The Mathematics Driving License for Computer Science- CS10410

Size: px
Start display at page:

Download "The Mathematics Driving License for Computer Science- CS10410"

Transcription

1 The Mathematics Driving License for Computer Science- CS10410 Venn Diagram, Union, Intersection, Difference, Complement, Disjoint, Subset and Power Set Nitin Naik Department of Computer Science

2 Venn-Euler Diagram Venn-Euler diagram or simply Venn diagram is a graphical representation of sets and relation between sets.

3 Venn-Euler Diagram.. In the Venn diagram, Universal set is represented by a rectangle, other sets are represented by the circles inside the rectangle. The relation between sets is represented by the way the circles are placed inside the rectangle.

4 Sets Representation in Venn Diagram

5 Sets Representation in Venn Diagram.. Let us consider a very simple example to represent sets in Venn Diagram: A = { 1, 2 } B = { 2, 3 } U = { 1, 2, 3, 4 }

6 Set Union (A B) The union of two sets is the set of all elements which are in either set. The union of sets A and B is the set of all elements of A together with the elements of B. (The A B is the set of all x such that x belongs to A or x belongs to B.)

7 Set Union.. In the previous example: A = { 1, 2 } B = { 2, 3 }

8 Union of Multiple Sets We can also find the union of multiple sets:

9 Set Intersection (A B) The intersection of two sets is the set of all elements which are in both set. The intersection of sets A and B is the set of all elements of A which are also the elements of B. (The A B is the set of all x such that x belongs to A and x belongs to B.)

10 Set Intersection.. In the previous example: A = { 1, 2 } B = { 2, 3 } Sometimes there will be no intersection at all. In that case we say the answer is the empty set or the null set.

11 Intersection of Multiple Sets We can also find the intersection of multiple sets:

12 Set Difference (A B or A B ) We can extend the concept of subtraction, used in the algebra, to the sets. If a set B is subtracted from set A, the resulting difference set consists of elements, which are exclusive to set A. (The A B or A B is the set of all x such that x belongs to A and x does not belong to B.)

13 Set Difference.. In the previous example: A = { 1, 2 } B = { 2, 3 }

14 Set Difference.. Similarly we can find B A or B A : (The B A or B A is the set of all x such that x belongs to B and x does not belong to A.)

15 Set Difference.. In the previous example: A = { 1, 2 } B = { 2, 3 }

16 Complement of a Set (Ā) Sometimes we want to talk about elements which lie OUTSIDE of a given set and within another set. The set of all those elements which are not contained in a given set is called complement set. The complement of set A is the set of all elements of the universe which are not in A.

17 Complement of a Set (Ā).. Symbolically it is represented as Ā or à or NOT A. (Ā is the set of all x such that x does not belong to A.) It can also be represented as :

18 Complement of a Set.. In the previous example: A = { 1, 2 }

19 Complement of a Set ( ) Similarly we can find the complement of set B which is the set of all elements of the universe which are not in B. (NOT B ( ) is the set of all x such that x does not belong to B.) It can also be represented as :

20 Complement of a Set.. In the previous example: B = { 2, 3 }

21 Complement of a Union Set A B Similarly we can find the complement of set A B which is the set of all elements of the universe which are not in A B. ( is the set of all x such that x does not belong to A B.) It can also be represented as:

22 Complement of a Set A B.. In the previous example: A = { 1, 2 } B = { 2, 3 }

23 Complement of a Set A B Similarly we can find the complement of set A B which is the set of all elements of the universe which are not in A B. ( is the set of all x such that x does not belong to A B.) It can also be represented as:

24 Complement of a Set A B.. In the previous example: A = { 1, 2 } B = { 2, 3 }

25 Disjoint Set Two sets are said to be disjoint if they have no element in common. It means their members do not overlap or their intersection is empty set. If the two sets A and B are disjoint sets then Example: Let us consider a new example to represent all sets U, A, and B: Set U = { 1, 2, 3, 4, 5 } Set A = { 1, 2 } Set B = { 3, 4 }

26 Disjoint Set.. Now the two sets A and B are the disjoint sets because no element is common between these two sets and they are represented as: Another example is:

27 Subset (B A or B A) Set B is a subset of set A if and only if every element of set B is also the element of set A. Symbolically it is represented by B A or B A. Example: Let us consider a new example to represent all sets U, A, and B: Set U = { 1, 2, 3, 4, 5 } Set A = { 1, 2, 3, 4 } Set B = { 3, 4 } Then B A

28 Subset.. Here set B is a subset of Set A because all the elements of set B {3, 4} are the elements of set A { 1, 2, 3, 4 }.

