Elements of probability theory

Size: px
Start display at page:

Download "Elements of probability theory"

Transcription

1 2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted with certainty. 2.1 SAMPLE SPACES A situation whose outcomes occur randomly is called an experiment. The set of all possible outcomes of an experiment is called the sample space corresponding to the experiment, and is denoted by. A generic element of is called a sample point, or simply a point, and is denoted by! 2. Example 2.1 A coin is tossed twice and the sequence of heads (H) and tails (T) is recorded. The possible outcomes of this experiment are HH, HT, TH and TT. Hence, the sample space corresponding to this experiment consists of the four points = fhh;ht;th;ttg: A sample space is called nite if it is empty or contains a nite number of points, otherwise is called in nite. A sample space is called countable if its points can be indexed by the set of positive integers. A sample space that is nite or countable is called discrete. Example 2.2 A coin is tossed until H is recorded. The sample space corrsponding to this experiment is = fh;th;tth;ttth;tttth;:::g: Thus contains countably many points. 2 Not all sample spaces are discrete. For example, the sample space consisting of all positive real numbers is not discrete, neither is the sample space consisting of all real numbers in the interval [0; 1]. 2

2 8 2.2 RELATIONS AMONG EVENTS A subset of points in a sample space is called an event in. An event occurs if and only if one of its points occurs. Viewed as an event, is called the sure event. In general, events will be de ned by certain conditions on the points that compose them. Because events are just subsets of points in, concepts and results from point set theory apply to events. In particular, if A and B are events in, A implies B, written A µ B, if and only if all points in A also belong to B. The events A and B are identical, written A = B, if and only if A µ B and B µ A, that is, A and B contain exactly the same points. Other usual operations and relations between sets are listed below (union) A [ B = f! 2 :! 2 A or! 2 Bg, (intersection) A \ B = f! 2 :! 2 A and! 2 Bg, (complement) A c = f! 2 :! 62 Ag, (impossible event) ; = c, (di erence) A B = A \ B c, (symmetric di erence) A B = (A B) [ (B A). Instead of A \ B we also write AB. Operations and relations between sets are easy to visualize using Venn diagrams. If A \ B = ;, then A andb are called disjoint or mutually exclusive events. Intersections and unions of a countable collection A 1 ;A 2 ;A 3 ;::: of events are denoted by T 1 A i and S 1 A i, respectively. If A is an arbitrary family of subsets in, we write [ A2A A = f! 2 :! 2 A for some A 2 Ag and \ A2A A = f! 2 :! 2 A for all A 2 Ag Some basic relationships between events are: A [ ; = A, A [ =, A [ A = A, [ ; =, A \ ; = ;, A \ = A, A \ A = A, \ ; = ;. and

3 ELEMENTS OF PROBABILITY THEORY 9 (commutative law) A [ B = B [ A, A \ B = B \ A, (distributive law) A [ (B \ C) = (A [ B) \ (A [ C), A \ (B [ C) = (A \ B) [ (A \ C), (associative law) (A [ B) [ C = A [ (B [ C), (A \ B) \ C = A \ (B \ C), (De Morgan's laws) (A [ B) c = A c \ B c, (A \ B) c = A c [ B c. De Morgan's laws show that complementation, union and intersection are not independent operations. The commutative, distributive and associative laws and De Morgan's laws can easily be extended to a countable collection of events A 1 ;A 2 ;A 3 ;:::. The characteristic function (cf) of an event A µ is a function 1 A ( ) de ned for all! 2 by the relation ½ 1; if! 2 A, 1 A (!) = 0; otherwise. We also write 1(! 2 A) or, more compactly, 1(A). There is a one-to-one correspondence between sets and their cf's, and all properties of sets and set operations can be expressed in terms of cf's. For example, if C = A c then 1 C = 1 1 A, if C = A [ B then 1 C = max(1 A ; 1 B ), and if C = A \ B then 1 C = 1 A 1 B. 2.3 PROBABILITY How can we attach probabilities to events? The rst and easiest case is an experiment with a nite sample space consisting of N points. Suppose that, because of the nature of the experiment (e.g. tossing a fair coin), all points in are equiprobable, that is, equally likely, and let A be some event in. We de ne the probability of A, written P(A), as the ratio P(A) = N(A) N ; (2.1) where N(A) denotes the number of points in A. For any A µ, we have 0 P(A) 1; P( ) = N( ) N = 1; P(;) = N(;) N = 0: Further, if A and B are disjoint events in, then P(A [ B) = N(A [ B) N = N(A) N + N(B) N = P(A) + P(B):

4 10 Despite its simplicity, formula (2.1) can lead to non trivial calculations. In order to use it in a given problem, we need to determine: (i) the number N of all equiprobable outcomes, and (ii) the number of all those outcomes leading to the occurrence of A. A second case is whena basic experimentcan be repeated inexactly the same conditions any number n of times. We call this situation the case of independent trials under identical conditions. In this case, we can give a precise meaning to the concept of probability. In each trial a particular event A may or may not occur. Let n(a) be the number of trials in which A occurs. The relative frequency of the event A in the given series of n trials is de ned as f n (A) = n(a) n : It is an empirical fact that the f n (A) observed for di erent series of trials are virtually the same for large n, clustering about a constant value P(A), called the probability of A. Roughly speaking, the probability of A equals the fraction of trials leading to the occurrence of A in a large series of trials. 2.4 COMBINATORIAL RESULTS Whenever equal probabilities are assigned to the elements of a nite sample space, computation of probabilities of events reduces to counting the points comprising the events. Theorem 2.1 Given n elements a 1 ;:::;a n and m elements b 1 ;:::;b m there are exactly nm distinct ordered pairs (a i ;b j ) containing one element of each kind. Thus, if one experiment has n possible outcomes and another experiment has m possible outcomes, there are nm possible outcomes for the two expriments. More generally we have: Theorem 2.2 Given n 1 elements a 1 ;:::;a n1, n 2 elements b 1 ;:::;b n2, etc., up to n r elements x 1 ;:::;x nr, there are n 1 n 2 n r distinct ordered pairs (a i1 ;b i2 ;:::;x ir ) containing one element of each kind. Thus, if there are r experiments, where the rst has n 1 possible outcomes, the second n 2,..., and the rth n r possible outcomes, there are a total of n 1 n 2 n r possible outcomes for the r experiments. A permutation is an ordered arrangement of objects. An ordered sample of size r is a permutation of r objects obtained from a set ofn elements. Two possible ways for obtaining samples are: sampling with replacement and sampling without replacement. Notice that only samples of size r n without replacement are possible.

5 ELEMENTS OF PROBABILITY THEORY 11 Theorem 2.3 Given a set of n elements and sample size r, there are n r di erent ordered samples with replacement, and n(n 1)(n 2) (n r + 1) = di erent ordered samples without replacement. n! (n r)! Theorem 2.3 implies that the number of permutations or orderings of n elements is equal to n!. A combination is a set of elements without repetitions and without regard to ordering. For example, fa; bg and fb; ag are di erent permutations but only one combination. Thus, a combination is the number of unordered samples of a given size drawn without replacement from a nite set of objects. Theorem 2.4 The number of possible combinations of n objects taken r at a time (r n), is equal to µ Cr n n! n = r!(n r)! = : r Proof. Since the number of ordered samples is equal to the number of unordered samples times the number of ways to order each sample we have that n! (n r)! = Cn r r!; from which C n r = n! r!(n r)! : 2 The number Cr n is called binomial coe±cient, since it occurs in the binomial expansion nx µ n (a + b) n = a n r b r : r r=0 More generally, simple induction gives the following: Theorem 2.5 Given a set of n elements, let n 1 ;:::;n k be positive integers such that P k n i = n. Then there are µ n n! = (2.2) n 1 n 2 :::n k n 1!n 2!:::n k! ways of partitioning the set into k unorderd samples without replacement of size n 1 ;:::;n k respectively. The numbers (2.2) are called multinomial coe±cients.

6 FINITE PROBABILITY SPACES The de nition of probability in terms of equiprobable events is circular. On the other hand, de ning probabilities as limits of relative frequencies inindependent trials under identical conditions is far too restrictive. To avoid these problems we shall now present a purely axiomatic treatment of probabilities. De nition 2.1 A sample space is called a nite probability space if is nite and for every event A µ, there is de ned a real number P(A), called the probability of the event A, such that: A.1: P(A) 0; A.2: P( ) = 1; A.3: if A 1 and A 2 are mutually exclusive events in, then P(A [ B) = P(A) + P(B): It follows from De nition 2.1 that, for any subset A and B of, 0 P(A) 1; (2.3) 2 Further P(A c ) = 1 P(A); (2.4) P(;) = 0; (2.5) A µ B ) P(A) P(B): (2.6) P(A [ B) = P(A) + P(B) P(AB) (Covering theorem): (2.7) This implies the following upper bound on P(A [ B) P(A [ B) P(A) + P(B); with equality if and only if A and B are disjoint. Notice that B = AB[A c B, where AB and A c B are mutually exclusive events. Hence P(B) = P(AB) + P(A c B) and therefore P(B) P(AB) = P(A c B). Substituting in (2.7) gives P(A [ B) = P(A) + P(A c B) (Addition law): (2.8) Also notice that, by De Morgan's law and the Covering theorem, This implies 1 P(AB) = P((AB) c ) = P(A c [ B c ) P(A c ) + P(B c ): P(AB) 1 P(A c ) P(B c ) (Bonferroni inequality); (2.9)

