# Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.

Size: px
Start display at page:

Download "Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location."

Transcription

1 Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force on the moon be? 1) 1e23 N 2) 3e23 N 3) 6e23 N 4) 9e23 N

2 Q3.2.b The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the distance between the moon and the planet was doubled, what would the force on the moon be? 1) 6e23 N 2) 3e23 N 3) 1.5e23 N 4) 0.75e23 N 5) 0.33e23 N

3 Q3.2.c: Fixed star position: < 0.5e11, 1e11, 0 > m Initial planet position: < 2e11, 1.5e11, 0 > m We want to find the gravitational force on the planet by the star. What is the unit vector r-hat? 1) < 0.949, 0.316, 0 > 2) < 0.949, 0.316, 0 > 3) < 0.447, 0.894, 0 > 4) < 0.800, 0.600, 0 > 5) None of the above

4 Q3.2.c.alt.1: Fixed star position: < 0.5e11, 1e11, 0 > m Initial planet position: < 2e11, 1.5e11, 0 > m Calculate the vector that points from the star to the planet. 1) < 1e22, 1.5e22, 0 > m 2) < 1.5e11, 0.5e11, 0 > m 3) < -1.5e11, -0.5e11, 0 > m 4) < 2.5e11, 2.0e11, 0 > m 5) We don t have enough information to find the vector

5 Q3.2.c.alt.2 The relative position vector from the star to the planet is: < 1.5e11, 0.5e11, 0 > m. What is the distance between the star and the planet? 1) 0.50e11 m 2) 1.50e11 m 3) 1.58e11 m 4) 2.00e11 m 5) 2.50e11 m

6 Q3.2.c.alt.3: Relative position vector from star to planet is < 1.5e11, 0.5e11, 0 > m Distance from star to planet is 1.58e11 m Find the unit vector pointing from the star to the planet 1) < 1, 0, 0 > 2) < 1, 1, 0 > 3) < 0.949, 0.316, 0 > 4) < 1.5e11, 0.5e11, 0 > 5) < 1.58e11, 0, 0 >

7 Q3.2.d: Distance from star to planet: 1.58e11 m Star s mass: 1e30 kg Planet s mass: 5e24 kg G = 6.7e-11 N m 2 /kg 2 Calculate the magnitude of the gravitational force that the star exerts on the planet. 1) 1.34e-8 N 2) 2.68e-2 N 3) 1.34e22 N 4) 2.12e33 N 5) 5.3e55 N

8 Q3.2.e: Calculate the gravitational force exerted by the star on the planet (remember that force is a vector) 1) < 1e22, 1.5e22, 0 > N 2) < 1.5e11, 0.5e11, 0 > N 3) < -1.5e11, -0.5e11, 0 > N 4) < 2.5e11, 2.0e11, 0 > N 5) < -1.27e22, -4.24e21, 0 > N

9 Q3.3.a Mass of Mars: 6.4e23 kg; radius of Mars: 3.4e6 m Mass of Earth: 6e24 kg; radius of Earth: 6.4e6 m If the Mars rover measured the value of g on Mars, it would be: 1) 9.8 N/kg 2) less than 9.8 N/kg 3) more than 9.8 N/kg

10 Q3.4.a The Earth has a mass of 6e24 kg. The Sun is much more massive; its mass is 2e30 kg. Which of the following statements is correct? 1) The gravitational force on the Sun by the Earth is smaller in magnitude than the gravitational force on the Earth by the Sun. 2) The gravitational force on the Sun by the Earth is exactly the same in magnitude as the gravitational force on the Earth by the Sun. 3) Neither (1) nor (2) is correct.

11 Q3.4.b You hold a tennis ball at rest above your head, then open your hand and release the ball, which begins to fall. At this moment, which statement about the magnitudes of the gravitational forces between the Earth and ball is correct? 1) The force on the ball by the Earth is larger than the force on the Earth by the ball. 2) The force on the ball by the Earth is smaller than the force on the Earth by the ball. 3) The force on the ball by the Earth is equal to the force on the Earth by the ball. 4) There is not enough information to determine this.

12 Q3.4.c An alpha particle contains two protons and two neutrons, and has a net charge of +2e. The alpha particle is 0.1 m away from a single proton, which has charge +e. Which statement about the magnitudes of the electric forces between the particles is correct? 1) The force on the proton by the alpha particle is equal to the force on the alpha particle by the proton. 2) The force on the proton by the alpha particle is larger than the force on the alpha particle by the proton. 3) The force on the proton by the alpha particle is smaller than the force on the alpha particle by the proton. 4) There is not enough information to determine this.

