# LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

Save this PDF as:

Size: px
Start display at page:

Download "LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL"

## Transcription

1 Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables and also solved some statement problems by translating them in the form of equations. Now a natural question arises: Is it always possible to translate a statement problem in the form of an equation? For example, the height of all the students in your class is less than 160 cm. Your classroom can occupy atmost 60 tables or chairs or both. Here we get certain statements involving a sign < (less than), > (greater than), (less than or equal) and (greater than or equal) which are known as inequalities. In this Chapter, we will study linear inequalities in one and two variables. The study of inequalities is very useful in solving problems in the field of science, mathematics, statistics, optimisation problems, economics, psychology, etc. 6.2 Inequalities Let us consider the following situations: (i) Ravi goes to market with Rs 200 to buy rice, which is available in packets of 1kg. The price of one packet of rice is Rs 30. If x denotes the number of packets of rice, which he buys, then the total amount spent by him is Rs 30x. Since, he has to buy rice in packets only, he may not be able to spend the entire amount of Rs 200. (Why?) Hence 30x < (1) Clearly the statement (i) is not an equation as it does not involve the sign of equality. (ii) Reshma has Rs 120 and wants to buy some registers and pens. The cost of one register is Rs 40 and that of a pen is Rs 20. In this case, if x denotes the number of registers and y, the number of pens which Reshma buys, then the total amount spent by her is Rs (40x + 20y) and we have 40x + 20y (2)

2 LINEAR INEQUALITIES 117 Since in this case the total amount spent may be upto Rs 120. Note that the statement (2) consists of two statements 40x + 20y < (3) and 40x + 20y = (4) Statement (3) is not an equation, i.e., it is an inequality while statement (4) is an equation. Definition 1 Two real numbers or two algebraic expressions related by the symbol <, >, or form an inequality. Statements such as (1), (2) and (3) above are inequalities. 3 < 5; 7 > 5 are the examples of numerical inequalities while x < 5; y > 2; x 3, y 4 are the examples of literal inequalities. 3 < 5 < 7 (read as 5 is greater than 3 and less than 7), 3 < x < 5 (read as x is greater than or equal to 3 and less than 5) and 2 < y < 4 are the examples of double inequalities. Some more examples of inequalities are: ax + b < 0... (5) ax + b > 0... (6) ax + b 0... (7) ax + b 0... (8) ax + by < c... (9) ax + by > c... (10) ax + by c... (11) ax + by c... (12) ax 2 + bx + c 0... (13) ax 2 + bx + c > 0... (14) Inequalities (5), (6), (9), (10) and (14) are strict inequalities while inequalities (7), (8), (11), (12), and (13) are slack inequalities. Inequalities from (5) to (8) are linear inequalities in one variable x when a 0, while inequalities from (9) to (12) are linear inequalities in two variables x and y when a 0, b 0. Inequalities (13) and (14) are not linear (in fact, these are quadratic inequalities in one variable x when a 0). In this Chapter, we shall confine ourselves to the study of linear inequalities in one and two variables only.

3 118 MATHEMATICS 6.3 Algebraic Solutions of Linear Inequalities in One Variable and their Graphical Representation Let us consider the inequality (1) of Section 6.2, viz, 30x < 200 Note that here x denotes the number of packets of rice. Obviously, x cannot be a negative integer or a fraction. Left hand side (L.H.S.) of this inequality is 30x and right hand side (RHS) is 200. Therefore, we have For x = 0, L.H.S. = 30 (0) = 0 < 200 (R.H.S.), which is true. For x = 1, L.H.S. = 30 (1) = 30 < 200 (R.H.S.), which is true. For x = 2, L.H.S. = 30 (2) = 60 < 200, which is true. For x = 3, L.H.S. = 30 (3) = 90 < 200, which is true. For x = 4, L.H.S. = 30 (4) = 120 < 200, which is true. For x = 5, L.H.S. = 30 (5) = 150 < 200, which is true. For x = 6, L.H.S. = 30 (6) = 180 < 200, which is true. For x = 7, L.H.S. = 30 (7) = 210 < 200, which is false. In the above situation, we find that the values of x, which makes the above inequality a true statement, are 0,1,2,3,4,5,6. These values of x, which make above inequality a true statement, are called solutions of inequality and the set {0,1,2,3,4,5,6} is called its solution set. Thus, any solution of an inequality in one variable is a value of the variable which makes it a true statement. We have found the solutions of the above inequality by trial and error method which is not very efficient. Obviously, this method is time consuming and sometimes not feasible. We must have some better or systematic techniques for solving inequalities. Before that we should go through some more properties of numerical inequalities and follow them as rules while solving the inequalities. You will recall that while solving linear equations, we followed the following rules: Rule 1 Equal numbers may be added to (or subtracted from) both sides of an equation. Rule 2 Both sides of an equation may be multiplied (or divided) by the same non-zero number. In the case of solving inequalities, we again follow the same rules except with a difference that in Rule 2, the sign of inequality is reversed (i.e., < becomes >, becomes and so on) whenever we multiply (or divide) both sides of an inequality by a negative number. It is evident from the facts that 3 > 2 while 3 < 2, 8 < 7 while ( 8) ( 2) > ( 7) ( 2), i.e., 16 > 14.