29 Subset.. Any set A has two default subsets: Empty Set ( A) and Set itself (A A). Every set is also a subset of its Universal Set U like A U. If the set A = { 1, 2, 3, 4 } then all possible subsets of set A are: {}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

30 Superset (A B or A B) The set A is a superset of set B if and only if every element of B is also an element of A. Symbolically it is represented by A B or A B. In this condition set A is a superset of set B (or set B is a subset of set A). Set U = { 1, 2, 3, 4, 5 } Set A = { 1, 2, 3, 4 } Set B = { 3, 4 } Then A B

31 Proper Subset (B A) A proper subset is a subset which is not the same as the original set itself. It means a proper subset contains some but not all elements of original set. The empty set is therefore a proper subset of any nonempty set. The set B is a proper subset of set A if B is a subset of A and at least one element of A is not in B. Proper subset is represented by the symbol.

32 It is represented as: Proper Subset.. In the previous example: Set A = { 1, 2, 3, 4 } Set B = { 3, 4 } Then B A (B is a proper subset of A) Set B is a proper subset of Set A because all the elements of set B {3, 4} are the elements of set A { 1, 2, 3, 4 } and set B is smaller than set A.

33 Improper Subset / Equality of Sets (B A or A B) An improper subset is a subset which is the same as the original set itself. It means an improper subset contains every element of the original set. In this case it is termed an improper subset because they are equal. The set B is an improper subset of A or vice versa if set A and set B are exactly same. Improper subset is represented by the symbol (is a proper subset or is equal to).

34 Improper Subset / Equality of Sets.. It is represented as:

35 Improper Subset / Equality of Sets.. Let us consider a new example to represent all sets U, A, and B: Set U = { 1, 2, 3, 4, 5 } Set A= {1, 2, 3, 4} Set B= {1, 2, 3, 4} Then B A or A B Then set B is an improper subset of set A and vice versa. This is also called the equality of sets.

36 Power set The power set of any set is the set containing all possible subsets of given set including the empty subset and set itself. If the original set has n members, then the Power Set will have 2 n members. The power set of set A includes all possible subsets of A and empty set and represented by symbol P(A).

37 Power set.. For example if the set A = { 1, 2, 3, 4 } Then power set (all possible subsets of set A including empty set) of set A is: P(A) = { {}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4} } How many sets in this Power set P(A): Thus power set P(A) has 16 subsets as mentioned above.

38 Cartesian Product / Product Set/ Cross Product (A B) Cartesian product of two non-empty sets, A and B, is the set of all ordered pairs (a, b) that can be constructed from two sets, A and B, such that a belongs to A and b belongs to B. The Cartesian product of a non-empty set with an empty set is equal to empty set.

39 Cartesian Product (A B).. Example-1: If set A= {1, 2, 3} and set B= {cat, dog} Then Cartesian product A B of these two sets A and B is:

40 Cartesian Product (B A).. Similarly, we can find Cartesian product B A which is different from Cartesian product A B : Example-2: In previous example the Cartesian product B A of two sets B and A is:

41 Cartesian Product (A A).. Similarly, we can find the Cartesian product of the set A itself A A is: Example-3: In previous example the Cartesian product A A of two sets A and A is:

42 Cartesian Product (B B).. Similarly, we can find the Cartesian product of the set B itself B B is: Example-4: In previous example the Cartesian product B B of two sets B and B is:

43 Cartesian Product of Multiple Sets We can also find the Cartesian Product of multiple sets like sets A, B and C: If you change the order then the result will be changed.

44 Disjoint Union of Sets (A B or A + B) The disjoint union A B or A + B of two sets A and B is a binary operator ( or +) that combines all distinct elements of a pair of given sets, while retaining the original set membership as a distinguishing characteristic of the union set.

45 Disjoint Union of Sets.. Let us consider an example: Set A= {1, 2, 3} and tag(a) = t A Set B= {2, 3, 4} and tag(b) = t B Now finding the value of A * and B * by getting Cartesian product of sets A and B and their corresponding tag values t A and t B.

46 Disjoint Union of Sets.. Finally, obtain the disjoint union A B or A + B of sets A and B as:

47 References tml t=185 wiki100k/docs/uncountable_set.html

48 Thank You

The Language of Mathematics

The Language of Mathematics CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

More information

CHAPTER 2. Set, Whole Numbers, and Numeration

CHAPTER 2. Set, Whole Numbers, and Numeration CHAPTER 2 Set, Whole Numbers, and Numeration 2.1. Sets as a Basis for Whole Numbers A set is a collection of objects, called the elements or members of the set. Three common ways to define sets: (1) A

More information

4.1. Definitions. A set may be viewed as any well defined collection of objects, called elements or members of the set.

4.1. Definitions. A set may be viewed as any well defined collection of objects, called elements or members of the set. Section 4. Set Theory 4.1. Definitions A set may be viewed as any well defined collection of objects, called elements or members of the set. Sets are usually denoted with upper case letters, A, B, X, Y,

More information

CmSc 175 Discrete Mathematics Lesson 10: SETS A B, A B

CmSc 175 Discrete Mathematics Lesson 10: SETS A B, A B CmSc 175 Discrete Mathematics Lesson 10: SETS Sets: finite, infinite, : empty set, U : universal set Describing a set: Enumeration = {a, b, c} Predicates = {x P(x)} Recursive definition, e.g. sequences

More information

What is a set? Sets. Specifying a Set. Notes. The Universal Set. Specifying a Set 10/29/13

What is a set? Sets. Specifying a Set. Notes. The Universal Set. Specifying a Set 10/29/13 What is a set? Sets CS 231 Dianna Xu set is a group of objects People: {lice, ob, Clara} Colors of a rainbow: {red, orange, yellow, green, blue, purple} States in the S: {labama, laska, Virginia, } ll

More information

LESSON SUMMARY. Set Operations and Venn Diagrams

LESSON SUMMARY. Set Operations and Venn Diagrams LESSON SUMMARY CXC CSEC MATHEMATICS UNIT Three: Set Theory Lesson 4 Set Operations and Venn Diagrams Textbook: Mathematics, A Complete Course by Raymond Toolsie, Volumes 1 and 2. (Some helpful exercises

More information

Sections 2.1, 2.2 and 2.4

Sections 2.1, 2.2 and 2.4 SETS Sections 2.1, 2.2 and 2.4 Chapter Summary Sets The Language of Sets Set Operations Set Identities Introduction Sets are one of the basic building blocks for the types of objects considered in discrete

More information

THE LANGUAGE OF SETS AND SET NOTATION

THE LANGUAGE OF SETS AND SET NOTATION THE LNGGE OF SETS ND SET NOTTION Mathematics is often referred to as a language with its own vocabulary and rules of grammar; one of the basic building blocks of the language of mathematics is the language

More information

Clicker Question. Theorems/Proofs and Computational Problems/Algorithms MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES

Clicker Question. Theorems/Proofs and Computational Problems/Algorithms MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Tuesday, 1/21/14 General course Information Sets Reading: [J] 1.1 Optional: [H] 1.1-1.7 Exercises: Do before next class; not to hand in [J] pp. 12-14:

More information

Florida Department of Education/Office of Assessment January 2012. Algebra 1 End-of-Course Assessment Achievement Level Descriptions