13 Q3.5.a: The planet initially has a velocity of < -1e4, 2e4, 0 > m/s. What is the initial momentum of the planet? Star s mass: 1e30 kg Planet s mass: 5e24 kg G = 6.7e-11 N m 2 /kg 2. 1) < 5e28, -1e29, 0 > kg m/s 2) < -5e28, 1e29, 0 > kg m/s 3) < 1e30, 5e24, 0 > kg m/s 4) < -1e4, 2e4, 0 > kg m/s 5) < -2e-21, 4e-21, 0 > kg m/s

14 Q3.5.b: After 1 day (24*60*60 s), what is the new momentum of the planet? 1) < 5.11e28, -9.97e28, 0 > kg m/s 2) < -5.11e28, 9.97e28, 0 > kg m/s 3) < -1.10e27, -3.66e26, 0 > kg m/s 4) < -1e4, 2e4, 0 > kg m/s 5) < -2e-21, 4e-21, 0 > kg m/s

15 Q3.5.c: In step 1 we applied the Momentum Principle and updated position. After step 1 (result 1) Relative position shown), which vector quantities have 2) Unit vector r-hat changed and must 3) Force on planet be recalculated for by star step 2? 4) All of these 5) None of these

16 Q3.5d We predicted the Earth s orbit around the Sun, taking a step of 3 months. Why was this prediction so poor? 1) The Momentum Principle does not apply to gravitational forces. 2) We neglected air resistance. 3) We did not use enough significant figures. 4) We assumed the force on the Earth was constant in magnitude and direction over three months.

17 3.6.a: Which arrow best indicates the direction of the net electric force on the blue negatively charged object?

18 Q3.6.b: Which arrow best indicates the direction of the net electric force on the blue negatively charged object?

19 Q3.11.a A tennis ball falls for 1 second. During this time the change in the y component of the ball s momentum is py = 0.6 kg m/s What is the change in the y component of the Earth s momentum? 1) 0.6 kg m/s 2) +0.6 kg m/s 3) zero because the ball does not exert a force on the Earth 4) zero because the Earth s momentum can t change 5) There is not enough information to determine this.

20 Q3.11.b When a ping pong ball collides with a bowling ball, why is the effect on the ping pong ball more noticeable than the effect on the bowling ball? 1) The momentum of the bowling ball does not change. 2) The change in the bowling ball s momentum is less than the change in the ping pong ball s momentum. 3) The change in the bowling ball s velocity is less than the change in the ping pong ball s velocity.

21 Q3.11.c A bowling ball is initially at rest, floating in outer space. A ping pong ball moving in the +z direction hits the bowling ball, and bounces off it, traveling back in the z direction. Consider a time interval t from slightly before to slightly after the collision. In this time interval, what is the sign of pz for the system consisting of both balls? 1) positive 2) negative 3) zero no change in pz

22 Q3.11.d A bullet of mass 0.04 kg traveling horizontally at a speed of 800 m/s embeds itself in a block of mass 0.5kg that is sitting at rest on a very slippery sheet of ice. You want to find the speed of the block just after the bullet embeds itself in the block. What should you choose as the system? 1) the bullet 2) the block 3) the bullet and the block

23 Q3.11.e: A bullet of mass 0.04 kg traveling horizontally at a speed of 800 m/s embeds itself in a block of mass 0.50 kg that is sitting at rest on a very slippery sheet of ice. Which equation will correctly give the final speed vf_block of the block? 1) (0.04 kg)*(800 m/s) = (0.50 kg) *vf_block 1) (0.04 kg)*(800 m/s) = (0.04 kg) *vf_block 1) (0.04 kg)*(800 m/s) = (0.50 kg) *vf_block + (0.04 kg)*(800 m/s) 1) (0.04 kg)*(800 m/s) = (0.54 kg) *vf_block 1) (0.04 kg)*(800 m/s) = (0.5 kg) *vf_block + (0.04 kg)*vf_bullet

24 Q3.11.f: A space satellite of mass 500 kg has velocity < 12, 0, 8 > m/s just before being struck by a rock of mass 3 kg with velocity < 3000, 0, 900 > m/s. After the collision the rock s velocity is < 700, 0, 300 > m/s. Now what is the velocity of the space satellite? 1) < 5100, 0, 400 > m/s 2) < 10.2, 0, 0.8 > m/s 3) < 10.2, 0, 0.8 > m/s 4) < 3688, 0, 1191 > m/s 5) < 3688, 0, 1192 > m/s

### A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

### GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant

### Practice TEST 2. Explain your reasoning

Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

### Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

### Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

### PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Name: Date: Period: Gravity Study Guide

Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law

### Physical Science Chapter 2. Forces

Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

### Problem Set V Solutions

Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.