7 ELEMENTS OF PROBABILITY THEORY 13 with equality if and only if A c and B c are disjoint. More generally, if A 1 ;:::;A n is a nite collection of events in, then A 1 ;A c 1A 2 ;:::;A c 1A c 2;:::;A c n 1A n form a partition of S n A i, and so n[ P( A i ) = P(A 1 ) + P(A c 1A 2 ) + + P(A c 1A c 2 A c n 1A n ): This result generalizes the Addition law (2.8). Since for all n 1, we also have A c 1A c 2 A c n 1A n µ A n n[ P( A i ) nx P(A i ): This result generalizes the Covering theorem (2.7). Finally, the generalization of the Bonferroni inequality (2.9) is n\ P( A i ) 1 nx P(A c i): 2.6 MEASURABLE SPACES AND MEASURES For in nite sample spaces, some modi cations of the axioms A.1-A.3 and some additional concepts of set theory are required. The reason is that some subsets of an in nite sample space may be so irrregular that it is not possible to assign a probability to them. A set whose elements are sets of will be called a class of sets in. When a set operation performed on sets in a class A gives as a result sets which also belong to A, we say that A is closed under the given operation. De nition 2.2 A nonempty class A of subsets of is called a eld or an algebra on if it contains and is closed under complementation and nite unions, that is, 2 A; A 2 A ) A c 2 A; (2.10) n[ A i 2 A; i = 1;:::;n ) A i 2 A: (2.11) By De Morgan's laws, (2.10) and (2.11) together imply A i 2 A; i = 1;:::;n ) n\ A i 2 A: 2

8 14 Thus, all standardset operations (union, intersection andcomplementation) can be performed any nite number of times on the elements of a eld A without obtaining a set not in A. De nition 2.3 A eld A on is a ¾- eld or a ¾-algebra if it is closed under countable unions, that is, if A i 2 A; i = 1; 2;::: ) A i 2 A: (2.12) By De Morgan's law, (2.10) and (2.12) together imply A i 2 A; i = 1; 2;::: ) 1\ A i 2 A: Thus, all standard set operations can be performed any countable number of times on the elements of a ¾- eld A without obtaining a set not in A. If A is a class of subsets of, the smallest eld (¾- eld) containing A is called the eld (¾- eld) generated by A. It can be veri ed that the eld (¾- eld) generated by A is equal to the intersection of all eld (¾- elds) containing A. If A is a ¾- eld on, the pair ( ;A) is called a measurable space. A subset A of is said to be measurable if A 2 A. Given a space, it is generally possible to de ne many ¾- elds on. To distinguish between them, the members of a given ¾- eld A on will be called A-measurable sets. Example 2.3 An important ¾- eld on the real line < is that generated by the class of all bounded semi-closed intervals of the form (a;b], 1 < a < b < 1. This ¾- eld is called the Borel eld on < and denoted by B. Its elements are called the Borel sets. Since B is a ¾- eld, repeated nite and countable set theoretic operations on its elements will never lead outside B. The measurable space (<;B) is called the Borel line. Notice that B would equivalently be generated by all the open half-lines of <, all the open intervals of <, or all the closed intervals of <. 2 A set function is a function de ned on a class of sets. De nition 2.4 A measure ¹ on a measurable space ( ;A) is a nonnegative set function¹de ned for all sets ofa and satisfying: M.1: ¹(;) = 0; M.2: (Countable additivity) if fa i g is any countable sequence of disjoint A- measurable sets, then ¹( A i ) = nx ¹(A i ): 2

9 ELEMENTS OF PROBABILITY THEORY 15 Clearly, countable additivity implies nite additivity, that is, if A 1 ;:::;A n is a nite collection of disjoint measurable sets, then n[ ¹( A i ) = nx ¹(A i ): Example 2.4 Let f be a nonnegative function of the points of a set. Let the ¾- eld A consist of all countable subsets of. A measure ¹ on ( ;A) is then de ned as nx ¹(;) = 0; ¹(f! 1 ;:::;! n g) = f(! i ): If f = 1, then ¹ is called counting measure. 2 It is easy to verify that if ¹ is a measure on ( ;A), then it is monotone, that is, ¹(A) ¹(B) whenever A;B 2 A and A ½ B. De nition 2.5 A measure ¹ on ( ;A) is called nite if ¹( ) < 1. It is called ¾- nite if there exists a sequence fa i g of sets in A such that S 1 A i = and ¹(A i ) < 1, n = 1; 2;:::. 2 Example 2.5 An important ¾- nite measure is the one de ned on the Borel line (<;B) by ¹((a;b]) = b a, the length of the interval (a;b]. Such a measure is called Lebesgue measure. It is easy to verify that every countable set is a Borel set of measure zero. 2 De nition 2.6 If ¹ is a measure on ( ;A), the triple ( ;A;¹) is called a measure space. 2 A measure space ( ;A;¹) is called complete if it contains all subsets of sets of measure zero, that is, if A 2 A, B ½ A, and ¹(A) = 0, then B 2 A. It can be shown that each measure space can be completed by the addition of subsets of sets of measure zero. If ¹ is a ¾- nite measure de ned on ( ;A) and F(A) is the ¾- eld generated by A, then it can be shown that there exists a unique measure ¹ on ( ;F(A)) such that ¹ (A) = ¹(A) for all A 2 A. Further, ¹ is also ¾- nite. Such a measure is called the extension of ¹. De nition 2.7 A measure space ( ;A;P) is a probability space if P is a ¾- nite measure with P( ) = PROBABILITY SPACES From De nition 2.7, a probability space is a triple ( ;A;P), where is the sample space associated with an experiment, A is a ¾- eld on, and the probability measure P is a real valued function de ned for all sets in A and satisfying:

10 16 P.1: P(A) 0 for all A 2 A; P.2: P( ) = 1; P.3: (Countable additivity): If fa i g is a countable sequence of disjoint subsets in A, then nx P( A i ) = P(A i ): If ( ;A;P) is a probability space, then the sets in A are interpreted as possible events associated with an experiment. For any A 2 A, the real number P(A) is called the probability of the event A. A support of P is any set A 2 A for which P(A) = 1. If is a nite sample space and A is the set of all the events in (the collection of all subsets of ), then properties P.1{P.3 are equivalent to A.1{A.3 that de ne a nite probability space. As a consequence of properties P.1{P.3, relationships (2.3){(2.9) hold for any A; B 2 A. Further, their generalizations hold for any nite collection of events in A. Notice that the Covering theorem (2.7) can be shown to hold for any countable collection of events in A. Further, if fa i g is a countable collection of events in A such that A 1 µ A 2 µ, then P( A i ) = lim n!1 P(A i): 2.8 CONDITIONAL PROBABILITY Let ( ;A;P) be a probability space and let B 2 A be an event such that P(B) > 0. If we know that B occurred, then the relevant sample space becomes B rather than. This justi es de ning the conditional probability of A given B as P(AjB) = P(AB) (2.13) P(B) if P(B) > 0, and P(A jb) = 0 if P(B) = 0. It is easy to verify that the function P( jb) de ned on A is a probability measure on ( ;A), that is, it satis es P.1{P.3. We call P( jb) the conditional probability measure given B. Notice that (2.13) can equivalently be written as P(AB) = P(AjB)P(B): This result, called the Multiplication law, provides a convenient way of nding P(AB) whenever P(AjB) and P(B) are easy to nd. The Multiplication law can be generalized to a nite collection of events A 1 ;:::;A n in A P(A 1 A n ) = P(A n ja n 1 A 1 )P(A n 1 A 1 ) = P(A n ja n 1 A 1 )P(A n 1 ja n 2 A 1 )P(A n 2 A 1 );

11 ELEMENTS OF PROBABILITY THEORY 17 and so on. Thus P(A 1 A n ) = P(A 1 )P(A 2 ja 1 )P(A 3 ja 2 A 1 ) P(A n ja n 1 A 1 ): Now consider a countable collection fb i g of disjoint events in A such that P(B i ) > 0 for every i and S 1 B i =. Clearly, For any A 2 A, where we used the fact that 1X P( B i ) = P(B i ) = 1: P(A) = P(A \ ( B i )) + P(A \ ( B i ) c ) = P(A \ ( B i )); P(( B i ) c ) = 1 P( B i ) = 0: Thus, by the Morgan's laws, 1X P(A) = P( AB i ) = P(AB i ); since AB i \ AB j = ; for all i 6= j. Therefore P(A) = 1X P(AjB i )P(B i ); which is called the Law of total probabilities. Now let A 2 A be such that P(A) > 0, and consider computing the conditional probability P(B j ja) given knowledge of fp(ajb i )g and fp(b i )g. By the de nition of conditional probability and the Multiplication law, P(B j ja) = P(B ja) P(A) = P(AjB j)p(b j ) P(A) for any xed j = 1; 2;:::. Therefore, by the Law of total probabilities, P(B j ja) = P(A jb j) P(B j ) P 1 P(AjB i)p(b i ) ; which is called Bayes rule.

12 INDEPENDENCE Let A;B 2 A be two events with non-zero probability. If knowing that B occurred gives no information about whether or not A occurred, then the probability assigned to A should not be modi ed by the knowledge that B occurred. Hence P(AjB) = P(A); and so P(AB) = P(A)P(B): (2.14) Two events A;B 2 A are said to be (pairwise) independent if (2.14) holds. Notice that this de nition of independence is symmetric in A and B, and also covers the case when P(A) = 0 or P(B) = 0. It is easy to show that if A and B are independent, then A and B c as well as A c and B c are independent. Three events A;B;C 2 A are said to be (mutually) independent if they are pairwise independent and P(ABC) = P(A)P(B) P(C): This condition is necessary, for pairwise independence does not ensure that, for example, P((AB)C) = P(AB)P(C). It is easy to verify that if A;B and C are independent events, then A[B and C are independent, and A \ B and C are independent. More generally, a family A of events are (mutually) independent if, for every nite collection A 1 ;:::;A n of events in A, REFERENCES n\ P( A i ) = ny P(A i ): (2.15) Billingsley P. (1979) Probability and Measure, Wiley, New York. Feller, W. (1968) An Introduction to Probability Theory and Its Applications (3rd ed.), Vol. 1, Wiley, New York. Halmos, P.R. (1974)Measure Theory, Springer, New York. Kolmogorov, A.N. and Fomin S.V. (1970) Introductory Real Analysis, Dover, New York. Loµeve, M. (1977)Probability Theory (4th ed.), Vol. 1, Springer, New York. Royden H.L. (1968)Real Analysis (2nd ed.), MacMillan, New York.

Introduction to Probability

Introduction to Probability 3 Introduction to Probability Given a fair coin, what can we expect to be the frequency of tails in a sequence of 10 coin tosses? Tossing a coin is an example of a chance experiment, namely a process which

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Basic Probability Concepts

Basic Probability Concepts page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

More information

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

More information

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

LECTURE NOTES IN MEASURE THEORY. Christer Borell Matematik Chalmers och Göteborgs universitet 412 96 Göteborg (Version: January 12)

LECTURE NOTES IN MEASURE THEORY. Christer Borell Matematik Chalmers och Göteborgs universitet 412 96 Göteborg (Version: January 12) 1 LECTURE NOTES IN MEASURE THEORY Christer Borell Matematik Chalmers och Göteborgs universitet 412 96 Göteborg (Version: January 12) 2 PREFACE These are lecture notes on integration theory for a eight-week

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Chih-Wei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can

More information

So let us begin our quest to find the holy grail of real analysis.

So let us begin our quest to find the holy grail of real analysis. 1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

More information

Chapter 4. Probability and Probability Distributions

Chapter 4. Probability and Probability Distributions Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

5. Probability Calculus

5. Probability Calculus 5. Probability Calculus So far we have concentrated on descriptive statistics (deskriptiivinen eli kuvaileva tilastotiede), that is methods for organizing and summarizing data. As was already indicated

More information

Statistics in Geophysics: Introduction and Probability Theory

Statistics in Geophysics: Introduction and Probability Theory Statistics in Geophysics: Introduction and Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/32 What is Statistics? Introduction Statistics is the

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Extension of measure

Extension of measure 1 Extension of measure Sayan Mukherjee Dynkin s π λ theorem We will soon need to define probability measures on infinite and possible uncountable sets, like the power set of the naturals. This is hard.

More information

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

Chapter ML:IV. IV. Statistical Learning. Probability Basics Bayes Classification Maximum a-posteriori Hypotheses

Chapter ML:IV. IV. Statistical Learning. Probability Basics Bayes Classification Maximum a-posteriori Hypotheses Chapter ML:IV IV. Statistical Learning Probability Basics Bayes Classification Maximum a-posteriori Hypotheses ML:IV-1 Statistical Learning STEIN 2005-2015 Area Overview Mathematics Statistics...... Stochastics

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Sample Induction Proofs

Sample Induction Proofs Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Definition and Calculus of Probability

Definition and Calculus of Probability In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

More information

A Little Set Theory (Never Hurt Anybody)

A Little Set Theory (Never Hurt Anybody) A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra

More information

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Collinear Points in Permutations

Collinear Points in Permutations Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

People have thought about, and defined, probability in different ways. important to note the consequences of the definition:

People have thought about, and defined, probability in different ways. important to note the consequences of the definition: PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

Gambling Systems and Multiplication-Invariant Measures

Gambling Systems and Multiplication-Invariant Measures Gambling Systems and Multiplication-Invariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Metric Spaces Joseph Muscat 2003 (Last revised May 2009) 1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

More information

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

More information

Basics of Counting. The product rule. Product rule example. 22C:19, Chapter 6 Hantao Zhang. Sample question. Total is 18 * 325 = 5850

Basics of Counting. The product rule. Product rule example. 22C:19, Chapter 6 Hantao Zhang. Sample question. Total is 18 * 325 = 5850 Basics of Counting 22C:19, Chapter 6 Hantao Zhang 1 The product rule Also called the multiplication rule If there are n 1 ways to do task 1, and n 2 ways to do task 2 Then there are n 1 n 2 ways to do

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Lecture 17 : Equivalence and Order Relations DRAFT

Lecture 17 : Equivalence and Order Relations DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Chapter 13 & 14 - Probability PART

Chapter 13 & 14 - Probability PART Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph

More information

A Tutorial on Probability Theory

A Tutorial on Probability Theory Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

Sums of Independent Random Variables

Sums of Independent Random Variables Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables

More information

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4. Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

More information

ECE302 Spring 2006 HW1 Solutions January 16, 2006 1

ECE302 Spring 2006 HW1 Solutions January 16, 2006 1 ECE302 Spring 2006 HW1 Solutions January 16, 2006 1 Solutions to HW1 Note: These solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

More information

TOPPER Sample Paper - I. Class : XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100

TOPPER Sample Paper - I. Class : XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100 TOPPER Sample Paper - I Class : XI MATHEMATICS Questions Time Allowed : 3 Hrs Maximum Marks: 100 1. All questions are compulsory.. The question paper consist of 9 questions divided into three sections

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Exact Nonparametric Tests for Comparing Means - A Personal Summary

Exact Nonparametric Tests for Comparing Means - A Personal Summary Exact Nonparametric Tests for Comparing Means - A Personal Summary Karl H. Schlag European University Institute 1 December 14, 2006 1 Economics Department, European University Institute. Via della Piazzuola

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

How To Solve A Minimum Set Covering Problem (Mcp)

How To Solve A Minimum Set Covering Problem (Mcp) Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices - Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Set theory as a foundation for mathematics

Set theory as a foundation for mathematics V I I I : Set theory as a foundation for mathematics This material is basically supplementary, and it was not covered in the course. In the first section we discuss the basic axioms of set theory and the

More information

Notes on Probability. Peter J. Cameron

Notes on Probability. Peter J. Cameron Notes on Probability Peter J. Cameron ii Preface Here are the course lecture notes for the course MAS108, Probability I, at Queen Mary, University of London, taken by most Mathematics students and some

More information

An example of a computable

An example of a computable An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Section 6-5 Sample Spaces and Probability

Section 6-5 Sample Spaces and Probability 492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 12 May 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014. Prerequisites

More information

Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions

Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

The Ideal Class Group

The Ideal Class Group Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.

Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S. Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

More information

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint. Lecture 2b: Utility c 2008 Je rey A. Miron Outline: 1. Introduction 2. Utility: A De nition 3. Monotonic Transformations 4. Cardinal Utility 5. Constructing a Utility Function 6. Examples of Utility Functions

More information

A Simpli ed Axiomatic Approach to Ambiguity Aversion

A Simpli ed Axiomatic Approach to Ambiguity Aversion A Simpli ed Axiomatic Approach to Ambiguity Aversion William S. Neilson Department of Economics University of Tennessee Knoxville, TN 37996-0550 wneilson@utk.edu March 2009 Abstract This paper takes the

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010 CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected

More information

How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra

How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra 54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

More information