Florida Department of Education/Office of Assessment January 2012. Algebra 1 End-of-Course Assessment Achievement Level Descriptions Florida Department of Education/Office of Assessment January 2012 Algebra 1 End-of-Course Assessment Achievement Level Descriptions Algebra 1 EOC Assessment Reporting Category Functions, Linear Equations,

More information

Sets and set operations

Sets and set operations CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used

More information

2.1 The Algebra of Sets

2.1 The Algebra of Sets Chapter 2 Abstract Algebra 83 part of abstract algebra, sets are fundamental to all areas of mathematics and we need to establish a precise language for sets. We also explore operations on sets and relations

More information

POWER SETS AND RELATIONS

POWER SETS AND RELATIONS POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

More information

not to be republishe NCERT SETS Chapter Introduction 1.2 Sets and their Representations

not to be republishe NCERT SETS Chapter Introduction 1.2 Sets and their Representations SETS Chapter 1 In these days of conflict between ancient and modern studies; there must surely be something to be said for a study which did not begin with Pythagoras and will not end with Einstein; but

More information

Applications of Methods of Proof

Applications of Methods of Proof CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

More information

Lecture 1. Basic Concepts of Set Theory, Functions and Relations

Lecture 1. Basic Concepts of Set Theory, Functions and Relations September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2

More information

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

More information

Announcements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets

Announcements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets CompSci 230 Discrete Math for Computer Science Sets September 12, 2013 Prof. Rodger Slides modified from Rosen 1 nnouncements Read for next time Chap. 2.3-2.6 Homework 2 due Tuesday Recitation 3 on Friday

More information

+ Section 6.2 and 6.3

+ Section 6.2 and 6.3 Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

More information

2.1 Symbols and Terminology

2.1 Symbols and Terminology 2.1 Symbols and Terminology Definitions: set is a collection of objects. The objects belonging to the set are called elements, ormembers, oftheset. Sets can be designated in one of three different ways:

More information

Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE

Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE Set operations and Venn Diagrams Set operations and Venn diagrams! = { x x " and x " } This is the intersection of and. # = { x x " or x " } This is the union of and. n element of! belongs to both and,

More information

VENN DIAGRAMS. Condition #1 Condition #2 A B C. Answer: B and C have reflection symmetry. C and D have at least one pair of parallel sides.

VENN DIAGRAMS. Condition #1 Condition #2 A B C. Answer: B and C have reflection symmetry. C and D have at least one pair of parallel sides. VENN DIAGRAMS VENN DIAGRAMS AND CLASSIFICATIONS A Venn diagram is a tool used to classify objects. It is usually composed of two or more circles that represent different conditions. An item is placed or

More information

Math 166 - Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.

Math 166 - Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Week in Review #4 Sections A.1 and A.2 - Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that

More information

2.1 Sets, power sets. Cartesian Products.

2.1 Sets, power sets. Cartesian Products. Lecture 8 2.1 Sets, power sets. Cartesian Products. Set is an unordered collection of objects. - used to group objects together, - often the objects with similar properties This description of a set (without

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Chih-Wei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can

More information

Semantics of UML class diagrams

Semantics of UML class diagrams 1 Otto-von-Guericke Universität Magdeburg, Germany April 26, 2016 Sets Definition (Set) A set is a collection of objects. The basic relation is membership: x A (x is a member of A) The following operations

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Set Theory: Shading Venn Diagrams

Set Theory: Shading Venn Diagrams Set Theory: Shading Venn Diagrams Venn diagrams are representations of sets that use pictures. We will work with Venn diagrams involving two sets (two-circle diagrams) and three sets (three-circle diagrams).

More information

A Little Set Theory (Never Hurt Anybody)

A Little Set Theory (Never Hurt Anybody) A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra

More information

Lecture 17 : Equivalence and Order Relations DRAFT

Lecture 17 : Equivalence and Order Relations DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

More information

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008

Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008 Basic Set Theory LX 502 - Semantics I September 11, 2008 1. Motivation When you start reading these notes, the first thing you should be asking yourselves is What is Set Theory and why is it relevant?

More information

Discrete Mathematics Set Operations

Discrete Mathematics Set Operations Discrete Mathematics 1-3. Set Operations Introduction to Set Theory A setis a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

More information

MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction. MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

More information

Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then

Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance

More information

Check Skills You ll Need. New Vocabulary union intersection disjoint sets. Union of Sets

Check Skills You ll Need. New Vocabulary union intersection disjoint sets. Union of Sets NY-4 nion and Intersection of Sets Learning Standards for Mathematics..31 Find the intersection of sets (no more than three sets) and/or union of sets (no more than three sets). Check Skills You ll Need

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District

Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve

More information

We give a basic overview of the mathematical background required for this course.

We give a basic overview of the mathematical background required for this course. 1 Background We give a basic overview of the mathematical background required for this course. 1.1 Set Theory We introduce some concepts from naive set theory (as opposed to axiomatic set theory). The

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

Unit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12

Unit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12 Unit 3: Algebra Date Topic Page (s) Algebra Terminology Variables and Algebra Tiles 3 5 Like Terms 6 8 Adding/Subtracting Polynomials 9 1 Expanding Polynomials 13 15 Introduction to Equations 16 17 One

More information

Logic in Computer Science: Logic Gates

Logic in Computer Science: Logic Gates Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers

More information

1 / Basic Structures: Sets, Functions, Sequences, and Sums - definition of a set, and the use of the intuitive notion that any property whatever there

1 / Basic Structures: Sets, Functions, Sequences, and Sums - definition of a set, and the use of the intuitive notion that any property whatever there C H A P T E R Basic Structures: Sets, Functions, Sequences, and Sums.1 Sets. Set Operations.3 Functions.4 Sequences and Summations Much of discrete mathematics is devoted to the study of discrete structures,

More information

Algebra I Notes Relations and Functions Unit 03a

Algebra I Notes Relations and Functions Unit 03a OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element

More information

TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

SOLUTIONS TO ASSIGNMENT 1 MATH 576

SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS BY OLIVIER MARTIN 13 #5. Let T be the topology generated by A on X. We want to show T = J B J where B is the set of all topologies J on X with A J. This amounts

More information

Session 21 Fraction Addition and Subtraction and Mixed Number Notation

Session 21 Fraction Addition and Subtraction and Mixed Number Notation Session Fraction Addition and Subtraction and Mixed Number Notation Solve and compare the following two problems. Kim made one out of three free throws in a game and one out of four free throws in the

More information

Problems on Discrete Mathematics 1

Problems on Discrete Mathematics 1 Problems on Discrete Mathematics 1 Chung-Chih Li 2 Kishan Mehrotra 3 Syracuse University, New York L A TEX at January 11, 2007 (Part I) 1 No part of this book can be reproduced without permission from

More information

Regular Expressions and Automata using Haskell

Regular Expressions and Automata using Haskell Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that

More information

Situation: Proving Quadrilaterals in the Coordinate Plane

Situation: Proving Quadrilaterals in the Coordinate Plane Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra

More information

SETS AND FUNCTIONS, MATH 215 FALL 2015 (WHYTE)

SETS AND FUNCTIONS, MATH 215 FALL 2015 (WHYTE) SETS AND FUNCTIONS, MATH 215 FALL 2015 (WHYTE) 1. Intro to Sets After some work with numbers, we want to talk about sets. For our purposes, sets are just collections of objects. These objects can be anything

More information

Chapter 2: Systems of Linear Equations and Matrices:

Chapter 2: Systems of Linear Equations and Matrices: At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

More information

Math Review Large Print (18 point) Edition Chapter 4: Data Analysis

Math Review Large Print (18 point) Edition Chapter 4: Data Analysis GRADUATE RECORD EXAMINATIONS Math Review Large Print (18 point) Edition Chapter 4: Data Analysis Copyright 2010 by Educational Testing Service. All rights reserved. ETS, the ETS logo, GRADUATE RECORD EXAMINATIONS,

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

Data Modeling. Relationships within the Relational Database:

Data Modeling. Relationships within the Relational Database: Data Modeling Relationships within the Relational Database: A relationship describes association among entities. For example, a relationship exists between customers and an agent, in that an agent can

More information

Set Theory. 2.1 Presenting Sets CHAPTER2

Set Theory. 2.1 Presenting Sets CHAPTER2 CHAPTER2 Set Theory 2.1 Presenting Sets Certain notions which we all take for granted are harder to define precisely than one might expect. In Taming the Infinite: The Story of Mathematics, Ian Stewart

More information

Course Syllabus. MATH 1350-Mathematics for Teachers I. Revision Date: 8/15/2016

Course Syllabus. MATH 1350-Mathematics for Teachers I. Revision Date: 8/15/2016 Course Syllabus MATH 1350-Mathematics for Teachers I Revision Date: 8/15/2016 Catalog Description: This course is intended to build or reinforce a foundation in fundamental mathematics concepts and skills.

More information

Definition 14 A set is an unordered collection of elements or objects.

Definition 14 A set is an unordered collection of elements or objects. Chapter 4 Set Theory Definition 14 A set is an unordered collection of elements or objects. Primitive Notation EXAMPLE {1, 2, 3} is a set containing 3 elements: 1, 2, and 3. EXAMPLE {1, 2, 3} = {3, 2,

More information

Fractions. Cavendish Community Primary School

Fractions. Cavendish Community Primary School Fractions Children in the Foundation Stage should be introduced to the concept of halves and quarters through play and practical activities in preparation for calculation at Key Stage One. Y Understand

More information

Chapter 10. Abstract algebra

Chapter 10. Abstract algebra Chapter 10. Abstract algebra C.O.S. Sorzano Biomedical Engineering December 17, 2013 10. Abstract algebra December 17, 2013 1 / 62 Outline 10 Abstract algebra Sets Relations and functions Partitions and

More information

Factorizations: Searching for Factor Strings

Factorizations: Searching for Factor Strings " 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write

More information

2015 Junior Certificate Higher Level Official Sample Paper 1

2015 Junior Certificate Higher Level Official Sample Paper 1 2015 Junior Certificate Higher Level Official Sample Paper 1 Question 1 (Suggested maximum time: 5 minutes) The sets U, P, Q, and R are shown in the Venn diagram below. (a) Use the Venn diagram to list

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

1 Introduction to Counting

1 Introduction to Counting 1 Introduction to Counting 1.1 Introduction In this chapter you will learn the fundamentals of enumerative combinatorics, the branch of mathematics concerned with counting. While enumeration problems can

More information

Access The Mathematics of Internet Search Engines

Access The Mathematics of Internet Search Engines Lesson1 Access The Mathematics of Internet Search Engines You are living in the midst of an ongoing revolution in information processing and telecommunications. Telephones, televisions, and computers are

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Discrete Mathematics: Chapter 4, Basic Set Theory & Combinatorics

Discrete Mathematics: Chapter 4, Basic Set Theory & Combinatorics Digital Collections @ Dordt Faculty Work: Comprehensive List 1-2016 Discrete Mathematics: Chapter 4, Basic Set Theory & Combinatorics Calvin Jongsma Dordt College, calvin.jongsma@dordt.edu Follow this

More information

COMP 378 Database Systems Notes for Chapter 7 of Database System Concepts Database Design and the Entity-Relationship Model

COMP 378 Database Systems Notes for Chapter 7 of Database System Concepts Database Design and the Entity-Relationship Model COMP 378 Database Systems Notes for Chapter 7 of Database System Concepts Database Design and the Entity-Relationship Model The entity-relationship (E-R) model is a a data model in which information stored

More information

Intersecting Families

Intersecting Families Intersecting Families Extremal Combinatorics Philipp Zumstein 1 The Erds-Ko-Rado theorem 2 Projective planes Maximal intersecting families 4 Helly-type result A familiy of sets is intersecting if any two

More information

Modern Systems Analysis and Design

Modern Systems Analysis and Design Modern Systems Analysis and Design Prof. David Gadish Structuring System Data Requirements Learning Objectives Concisely define each of the following key data modeling terms: entity type, attribute, multivalued

More information

Elements of probability theory

Elements of probability theory The role of probability theory in statistics We collect data so as to provide evidentiary support for answers we give to our many questions about the world (and in our particular case, about the business

More information

Planning Guide. Grade 6 Factors and Multiples. Number Specific Outcome 3

Planning Guide. Grade 6 Factors and Multiples. Number Specific Outcome 3 Mathematics Planning Guide Grade 6 Factors and Multiples Number Specific Outcome 3 This Planning Guide can be accessed online at: http://www.learnalberta.ca/content/mepg6/html/pg6_factorsmultiples/index.html

More information

Basic concepts in probability. Sue Gordon

Basic concepts in probability. Sue Gordon Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are

More information

7 Relations and Functions

7 Relations and Functions 7 Relations and Functions In this section, we introduce the concept of relations and functions. Relations A relation R from a set A to a set B is a set of ordered pairs (a, b), where a is a member of A,

More information

Notes on counting finite sets

Notes on counting finite sets Notes on counting finite sets Murray Eisenberg February 26, 2009 Contents 0 Introduction 2 1 What is a finite set? 2 2 Counting unions and cartesian products 4 2.1 Sum rules......................................

More information

OA3-10 Patterns in Addition Tables

OA3-10 Patterns in Addition Tables OA3-10 Patterns in Addition Tables Pages 60 63 Standards: 3.OA.D.9 Goals: Students will identify and describe various patterns in addition tables. Prior Knowledge Required: Can add two numbers within 20

More information

Basic Concepts of Set Theory, Functions and Relations

Basic Concepts of Set Theory, Functions and Relations March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3

More information

Signed Binary Arithmetic

Signed Binary Arithmetic Signed Binary Arithmetic In the real world of mathematics, computers must represent both positive and negative binary numbers. For example, even when dealing with positive arguments, mathematical operations

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

Teori Himpunan. Bagian III

Teori Himpunan. Bagian III Teori Himpunan Bagian III Teori Himpunan Himpunan: Kumpulan objek (konkrit atau abstrak) ) yang mempunyai syarat tertentu dan jelas, bisanya dinyatakan dengan huruf besar. a A a A a anggota dari A a bukan

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 6 Permutation Groups Let S be a nonempty set and M(S be the collection of all mappings from S into S. In this section,

More information

Basic Probability Concepts

Basic Probability Concepts page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

More information

1. The sample space S is the set of all possible outcomes. 2. An event is a set of one or more outcomes for an experiment. It is a sub set of S.

1. The sample space S is the set of all possible outcomes. 2. An event is a set of one or more outcomes for an experiment. It is a sub set of S. 1 Probability Theory 1.1 Experiment, Outcomes, Sample Space Example 1 n psychologist examined the response of people standing in line at a copying machines. Student volunteers approached the person first

More information

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

More information

National Curriculum for England 2014 Abacus Year 2 Medium Term Plan

National Curriculum for England 2014 Abacus Year 2 Medium Term Plan National Curriculum for Engl 2014 Year 2 always covers the content of the National Curriculum within the paired age range (i.e. Y1/2, Y3/4, 5/6). Very occasionally postpones something from the first year

More information

Number Sense and Operations

Number Sense and Operations Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

More information

Math212a1010 Lebesgue measure.

Math212a1010 Lebesgue measure. Math212a1010 Lebesgue measure. October 19, 2010 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.

More information

Elements of probability theory

Elements of probability theory 2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted

More information

Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.

Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection. 1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event

More information

Session 6 Number Theory

Session 6 Number Theory Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

South Carolina College- and Career-Ready (SCCCR) Probability and Statistics

South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR)

More information

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

More information

Foundations of Mathematics I Set Theory (only a draft)

Foundations of Mathematics I Set Theory (only a draft) Foundations of Mathematics I Set Theory (only a draft) Ali Nesin Mathematics Department Istanbul Bilgi University Kuştepe Şişli Istanbul Turkey anesin@bilgi.edu.tr February 12, 2004 2 Contents I Naive

More information