P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device

### Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

### Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the

### AP physics C Web Review Ch 6 Momentum

Name: Class: _ Date: _ AP physics C Web Review Ch 6 Momentum Please do not write on my tests Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The dimensional

### 1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill)

1. Velocity and displacement vectors and scalars Vector and scalar quantities: force, speed, velocity, distance, displacement, acceleration, mass, time and energy. Calculation of the resultant of two vector

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

### Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation:

Newton s Laws & Gravitation Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation: F G = GMm 2 r G is the gravitational

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Newton s Laws of Motion

Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS

PS/PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 24, 2009 9:15 a.m. to 12:15 p.m., only The answer sheet for Part A and Part B

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### Exam Three Momentum Concept Questions

Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:

### Supplemental Questions

Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

### Review Assessment: Lec 02 Quiz

COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

### SPEED, VELOCITY, AND ACCELERATION

reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

### PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

### Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 12 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 19 1 Department

### Force Of Gravity. Notes: 1 t = 1 tonne = 1000 kg mass of Earth = 5.98 x 10 24 kg

Do your work on your own sheets of paper. Force Of Gravity Notes: 1 t = 1 tonne = 1000 kg mass of Earth = 5.98 x 10 24 kg g = 9.80 N/kg radius of Earth = 6.38 x 10 6 m G = 6.67 x 10-11 Nm 2 /kg 2 1. What

### LAB 4: MOMENTUM AND COLLISIONS

1 Name Date Day/Time of Lab Partner(s) Lab TA LAB 4: MOMENTUM AND COLLISIONS NEWTON S THIRD LAW OBJECTIVES To examine action-reaction force pairs To examine collisions and relate the law of conservation

### Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

### The Gravitational Field

The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

### Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

### Problem Set 5 Work and Kinetic Energy Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

### Candidate Number. General Certificate of Education Advanced Level Examination June 2012

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

### Exercise: Estimating the Mass of Jupiter Difficulty: Medium

Exercise: Estimating the Mass of Jupiter Difficulty: Medium OBJECTIVE The July / August observing notes for 010 state that Jupiter rises at dusk. The great planet is now starting its grand showing for

### Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.

1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall

### Uniformly Accelerated Motion

Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations

### Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

### Section 1 Gravity: A Force of Attraction

Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of

### Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass

### Problem Set #8 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

### Experiment 7 ~ Conservation of Linear Momentum

Experiment 7 ~ Conservation of Linear Momentum Purpose: The purpose of this experiment is to reproduce a simple experiment demonstrating the Conservation of Linear Momentum. Theory: The momentum p of an

### ACTIVITY 6: Falling Objects

UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3

Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.

### Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

### Candidate Number. General Certificate of Education Advanced Level Examination June 2014

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

### Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

### Physics 53. Gravity. Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope

Physics 53 Gravity Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope Kepler s laws Explanations of the motion of the celestial bodies sun, moon, planets

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Name Class Date. true

Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### 1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.

P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications

### Lesson 6: Earth and the Moon

Lesson 6: Earth and the Moon Reading Assignment Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior More Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s Magnetosphere Chapter

### Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

### Forces between masses

Forces between masses Gravity is arguably the first force that people really learn about. People don't really think of it as learning about gravity because it is such a big part of our everyday lives.

### Lecture L17 - Orbit Transfers and Interplanetary Trajectories

S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to

### Gravitational Potential Energy

Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

### Planets beyond the solar system

Planets beyond the solar system Review of our solar system Why search How to search Eclipses Motion of parent star Doppler Effect Extrasolar planet discoveries A star is 5 parsecs away, what is its parallax?

### Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

### AP Physics C Fall Final Web Review

Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

### Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

### Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

### Name per due date mail box

Name per due date mail box Rolling Momentum Lab (1 pt for complete header) Today in lab, we will be experimenting with momentum and measuring the actual force of impact due to momentum of several rolling

### Physics 1401 - Exam 2 Chapter 5N-New

Physics 1401 - Exam 2 Chapter 5N-New 2. The second hand on a watch has a length of 4.50 mm and makes one revolution in 60.00 s. What is the speed of the end of the second hand as it moves in uniform circular

### Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

### NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

### Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

### Force Concept Inventory

Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard

### Physics 2B. Lecture 29B

Physics 2B Lecture 29B "There is a magnet in your heart that will attract true friends. That magnet is unselfishness, thinking of others first. When you learn to live for others, they will live for you."

### 1. Mass, Force and Gravity

STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

### Ideal Cable. Linear Spring - 1. Cables, Springs and Pulleys

Cables, Springs and Pulleys ME 202 Ideal Cable Neglect weight (massless) Neglect bending stiffness Force parallel to cable Force only tensile (cable taut) Neglect stretching (inextensible) 1 2 Sketch a

### Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality