4 Impulse and Impact. Table of contents:


 Cecil Haynes
 2 years ago
 Views:
Transcription
1 4 Impulse and Impact At the end of this section you should be able to: a. define momentum and impulse b. state principles of conseration of linear momentum c. sole problems inoling change and conseration of momentum Table of contents: 4 Impulse and Impact Impulse of a force Impulsie force Conseration of linear momentum Impact of inelastic bodies Impact of elastic bodies...6 Page numbers on the same topic in, Applied Mechanics, 3 rd Edition, Hannah & Hillier Section in these notes Section in Hannah & Hil Page No. in Hanna & Hiller Section Section Section Section 4.4, Fundamentals of Mechanics Kinetics: Section 4  Impulse and Impact
2 4. Impulse of a force The impulse of a constant force F is defined as the product of the force and the time t for which it acts. Impulse Ft Equation 4. The effect of the impulse on a body can be found using Equation., where a is acceleration, u and are initial and final elocities respectiely and t is time. u + at So So we can say that mat m F ma Ft m ( u) ( u) change in momentum Impulse of a constant force Ft change in momentum produced Equation 4. Impulse is a ector quantity and has the sane units as momentum, Ns or kg m/s The impulse of a ariable force can be defined by the integral where t is the time for which F acts. Impulse t F dt 0 By Newton's nd law So impulse can also be written Which for a constant mass d F ma m dt Impulse t 0 m d dt u [ m] u md dt ( u) Impulse m In summary Impulse t F dt change in momentum produced 0 Equation Impulsie force Suppose the force F is ery large and acts for a ery short time. Du the distance moed is ery small and under normal analysis would be ignored. Under these condition the only effect of the force can be measured is the impulse, or change I momentum  the force is called an impulsie force. Fundamentals of Mechanics Kinetics: Section 4  Impulse and Impact
3 In theory this force should be infinitely large and the time of action infinitely small. Some application where the conditions are approached are collision of snooker balls, a hammer hitting a nail or the impact of a bullet on a target. Worked example 4. A nail of mass 0.0 kg is drien into a fixed wooden block, Its initial speed is 30 m/s and it is brought to rest in 5ms. Find a) the impulse b) alue of the force (assume this constant) on the nail. Impulse change in momentum of Ns ( 30 0) the nail From Equation 4. Impulse Ft Impulse F t N Worked Example 4. A football of mass 0.45 kg traels in a straight line along the ground reaching a player at 0m/s. The player passes it on at 8m/s altering its direction by 90. Find the impulse gien to the ball by the player. Choose the coordinate system like that in Figure 4. 0 m/s 0 x 90 8 m/s y Figure 4.: Coordinate system and path of ball in Worked Example 4. Initial elocity in the direction Ox is 0 m/s. Final elocity in the direction Ox is zero. So change in elocity in the direction Ox is 0m/s. Initial elocity in the direction Oy ia zero and final elocity in the direction Oy is 8m/s. So change in elocity in the direc 8m/s. The resultant change in elocity is ( 0) m / s impulse is change in momentum is mass times change in elocity ( u) Ns Impulse m 76 Fundamentals of Mechanics Kinetics: Section 4  Impulse and Impact 3
4 4.3 Conseration of linear momentum Consider the direct collision of two spheres A and B shown in Figure 4.3 A B A B F F Figure 4.3: Direct collision of two spheres When the spheres collide, then by Newton's third law, the force F exerted by A on B is equal and opposite to the force exerted by B on A. The time for contact is the same for both. The impulse of A on B is thus equal and opposite to the impulse of B on A. It then follows that the change in momentum of A is equal in magnitude to the change in momentum in B  but it is in the opposite direction. The total change in momentum of the whole system is thus zero. This means that the total momentum before and after a collision is equal, or that linear momen m is consered. This is called the principle of conseration of linear momentum and in summary this may be stated: The total momentum of a system, in any direction, remains constant unless an external force acts on the system in that direction. Fundamentals of Mechanics Kinetics: Section 4  Impulse and Impact 4
5 4.4 Impact of inelastic bodies When two inelastic bodies collide they remain together. They show no inclination to return to their original shape after the collision. An example of this may be two railway carriages that collide and become coupled on impact. Problems of this type may be soled by the principle of conseration of linear momentum. (this must be applied in the same direction) Although momentum is consered, it is important to realise that energy is always lost in an inelastic collision (it is conerted from mechanical energy to some other form such as heat, light or sound.) Worked Example 4.3 A railway wagon of mass 0 tonnes traelling at.5m/s collides with another of mass 30 tonnes traelling in the opposite direction at 0.5m/s. The wagons become coupled on impact. Find: a) their common elocity after impact b) the loss of kinetic energy. a) Total momentum before impct 3 3 ( 0 0.5) ( ) 5000 Ns Note the negatie sign for the second wagon as positie is taken as the direction of elocity of the 0 tonne wagon. After the impact, is the common elocity is V then the momentum will be ( )V using the conseration of linear momentum V V 0.3m / s This is positie, so it is in the original direction of the 0 tonne wagon. b) kinetic energy before impact J kinetic energy after impact J loss of kinetic energy J Worked Example 4.4 A piledrier of mass.5 tonnes dries a pile of mass 500 kg ertically into the gr d. The drier falls freely a ertical distance of m before hitting the pile and there is no rebound. Each blow of the drie moes the pile down 0.m. What is the aerage alue of resistance of the ground to penetration? Fundamentals of Mechanics Kinetics: Section 4  Impulse and Impact 5
6 The elocity of the piledrier just before it hits the pile can be found using Equation.4 u + as u 0.0, a 9.8m/s, s m m / s The momentum just before impact it thus momentum before impact Ns 6.6 Since there is no rebound, the pile and drier hae the same elocity after impact. So we can write this expression for momentum after impact if the common elocity is V: So by the principle of conseration of momentum ( ) V 3000V momentum after impact V V 5. m / s The pile and drier are now brought to rest by the deceleration force of the ground in 0.m. we can find this deceleration using Equation.4 u + as u 5. m/s, s 0.m, 0.0 Now the retarding force is gien by a 68.m / s + a0. F ma F F N the ground resistance, R, is the sum of this retarding force and the weight of the pile and drier R N 4.5 Impact of elastic bodies In the last section the bodies were assumed to stay together after impact. An elastic body is one which tends to return to its original shape after impact. When two elastic bodies collide, they rebound after lision. An example is the collision of two snooker balls. If the bodies are traelling along the same straight line before impact, then the collision is called a direct collision. This is the only type of collision considered here. Fundamentals of Mechanics Kinetics: Section 4  Impulse and Impact 6
7 u u m m Figure 4.4: Direct collision of two elastic spheres Consider the two elastic spheres as shown in Figure 4.4. By the principle of conseration of linear momentum m u + m u m + m Equation 4.4 Where the u s are the elocities before collision and the s, the elocities after. When the spheres are inelastic and are equal as we saw in the last section. For elastic bodies and depend on the elastic properties of the bodies. A measure of the elasticity is the coefficient of restitution e, For direct collision this is defined as e u u Equation 4.5 This equation is the result of experiments performed by Newton. The alues of e in practice ary from between 0 and. For inelastic bodies e 0, for completely elastic e. in this latter case no energy is lost in the collision. Worked Example 4.5 A body of mass kg moing with speed 5m/s collides directly with another of mass 3 kg moing in the same direction. The coefficient of restitution is /3. Find the elocities after collision. m u + m u m + m [] By Equation 4.5 Adding [] and [] gies e u u [] Fundamentals of Mechanics Kinetics: Section 4  Impulse and Impact 7
10. Collisions. Before During After
10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: F(t)
More informationChapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
More informationand that of the outgoing water is mv f
Week 6 hoework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign ersions of these probles, arious details hae been changed, so that the answers will coe out differently. The ethod to find the solution is
More informationOur Dynamic Universe
North Berwick High School Department of Physics Higher Physics Unit 1 Section 3 Our Dynamic Universe Collisions and Explosions Section 3 Collisions and Explosions Note Making Make a dictionary with the
More informationChapter 2 Solutions. 4. We find the average velocity from
Chapter 2 Solutions 4. We find the aerage elocity from = (x 2 x 1 )/(t 2 t 1 ) = ( 4.2 cm 3.4 cm)/(6.1 s 3.0 s) = 2.5 cm/s (toward x). 6. (a) We find the elapsed time before the speed change from speed
More informationKinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.
1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall
More informationLecture 7 Force and Motion. Practice with Freebody Diagrams and Newton s Laws
Lecture 7 Force and Motion Practice with Freebody Diagrams and Newton s Laws oday we ll just work through as many examples as we can utilizing Newton s Laws and freebody diagrams. Example 1: An eleator
More informationChapter 7 Momentum and Impulse
Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time
More informationChapter #7 Giancoli 6th edition Problem Solutions
Chapter #7 Giancoli 6th edition Problem Solutions ü Problem #8 QUESTION: A 9300 kg boxcar traveling at 5.0 m/s strikes a second boxcar at rest. The two stick together and move off with a speed of 6.0 m/s.
More information3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
More informationDifferentiated Physics Practice Questions
Differentiated Physics Practice Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 100kg cannon at rest contains a 10kg cannon ball. When fired,
More informationSOLUTION According to Equation 3.2, we have. v v
Week homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign ersions of these problems, arious details hae been changed, so that the answers will come out differentl. The method to find the solution
More informationVectors. Vector Multiplication
Vectors Directed Line Segments and Geometric Vectors A line segment to which a direction has been assigned is called a directed line segment. The figure below shows a directed line segment form P to Q.
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationPY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles.
Permanent Magnets Magnetic ields and orces on Moing Charges 1 We encounter magnetic fields frequently in daily life from those due to a permanent magnet. Each permanent magnet has a north pole and a south
More informationL9 Conservation of Energy, Friction and Circular Motion. Kinetic energy. conservation of energy. Potential energy. Up and down the track
L9 Conseration of Energy, Friction and Circular Motion Kinetic energy, potential energy and conseration of energy What is friction and what determines how big it is? Friction is what keeps our cars moing
More informationPhysics 2102 Gabriela González
Physics 2102 Gabriela González Electric charge Electric force on other electric charges Electric field, and electric potential Moing electric charges : current Electronic circuit components: batteries,
More informationcharge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the
This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2D collisions, and centerofmass, with some problems requiring
More informationFluid Dynamics. AP Physics B
Fluid Dynamics AP Physics B Fluid Flow Up till now, we hae pretty much focused on fluids at rest. Now let's look at fluids in motion It is important that you understand that an IDEAL FLUID: Is non iscous
More informationChapter 29: Magnetic Fields
Chapter 29: Magnetic Fields Magnetism has been known as early as 800C when people realized that certain stones could be used to attract bits of iron. Experiments using magnets hae shown the following:
More informationmomentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3
Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.
More informationE k = ½ m v 2. (J) (kg) (m s 1 ) FXA KINETIC ENERGY (E k ) 1. Candidates should be able to : This is the energy possessed by a moving object.
KINETIC ENERGY (E k ) 1 Candidates should be able to : This is the energy possessed by a oing object. Select and apply the equation for kinetic energy : E k = ½ 2 KINETIC ENERGY = ½ x MASS x SPEED 2 E
More informationProblem Set #8 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection
More informationVectors, velocity and displacement
Vectors, elocit and displacement Sample Modelling Actiities with Excel and Modellus ITforUS (Information Technolog for Understanding Science) 2007 IT for US  The project is funded with support from the
More informationFLUID MECHANICS, EULER AND BERNOULLI EQUATIONS
FLUID MECHANIC, EULER AND BERNOULLI EQUATION M. Ragheb 4//03 INTRODUCTION The early part of the 8 th century saw the burgeoning of the field of theoretical fluid mechanics pioneered by Leonhard Euler and
More informationWork, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
More informationLINES AND PLANES IN R 3
LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.
More informationMAGNETIC FORCE ON AN ELECTRIC CHARGE
DO PHYSICS ONLINE MOTORS AND GENERATORS MAGNETIC ORCE ON AN ELECTRIC CHARGE Experiments show that moing electric charges are deflected in magnetic fields. Hence, moing electric charges experience forces
More informationAt the skate park on the ramp
At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More informationP211 Midterm 2 Spring 2004 Form D
1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m
More informationGive a formula for the velocity as a function of the displacement given that when s = 1 metre, v = 2 m s 1. (7)
. The acceleration of a bod is gien in terms of the displacement s metres as s a =. s (a) Gie a formula for the elocit as a function of the displacement gien that when s = metre, = m s. (7) (b) Hence find
More informationB) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B
Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time
More informationLecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli
Lecture PowerPoints Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the
More informationNEWTON S LAWS OF MOTION
NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied
More informationPHYSICS 111 HOMEWORK SOLUTION #8. March 24, 2013
PHYSICS 111 HOMEWORK SOLUTION #8 March 24, 2013 0.1 A particle of mass m moves with momentum of magnitude p. a) Show that the kinetic energy of the particle is: K = p2 2m (Do this on paper. Your instructor
More informationOn the Mutual Coefficient of Restitution in Two Car Collinear Collisions
//006 On the Mutual Coefficient of Restitution in Two Car Collinear Collisions Milan Batista Uniersity of Ljubljana, Faculty of Maritie Studies and Transportation Pot poorscako 4, Sloenia, EU ilan.batista@fpp.edu
More information9. Momentum and Collisions in One Dimension*
9. Momentum and Collisions in One Dimension* The motion of objects in collision is difficult to analyze with force concepts or conservation of energy alone. When two objects collide, Newton s third law
More informationChapter 9. particle is increased.
Chapter 9 9. Figure 936 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity
More informationLab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
More informationPhysical Science Chapter 2. Forces
Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components
More informationChapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum
Chapter 8 Conservation of Linear Momentum Physics 201 October 22, 2009 Conservation of Linear Momentum Definition of linear momentum, p p = m v Linear momentum is a vector. Units of linear momentum are
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationSTUDY GUIDE 3: Work, Energy, and Momentum. 18. Define power, and use the concept to solve problems involving the rate at which work is done.
PH1110 Objectives STUDY GUIDE 3: Work, Energy, and Momentum Term A03 15. Define work and calculate the work done by a constant force as the body on which it acts is moved by a given amount. Be able to
More informationProof of the conservation of momentum and kinetic energy
Experiment 04 Proof of the conservation of momentum and kinetic energy By Christian Redeker 27.10.2007 Contents 1.) Hypothesis...3 2.) Diagram...7 3.) Method...7 3.1) Apparatus...7 3.2) Procedure...7 4.)
More informationInertial reference frames. Inertial reference frames. Inertial reference frames. To cut a long story short:
PH300 Modern Physics SP11 Each ray of light moes in the coordinate system 'at rest' with the definite, constant elocity c, independent of whether this ray of light is emitted by a body at rest or a body
More informationForce. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.
Force A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force Weight is the force of the earth's gravity exerted
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More information1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.
Base your answers to questions 1 through 5 on the diagram below which represents a 3.0kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the
More informationAP physics C Web Review Ch 6 Momentum
Name: Class: _ Date: _ AP physics C Web Review Ch 6 Momentum Please do not write on my tests Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The dimensional
More informationExperiment 7 ~ Conservation of Linear Momentum
Experiment 7 ~ Conservation of Linear Momentum Purpose: The purpose of this experiment is to reproduce a simple experiment demonstrating the Conservation of Linear Momentum. Theory: The momentum p of an
More informationGravitational Potential Energy
Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the
More informationTHE COLLISION PHENOMENON BETWEEN CARS
THE COLLISION PHENOMENON BETWEEN CARS What is the role of the mass in a headon collision between two vehicles? What is the role of speed? What is the force produced by each of the two vehicles? Here are
More informationPhysics I Honors: Chapter 4 Practice Exam
Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe
More informationb. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.
I. What is Motion? a. Motion  is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far
More informationExam Three Momentum Concept Questions
Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:
More informationPhysics 160 Biomechanics. Newton s Laws
Physics 160 Biomechanics Newton s Laws Questions to Think About Why does it take more force to cause an object to start sliding than it does to keep it sliding? Why is a ligament more likely to tear during
More informationNotes on Elastic and Inelastic Collisions
Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just
More informationQUESTIONS : CHAPTER5: LAWS OF MOTION
QUESTIONS : CHAPTER5: LAWS OF MOTION 1. What is Aristotle s fallacy? 2. State Aristotlean law of motion 3. Why uniformly moving body comes to rest? 4. What is uniform motion? 5. Who discovered Aristotlean
More informationMechanics 2. Revision Notes
Mechanics 2 Revision Notes November 2012 Contents 1 Kinematics 3 Constant acceleration in a vertical plane... 3 Variable acceleration... 5 Using vectors... 6 2 Centres of mass 8 Centre of mass of n particles...
More information15. The Kinetic Theory of Gases
5. The Kinetic Theory of Gases Introduction and Summary Previously the ideal gas law was discussed from an experimental point of view. The relationship between pressure, density, and temperature was later
More informationAnswer, Key Homework 3 David McIntyre 1
Answer, Key Homewor 3 Daid McIntyre 1 This printout should hae 26 questions, chec that it is complete Multiplechoice questions may continue on the next column or page: find all choices before maing your
More informationANSWER KEY. Reviewing Physics: The Physical Setting THIRD EDITION. Amsco School Publications, Inc. 315 Hudson Street / New York, N.Y.
NSWER KEY Reviewing Physics: The Physical Setting THIRD EDITION msco School Publications, Inc. 315 Hudson Street / New York, N.Y. 10013 N 7310 CD Manufactured in the United States of merica 1345678910
More informationName per due date mail box
Name per due date mail box Rolling Momentum Lab (1 pt for complete header) Today in lab, we will be experimenting with momentum and measuring the actual force of impact due to momentum of several rolling
More informationPhysics 2AB Notes  2012. Heating and Cooling. The kinetic energy of a substance defines its temperature.
Physics 2AB Notes  2012 Heating and Cooling Kinetic Theory All matter is made up of tiny, minute particles. These particles are in constant motion. The kinetic energy of a substance defines its temperature.
More informationNewton s Wagon Newton s Laws
Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?
More informationSOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE
SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE This work coers elements of the syllabus for the Engineering Council Exam D5 Dynamics of Mechanical Systems C10 Engineering Science. This tutorial examines
More informationThe BulletBlock Mystery
LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The BulletBlock Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationQ3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.
Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force
More informationExamples of Laminar Flows. Internal Flows
CBE 6333, R. Leicky Examples of Laminar Flows In laminar flows the fluid moes in "layers" or laminae, in contrast to the apparently chaotic motion of turbulent flow. Laminar flows in many different geometries
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationMass, energy, power and time are scalar quantities which do not have direction.
Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and
More informationTwoBody System: Two Hanging Masses
Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.
More informationForces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy
Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change
More informationPhysics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationACTIVITY SIX CONSERVATION OF MOMENTUM ELASTIC COLLISIONS
1 PURPOSE ACTIVITY SIX CONSERVATION OF MOMENTUM ELASTIC COLLISIONS For this experiment, the Motion Visualizer (MV) is used to capture the motion of two frictionless carts moving along a flat, horizontal
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationUnits DEMO spring scales masses
Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring
More informationNewton s Third Law. Newton s Third Law of Motion. ActionReaction Pairs
Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum
More informationWork. Work = Force x parallel distance (parallel component of displacement) F v
Work Work = orce x parallel distance (parallel component of displacement) W k = d parallel d parallel Units: N m= J = " joules" = ( kg m2/ s2) = average force computed over the distance r r When is not
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationPHYS 117 Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
PHYS 117 Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels
More informationEDUH 1017  SPORTS MECHANICS
4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017  SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use
More informationBHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.
BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (15641642): 1 st true scientist and 1 st person to use
More informationMagnetism: a new force!
1 Magnetism: a new force! So far, we'e learned about two forces: graity and the electric field force. =, = Definition of field kq fields are created by charges: = r field exerts a force on other charges:
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.
P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device
More informationThe Physics of Kicking a Soccer Ball
The Physics of Kicking a Soccer Ball Shael Brown Grade 8 Table of Contents Introduction...1 What actually happens when you kick a soccer ball?...2 Who kicks harder shorter or taller people?...4 How much
More informationThe momentum of a moving object has a magnitude, in kg m/s, and a... (1)
Q. (a) Complete the following sentence. The momentum of a moving object has a magnitude, in kg m/s, and a.... () (b) A car being driven at 9.0 m/s collides with the back of a stationary lorry. The car
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More informationThe Kinetic Theory of Gases Sections Covered in the Text: Chapter 18
The Kinetic Theory of Gases Sections Covered in the Text: Chapter 18 In Note 15 we reviewed macroscopic properties of matter, in particular, temperature and pressure. Here we see how the temperature and
More informationNotes: Mechanics. The Nature of Force, Motion & Energy
Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force The sum (addition) of all the forces acting on an
More informationQ1. (a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The resultant force on the aircraft is zero.
Q. (a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The resultant force on the aircraft is zero. (i) What is meant by the term resultant force?......
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationChapter 4 Newton s Laws: Explaining Motion
Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!
More informationEquation of Motion for Viscous Fluids
2.25 Equation of Motion for Viscous Fluids Ain A. Sonin Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139 2001 (8th edition) 1 Contents 1. Surface
More information