U.U.D.M. Project Report 9:7 Pricing Asian Options using Monte Carlo Methods Hongbin Zhang Exaensarbete i ateatik, 3 hp Handledare och exainator: Johan Tysk Juni 9 Departent of Matheatics Uppsala University

More information

AN ALGORITHM FOR REDUCING THE DIMENSION AND SIZE OF A SAMPLE FOR DATA EXPLORATION PROCEDURES

AN ALGORITHM FOR REDUCING THE DIMENSION AND SIZE OF A SAMPLE FOR DATA EXPLORATION PROCEDURES Int. J. Appl. Math. Coput. Sci., 2014, Vol. 24, No. 1, 133 149 DOI: 10.2478/acs-2014-0011 AN ALGORITHM FOR REDUCING THE DIMENSION AND SIZE OF A SAMPLE FOR DATA EXPLORATION PROCEDURES PIOTR KULCZYCKI,,

More information

CLOSED-LOOP SUPPLY CHAIN NETWORK OPTIMIZATION FOR HONG KONG CARTRIDGE RECYCLING INDUSTRY

CLOSED-LOOP SUPPLY CHAIN NETWORK OPTIMIZATION FOR HONG KONG CARTRIDGE RECYCLING INDUSTRY CLOSED-LOOP SUPPLY CHAIN NETWORK OPTIMIZATION FOR HONG KONG CARTRIDGE RECYCLING INDUSTRY Y. T. Chen Departent of Industrial and Systes Engineering Hong Kong Polytechnic University, Hong Kong yongtong.chen@connect.polyu.hk

More information

AUTOMATIC SATELLITE IMAGE REGISTRATION BY COMBINATION OF STEREO MATCHING AND RANDOM SAMPLE CONSENSUS

AUTOMATIC SATELLITE IMAGE REGISTRATION BY COMBINATION OF STEREO MATCHING AND RANDOM SAMPLE CONSENSUS AUTOATIC SATELLITE IAGE REGISTRATION BY COBINATION OF STEREO ATCHING AND RANDO SAPLE CONSENSUS Taejung Ki* Yong-Jo I** *Satellite Technology Research Center Korea Advanced Institute of Science and Technology

More information

Design, optimization and prototyping of small power transformers

Design, optimization and prototyping of small power transformers Doctoral School of Energy- and Geo-technology January 15 20, 2007. Kuressaare, Estonia Design, optiization and prototyping of sall power transforers Avo Reinap, Rando Pikner, Roan Ionikan, Karl Pärn Tallinn

More information

The Benefit of SMT in the Multi-Core Era: Flexibility towards Degrees of Thread-Level Parallelism

The Benefit of SMT in the Multi-Core Era: Flexibility towards Degrees of Thread-Level Parallelism The enefit of SMT in the Multi-Core Era: Flexibility towards Degrees of Thread-Level Parallelis Stijn Eyeran Lieven Eeckhout Ghent University, elgiu Stijn.Eyeran@elis.UGent.be, Lieven.Eeckhout@elis.UGent.be

More information

Generating Certification Authority Authenticated Public Keys in Ad Hoc Networks

Generating Certification Authority Authenticated Public Keys in Ad Hoc Networks SECURITY AND COMMUNICATION NETWORKS Published online in Wiley InterScience (www.interscience.wiley.co). Generating Certification Authority Authenticated Public Keys in Ad Hoc Networks G. Kounga 1, C. J.

More information

6. Time (or Space) Series Analysis

6. Time (or Space) Series Analysis ATM 55 otes: Tie Series Analysis - Section 6a Page 8 6. Tie (or Space) Series Analysis In this chapter we will consider soe coon aspects of tie series analysis including autocorrelation, statistical prediction,

More information

ESTIMATING LIQUIDITY PREMIA IN THE SPANISH GOVERNMENT SECURITIES MARKET

ESTIMATING LIQUIDITY PREMIA IN THE SPANISH GOVERNMENT SECURITIES MARKET ESTIMATING LIQUIDITY PREMIA IN THE SPANISH GOVERNMENT SECURITIES MARKET Francisco Alonso, Roberto Blanco, Ana del Río and Alicia Sanchis Banco de España Banco de España Servicio de Estudios Docuento de

More information

An Optimal Task Allocation Model for System Cost Analysis in Heterogeneous Distributed Computing Systems: A Heuristic Approach

An Optimal Task Allocation Model for System Cost Analysis in Heterogeneous Distributed Computing Systems: A Heuristic Approach An Optial Tas Allocation Model for Syste Cost Analysis in Heterogeneous Distributed Coputing Systes: A Heuristic Approach P. K. Yadav Central Building Research Institute, Rooree- 247667, Uttarahand (INDIA)

More information

Models and Algorithms for Stochastic Online Scheduling 1

Models and Algorithms for Stochastic Online Scheduling 1 Models and Algoriths for Stochastic Online Scheduling 1 Nicole Megow Technische Universität Berlin, Institut für Matheatik, Strasse des 17. Juni 136, 10623 Berlin, Gerany. eail: negow@ath.tu-berlin.de

More information

Image restoration for a rectangular poor-pixels detector

Image restoration for a rectangular poor-pixels detector Iage restoration for a rectangular poor-pixels detector Pengcheng Wen 1, Xiangjun Wang 1, Hong Wei 2 1 State Key Laboratory of Precision Measuring Technology and Instruents, Tianjin University, China 2

More information

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION 1. Secure Wireless Multicast for Delay-Sensitive Data via Network Coding

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION 1. Secure Wireless Multicast for Delay-Sensitive Data via Network Coding IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION 1 Secure Wireless Multicast for Delay-Sensitive Data via Network Coding Tuan T. Tran, Meber, IEEE, Hongxiang Li, Senior Meber, IEEE,

More information

An Approach to Combating Free-riding in Peer-to-Peer Networks

An Approach to Combating Free-riding in Peer-to-Peer Networks An Approach to Cobating Free-riding in Peer-to-Peer Networks Victor Ponce, Jie Wu, and Xiuqi Li Departent of Coputer Science and Engineering Florida Atlantic University Boca Raton, FL 33431 April 7, 2008

More information

Analyzing Spatiotemporal Characteristics of Education Network Traffic with Flexible Multiscale Entropy

Analyzing Spatiotemporal Characteristics of Education Network Traffic with Flexible Multiscale Entropy Vol. 9, No. 5 (2016), pp.303-312 http://dx.doi.org/10.14257/ijgdc.2016.9.5.26 Analyzing Spatioteporal Characteristics of Education Network Traffic with Flexible Multiscale Entropy Chen Yang, Renjie Zhou

More information

Audio Engineering Society. Convention Paper. Presented at the 119th Convention 2005 October 7 10 New York, New York USA

Audio Engineering Society. Convention Paper. Presented at the 119th Convention 2005 October 7 10 New York, New York USA Audio Engineering Society Convention Paper Presented at the 119th Convention 2005 October 7 10 New York, New York USA This convention paper has been reproduced fro the authors advance anuscript, without

More information

The Fundamentals of Modal Testing

The Fundamentals of Modal Testing The Fundaentals of Modal Testing Application Note 243-3 Η(ω) = Σ n r=1 φ φ i j / 2 2 2 2 ( ω n - ω ) + (2ξωωn) Preface Modal analysis is defined as the study of the dynaic characteristics of a echanical

More information

Partitioned Elias-Fano Indexes

Partitioned Elias-Fano Indexes Partitioned Elias-ano Indexes Giuseppe Ottaviano ISTI-CNR, Pisa giuseppe.ottaviano@isti.cnr.it Rossano Venturini Dept. of Coputer Science, University of Pisa rossano@di.unipi.it ABSTRACT The Elias-ano

More information

Software Quality Characteristics Tested For Mobile Application Development

Software Quality Characteristics Tested For Mobile Application Development Thesis no: MGSE-2015-02 Software Quality Characteristics Tested For Mobile Application Developent Literature Review and Epirical Survey WALEED ANWAR Faculty of Coputing Blekinge Institute of Technology

More information

Use of extrapolation to forecast the working capital in the mechanical engineering companies

Use of extrapolation to forecast the working capital in the mechanical engineering companies ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL 2014. Vol. 1. No. 1. 23 28 Use of extrapolation to forecast the working capital in the echanical engineering copanies A. Cherep, Y. Shvets Departent of finance

More information

Position Auctions and Non-uniform Conversion Rates

Position Auctions and Non-uniform Conversion Rates Position Auctions and Non-unifor Conversion Rates Liad Blurosen Microsoft Research Mountain View, CA 944 liadbl@icrosoft.co Jason D. Hartline Shuzhen Nong Electrical Engineering and Microsoft AdCenter

More information

Financial Risk: Credit Risk, Lecture 1

Financial Risk: Credit Risk, Lecture 1 Financial Risk: Credit Risk, Lecture 1 Alexander Herbertsson Centre For Finance/Departent of Econoics School of Econoics, Business and Law, University of Gothenburg E-ail: Alexander.Herbertsson@econoics.gu.se

More information

The Virtual Spring Mass System

The Virtual Spring Mass System The Virtual Spring Mass Syste J. S. Freudenberg EECS 6 Ebedded Control Systes Huan Coputer Interaction A force feedbac syste, such as the haptic heel used in the EECS 6 lab, is capable of exhibiting a

More information

Near-Optimal Power Control in Wireless Networks: A Potential Game Approach

Near-Optimal Power Control in Wireless Networks: A Potential Game Approach Near-Optial Power Control in Wireless Networks: A Potential Gae Approach Utku Ozan Candogan, Ishai Menache, Asuan Ozdaglar and Pablo A. Parrilo Laboratory for Inforation and Decision Systes Massachusetts

More information

Considerations on Distributed Load Balancing for Fully Heterogeneous Machines: Two Particular Cases

Considerations on Distributed Load Balancing for Fully Heterogeneous Machines: Two Particular Cases Considerations on Distributed Load Balancing for Fully Heterogeneous Machines: Two Particular Cases Nathanaël Cheriere Departent of Coputer Science ENS Rennes Rennes, France nathanael.cheriere@ens-rennes.fr

More information

Stochastic Online Scheduling on Parallel Machines

Stochastic Online Scheduling on Parallel Machines Stochastic Online Scheduling on Parallel Machines Nicole Megow 1, Marc Uetz 2, and Tark Vredeveld 3 1 Technische Universit at Berlin, Institut f ur Matheatik, Strasse des 17. Juni 136, 10623 Berlin, Gerany

More information

Evaluating Inventory Management Performance: a Preliminary Desk-Simulation Study Based on IOC Model

Evaluating Inventory Management Performance: a Preliminary Desk-Simulation Study Based on IOC Model Evaluating Inventory Manageent Perforance: a Preliinary Desk-Siulation Study Based on IOC Model Flora Bernardel, Roberto Panizzolo, and Davide Martinazzo Abstract The focus of this study is on preliinary

More information

Method of supply chain optimization in E-commerce

Method of supply chain optimization in E-commerce MPRA Munich Personal RePEc Archive Method of supply chain optiization in E-coerce Petr Suchánek and Robert Bucki Silesian University - School of Business Adinistration, The College of Inforatics and Manageent

More information

Quality evaluation of the model-based forecasts of implied volatility index

Quality evaluation of the model-based forecasts of implied volatility index Quality evaluation of the odel-based forecasts of iplied volatility index Katarzyna Łęczycka 1 Abstract Influence of volatility on financial arket forecasts is very high. It appears as a specific factor

More information

Bayes Point Machines

Bayes Point Machines Journal of Machine Learning Research (2) 245 279 Subitted 2/; Published 8/ Bayes Point Machines Ralf Herbrich Microsoft Research, St George House, Guildhall Street, CB2 3NH Cabridge, United Kingdo Thore

More information

Evaluating the Effectiveness of Task Overlapping as a Risk Response Strategy in Engineering Projects

Evaluating the Effectiveness of Task Overlapping as a Risk Response Strategy in Engineering Projects Evaluating the Effectiveness of Task Overlapping as a Risk Response Strategy in Engineering Projects Lucas Grèze Robert Pellerin Nathalie Perrier Patrice Leclaire February 2011 CIRRELT-2011-11 Bureaux

More information

Managing Complex Network Operation with Predictive Analytics

Managing Complex Network Operation with Predictive Analytics Managing Coplex Network Operation with Predictive Analytics Zhenyu Huang, Pak Chung Wong, Patrick Mackey, Yousu Chen, Jian Ma, Kevin Schneider, and Frank L. Greitzer Pacific Northwest National Laboratory

More information

Extended-Horizon Analysis of Pressure Sensitivities for Leak Detection in Water Distribution Networks: Application to the Barcelona Network

Extended-Horizon Analysis of Pressure Sensitivities for Leak Detection in Water Distribution Networks: Application to the Barcelona Network 2013 European Control Conference (ECC) July 17-19, 2013, Zürich, Switzerland. Extended-Horizon Analysis of Pressure Sensitivities for Leak Detection in Water Distribution Networks: Application to the Barcelona

More information

Can Statistical Language Models be used for the Analysis of Harmonic Progressions?

Can Statistical Language Models be used for the Analysis of Harmonic Progressions? Can Statistical Language Models be used for the Analysis of Haronic Progressions? Matthias Mauch 1, Daniel Müllensiefen #2, Sion Dixon, Geraint Wiggins # Centre for Digital Music, Queen Mary, Univ. of

More information

Protecting Small Keys in Authentication Protocols for Wireless Sensor Networks

Protecting Small Keys in Authentication Protocols for Wireless Sensor Networks Protecting Sall Keys in Authentication Protocols for Wireless Sensor Networks Kalvinder Singh Australia Developent Laboratory, IBM and School of Inforation and Counication Technology, Griffith University

More information

LEAN FOR FRONTLINE MANAGERS IN HEALTHCARE An action learning programme for frontline healthcare managers

LEAN FOR FRONTLINE MANAGERS IN HEALTHCARE An action learning programme for frontline healthcare managers Course Code: L024 LEAN FOR FRONTLINE MANAGERS IN HEALTHCARE An action learning prograe for frontline healthcare anagers 6 days Green Belt equivalent Are you ready to challenge the status quo and transfor

More information

Chapter 8: Newton s Third law

Chapter 8: Newton s Third law Warning: My approach is a soewhat abbreviated and siplified version of what is in the text, yet just as coplete. Both y treatent and the text s will prepare you to solve the sae probles. Restating Newton

More information

Calculation Method for evaluating Solar Assisted Heat Pump Systems in SAP 2009. 15 July 2013

Calculation Method for evaluating Solar Assisted Heat Pump Systems in SAP 2009. 15 July 2013 Calculation Method for evaluating Solar Assisted Heat Pup Systes in SAP 2009 15 July 2013 Page 1 of 17 1 Introduction This docuent describes how Solar Assisted Heat Pup Systes are recognised in the National

More information

Applying Multiple Neural Networks on Large Scale Data

Applying Multiple Neural Networks on Large Scale Data 0 International Conference on Inforation and Electronics Engineering IPCSIT vol6 (0) (0) IACSIT Press, Singapore Applying Multiple Neural Networks on Large Scale Data Kritsanatt Boonkiatpong and Sukree

More information

Resource Allocation in Wireless Networks with Multiple Relays

Resource Allocation in Wireless Networks with Multiple Relays Resource Allocation in Wireless Networks with Multiple Relays Kağan Bakanoğlu, Stefano Toasin, Elza Erkip Departent of Electrical and Coputer Engineering, Polytechnic Institute of NYU, Brooklyn, NY, 0

More information

A Strategic Approach to Software Protection U

A Strategic Approach to Software Protection U Â Â Strategic pproach to Software Protection U OZ SHY University of Haifa, Israel and Stockhol School of Econoics, Sweden ozshy@econ.haifa.ac.il JCQUES-FRNCË OIS THISSE CORE, Universite Catholique de Louvain,

More information

Reconnect 04 Solving Integer Programs with Branch and Bound (and Branch and Cut)

Reconnect 04 Solving Integer Programs with Branch and Bound (and Branch and Cut) Sandia is a ultiprogra laboratory operated by Sandia Corporation, a Lockheed Martin Copany, Reconnect 04 Solving Integer Progras with Branch and Bound (and Branch and Cut) Cynthia Phillips (Sandia National

More information

Exploiting Hardware Heterogeneity within the Same Instance Type of Amazon EC2

Exploiting Hardware Heterogeneity within the Same Instance Type of Amazon EC2 Exploiting Hardware Heterogeneity within the Sae Instance Type of Aazon EC2 Zhonghong Ou, Hao Zhuang, Jukka K. Nurinen, Antti Ylä-Jääski, Pan Hui Aalto University, Finland; Deutsch Teleko Laboratories,

More information

Data Streaming Algorithms for Estimating Entropy of Network Traffic

Data Streaming Algorithms for Estimating Entropy of Network Traffic Data Streaing Algoriths for Estiating Entropy of Network Traffic Ashwin Lall University of Rochester Vyas Sekar Carnegie Mellon University Mitsunori Ogihara University of Rochester Jun (Ji) Xu Georgia

More information

Markovian inventory policy with application to the paper industry

Markovian inventory policy with application to the paper industry Coputers and Cheical Engineering 26 (2002) 1399 1413 www.elsevier.co/locate/copcheeng Markovian inventory policy with application to the paper industry K. Karen Yin a, *, Hu Liu a,1, Neil E. Johnson b,2

More information