4 Thus, we state the following rules for solving an inequality: LINEAR INEQUALITIES 119 Rule 1 Equal numbers may be added to (or subtracted from) both sides of an inequality without affecting the sign of inequality. Rule 2 Both sides of an inequality can be multiplied (or divided) by the same positive number. But when both sides are multiplied or divided by a negative number, then the sign of inequality is reversed. Now, let us consider some examples. Example 1 Solve 30 x < 200 when (i) x is a natural number, (ii) x is an integer. Solution We are given 30 x < x 200 or < (Rule 2), i.e., x < 20 / (i) When x is a natural number, in this case the following values of x make the statement true. 1, 2, 3, 4, 5, 6. The solution set of the inequality is {1,2,3,4,5,6}. (ii) When x is an integer, the solutions of the given inequality are..., 3, 2, 1, 0, 1, 2, 3, 4, 5, 6 The solution set of the inequality is {..., 3, 2, 1, 0, 1, 2, 3, 4, 5, 6} Example 2 Solve 5x 3 < 3x +1 when (i) x is an integer, (ii) x is a real number. Solution We have, 5x 3 < 3x + 1 or 5x < 3x (Rule 1) or 5x < 3x +4 or 5x 3x < 3x + 4 3x (Rule 1) or 2x < 4 or x < 2 (Rule 2) (i) When x is an integer, the solutions of the given inequality are..., 4, 3, 2, 1, 0, 1 (ii) When x is a real number, the solutions of the inequality are given by x < 2, i.e., all real numbers x which are less than 2. Therefore, the solution set of the inequality is x (, 2). We have considered solutions of inequalities in the set of natural numbers, set of integers and in the set of real numbers. Henceforth, unless stated otherwise, we shall solve the inequalities in this Chapter in the set of real numbers.

5 120 MATHEMATICS Example 3 Solve 4x + 3 < 6x +7. Solution We have, 4x + 3 < 6x + 7 or 4x 6x < 6x + 4 6x or 2x < 4 or x > 2 i.e., all the real numbers which are greater than 2, are the solutions of the given inequality. Hence, the solution set is ( 2, ). Example 4 Solve 5 2 x x Solution We have 5 2x x or 2 (5 2x) x 30. or 10 4x x 30 or 5x 40, i.e., x 8 Thus, all real numbers x which are greater than or equal to 8 are the solutions of the given inequality, i.e., x [8, ). Example 5 Solve 7x + 3 < 5x + 9. Show the graph of the solutions on number line. Solution We have 7x + 3 < 5x + 9 or 2x < 6 or x < 3 The graphical representation of the solutions are given in Fig 6.1. Fig 6.1 Example 6 Solve 3 x 4 x Show the graph of the solutions on number line. 2 4 Solution We have 3x 4 x x 4 x 3 or 2 4 or 2 (3x 4) (x 3)

6 or 6x 8 x 3 or 5x 5 or x 1 The graphical representation of solutions is given in Fig 6.2. LINEAR INEQUALITIES 121 Fig 6.2 Example 7 The marks obtained by a student of Class XI in first and second terminal examination are 62 and 48, respectively. Find the number of minimum marks he should get in the annual examination to have an average of at least 60 marks. Solution Let x be the marks obtained by student in the annual examination. Then x 60 3 or x 180 or x 70 Thus, the student must obtain a minimum of 70 marks to get an average of at least 60 marks. Example 8 Find all pairs of consecutive odd natural numbers, both of which are larger than 10, such that their sum is less than 40. Solution Let x be the smaller of the two consecutive odd natural number, so that the other one is x +2. Then, we should have x > (1) and x + ( x + 2) < (2) Solving (2), we get 2x + 2 < 40 i.e., x < (3) From (1) and (3), we get 10 < x < 19 Since x is an odd number, x can take the values 11, 13, 15, and 17. So, the required possible pairs will be (11, 13), (13, 15), (15, 17), (17, 19)

7 122 MATHEMATICS EXERCISE Solve 24x < 100, when (i) x is a natural number. (ii) x is an integer. 2. Solve 12x > 30, when (i) x is a natural number. (ii) x is an integer. 3. Solve 5x 3 < 7, when (i) x is an integer. (ii) x is a real number. 4. Solve 3x + 8 >2, when (i) x is an integer. (ii) x is a real number. Solve the inequalities in Exercises 5 to 16 for real x. 5. 4x + 3 < 6x x 7 > 5x (x 1) 2 (x 3) 8. 3 (2 x) 2 (1 x) x x x x 9. x + + < > ( x 2) 5(2 x) 1 3x ( x 6) (2x + 3) 10 < 6 (x 2) (3x + 5) > 9x 8 (x 3) x (5x 2) (7x 3) (2 15. < 16. x 1) (3 x 2) (2 ) x Solve the inequalities in Exercises 17 to 20 and show the graph of the solution in each case on number line 17. 3x 2 < 2x x 3 > 3x 5 x (5x 2) (7x 3) (1 x) < 2 (x + 4) 20. < Ravi obtained 70 and 75 marks in first two unit test. Find the number if minimum marks he should get in the third test to have an average of at least 60 marks. 22. To receive Grade A in a course, one must obtain an average of 90 marks or more in five examinations (each of 100 marks). If Sunita s marks in first four examinations are 87, 92, 94 and 95, find minimum marks that Sunita must obtain in fifth examination to get grade A in the course. 23. Find all pairs of consecutive odd positive integers both of which are smaller than 10 such that their sum is more than Find all pairs of consecutive even positive integers, both of which are larger than 5 such that their sum is less than 23.

8 LINEAR INEQUALITIES The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter than the longest side. If the perimeter of the triangle is at least 61 cm, find the minimum length of the shortest side. 26. A man wants to cut three lengths from a single piece of board of length 91cm. The second length is to be 3cm longer than the shortest and the third length is to be twice as long as the shortest. What are the possible lengths of the shortest board if the third piece is to be at least 5cm longer than the second? [Hint: If x is the length of the shortest board, then x, (x + 3) and 2x are the lengths of the second and third piece, respectively. Thus, x + (x + 3) + 2x 91 and 2x (x + 3) + 5]. 6.4 Graphical Solution of Linear Inequalities in Two Variables In earlier section, we have seen that a graph of an inequality in one variable is a visual representation and is a convenient way to represent the solutions of the inequality. Now, we will discuss graph of a linear inequality in two variables. We know that a line divides the Cartesian plane into two parts. Each part is known as a half plane. A vertical line will divide the plane in left and right half planes and a non-vertical line will divide the plane into lower and upper half planes (Figs. 6.3 and 6.4). Fig 6.3 Fig 6.4 A point in the Cartesian plane will either lie on a line or will lie in either of the half planes I or II. We shall now examine the relationship, if any, of the points in the plane and the inequalities ax + by < c or ax + by > c. Let us consider the line ax + by = c, a 0,b 0... (1)

9 124 MATHEMATICS There are three possibilities namely: (i) ax + by = c (ii) ax + by > c (iii) ax + by < c. In case (i), clearly, all points (x, y) satisfying (i) lie on the line it represents and conversely. Consider case (ii), let us first assume that b > 0. Consider a point P (α,β) on the line ax + by = c, b > 0, so that aα + bβ = c.take an arbitrary point Q (α, γ) in the half plane II (Fig 6.5). Now, from Fig 6.5, we interpret, γ > β (Why?) or b γ > bβ or aα + b γ > aα + bβ (Why?) or aα + b γ > c i.e., Q(α, γ ) satisfies the inequality ax + by > c. Fig 6.5 Thus, all the points lying in the half plane II above the line ax + by = c satisfies the inequality ax + by > c. Conversely, let (α, β) be a point on line ax + by = c and an arbitrary point Q(α, γ) satisfying ax + by > c so that aα + bγ > c aα + b γ > aα + bβ (Why?) γ > β (as b > 0) This means that the point (α, γ ) lies in the half plane II. Thus, any point in the half plane II satisfies ax + by > c, and conversely any point satisfying the inequality ax + by > c lies in half plane II. In case b < 0, we can similarly prove that any point satisfying ax + by > c lies in the half plane I, and conversely. Hence, we deduce that all points satisfying ax + by > c lies in one of the half planes II or I according as b > 0 or b < 0, and conversely. Thus, graph of the inequality ax + by > c will be one of the half plane (called solution region) and represented by shading in the corresponding half plane. Note 1 The region containing all the solutions of an inequality is called the solution region. 2. In order to identify the half plane represented by an inequality, it is just sufficient to take any point (a, b) (not online) and check whether it satisfies the inequality or not. If it satisfies, then the inequality represents the half plane and shade the region

10 LINEAR INEQUALITIES 125 which contains the point, otherwise, the inequality represents that half plane which does not contain the point within it. For convenience, the point (0, 0) is preferred. 3. If an inequality is of the type ax + by c or ax + by c, then the points on the line ax + by = c are also included in the solution region. So draw a dark line in the solution region. 4. If an inequality is of the form ax + by > c or ax + by < c, then the points on the line ax + by = c are not to be included in the solution region. So draw a broken or dotted line in the solution region. In Section 6.2, we obtained the following linear inequalities in two variables x and y: 40x + 20y (1) while translating the word problem of purchasing of registers and pens by Reshma. Let us now solve this inequality keeping in mind that x and y can be only whole numbers, since the number of articles cannot be a fraction or a negative number. In this case, we find the pairs of values of x and y, which make the statement (1) true. In fact, the set of such pairs will be the solution set of the inequality (1). To start with, let x = 0. Then L.H.S. of (1) is 40x + 20y = 40 (0) + 20y = 20y. Thus, we have 20y 120 or y 6... (2) For x = 0, the corresponding values of y can be 0, 1, 2, 3, 4, 5, 6 only. In this case, the solutions of (1) are (0, 0), (0, 1), (0,2), (0,3), (0,4), (0, 5) and (0, 6). Similarly, other solutions of (1), when x = 1, 2 and 3 are: (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (3, 0) This is shown in Fig 6.6. Let us now extend the domain of x and y from whole numbers to real numbers, and see what will be the solutions of (1) in this case. You will see that the graphical method of solution will be very convenient in this case. For this purpose, let us consider the (corresponding) equation and draw its graph. 40x + 20y = (3) In order to draw the graph of the inequality (1), we take one point say (0, 0), in half plane I and check whether values of x and y satisfy the inequality or not. Fig 6.6

11 126 MATHEMATICS We observe that x = 0, y = 0 satisfy the inequality. Thus, we say that the half plane I is the graph (Fig 6.7) of the inequality. Since the points on the line also satisfy the inequality (1) above, the line is also a part of the graph. Thus, the graph of the given inequality is half plane I including the line itself. Clearly half plane II is not the part of the graph. Hence, solutions of inequality (1) will consist of all the points of its graph (half plane I including the line). We shall now consider some examples to explain the above procedure for solving a linear inequality involving two variables. Example 9 Solve 3x + 2y > 6 graphically. Solution Graph of 3x + 2y = 6 is given as dotted line in the Fig 6.8. This line divides the xy-plane in two half planes I and II. We select a point (not on the line), say (0, 0), which lies in one of the half planes (Fig 6.8) and determine if this point satisfies the given inequality, we note that 3 (0) + 2 (0) > 6 or 0 > 6, which is false. Hence, half plane I is not the solution region of the given inequality. Clearly, any point on the line does not satisfy the given strict inequality. In other words, the shaded half plane II Fig 6.8 excluding the points on the line is the solution region of the inequality. Example 10 Solve 3x 6 0 graphically in two dimensional plane. Solution Graph of 3x 6 = 0 is given in the Fig 6.9. We select a point, say (0, 0) and substituting it in given inequality, we see that: 3 (0) 6 0 or 6 0 which is false. Thus, the solution region is the shaded region on the right hand side of the line x = 2. Fig 6.9 Fig 6.7

12 LINEAR INEQUALITIES 127 Example 11 Solve y < 2 graphically. Solution Graph of y = 2 is given in the Fig Let us select a point, (0, 0) in lower half plane I and putting y = 0 in the given inequality, we see that 1 0 < 2 or 0 < 2 which is true. Thus, the solution region is the shaded region below the line y = 2. Hence, every point below the line (excluding all the points on the line) determines the solution of the given inequality. Fig 6.10 EXERCISE 6.2 Solve the following inequalities graphically in two-dimensional plane: 1. x + y < x + y x + 4y y + 8 2x 5. x y x 3y > x + 2y y 5x < y < x > Solution of System of Linear Inequalities in Two Variables In previous Section, you have learnt how to solve linear inequality in one or two variables graphically. We will now illustrate the method for solving a system of linear inequalities in two variables graphically through some examples. Example 12 Solve the following system of linear inequalities graphically. x + y 5... (1) x y 3... (2) Solution The graph of linear equation x + y = 5 is drawn in Fig We note that solution of inequality (1) is represented by the shaded region above the line x + y = 5, including the points on the line. On the same set of axes, we draw the graph of the equation x y = 3 as Fig 6.11 shown in Fig Then we note that inequality (2) represents the shaded region above

13 128 MATHEMATICS the line x y = 3, including the points on the line. Clearly, the double shaded region, common to the above two shaded regions is the required solution region of the given system of inequalities. Example 13 Solve the following system of inequalities graphically 5x + 4y (1) x 2... (2) y 3... (3) Solution We first draw the graph of the line 5x + 4y = 40, x = 2 and y = 3 Then we note that the inequality (1) represents shaded region below the line 5x + 4y = 40 and inequality (2) represents the shaded region right of line x = 2 but inequality (3) represents the shaded region above the line y = 3. Hence, shaded region (Fig 6.12) including all the point on the lines are also the solution of the given system of the linear inequalities. In many practical situations involving system of inequalities the variable x and y often represent quantities that cannot have negative values, for example, number of units produced, number of articles purchased, number of hours worked, etc. Clearly, in such cases, x 0, y 0 and the solution region lies only in the first quadrant. Example 14 Solve the following system of inequalities 8x + 3y (1) x 0... (2) y 0... (3) Solution We draw the graph of the line 8x + 3y = 100 The inequality 8x + 3y 100 represents the shaded region below the line, including the points on the line 8x +3y =100 (Fig 6.13). Fig 6.12 Fig 6.13

14 Since x 0, y 0, every point in the shaded region in the first quadrant, including the points on the line and the axes, represents the solution of the given system of inequalities. Example 15 Solve the following system of inequalities graphically x + 2y 8... (1) 2x + y 8... (2) x > 0... (3) y > 0... (4) LINEAR INEQUALITIES 129 Solution We draw the graphs of the lines x + 2y = 8 and 2x + y = 8. The inequality (1) and (2) represent Fig 6.14 the region below the two lines, including the point on the respective lines. Since x 0, y 0, every point in the shaded region in the first quadrant represent a solution of the given system of inequalities (Fig 6.14). EXERCISE 6.3 Solve the following system of inequalities graphically: 1. x 3, y x + 2y 12, x 1, y x + y 6, 3x + 4y < x + y > 4, 2x y > x y >1, x 2y < 1 6. x + y 6, x + y x + y 8, x + 2y x + y 9, y > x, x x + 4y 20, x 1, y x + 4y 60, x +3y 30, x 0, y x + y 4, x + y 3, 2x 3y x 2y 3, 3x + 4y 12, x 0, y x + 3y 60, y 2x, x 3, x, y x + 2y 150, x + 4y 80, x 15, y x + 2y 10, x + y 1, x y 0, x 0, y 0

15 130 MATHEMATICS Example 16 Solve 8 5x 3 < 7. Miscellaneous Examples Solution In this case, we have two inequalities, 8 5x 3 and 5x 3 < 7, which we will solve simultaneously. We have 8 5x 3 < 7 or 5 5x < 10 or 1 x < 2 Example 17 Solve x 8. 2 Solution We have x 8 2 or x 16 or 15 3x 11 or 5 x which can be written as 3 x 5 Example 18 Solve the system of inequalities: 3x 7 < 5 + x... (1) 11 5 x 1... (2) and represent the solutions on the number line. Solution From inequality (1), we have 3x 7 < 5 + x or x < 6... (3) Also, from inequality (2), we have 11 5 x 1 or 5 x 10 i.e., x 2... (4) If we draw the graph of inequalities (3) and (4) on the number line, we see that the values of x, which are common to both, are shown by bold line in Fig Fig 6.15 Thus, solution of the system are real numbers x lying between 2 and 6 including 2, i.e., 2 x < 6

16 LINEAR INEQUALITIES 131 Example 19 In an experiment, a solution of hydrochloric acid is to be kept between 30 and 35 Celsius. What is the range of temperature in degree Fahrenheit if conversion formula is given by C = 5 9 (F 32), where C and F represent temperature in degree Celsius and degree Fahrenheit, respectively. Solution It is given that 30 < C < 35. Putting C = 5 9 (F 32), we get 30 < 5 9 (F 32) < 35, or 9 5 (30) < (F 32) < 9 5 (35) or 54 < (F 32) < 63 or 86 < F < 95. Thus, the required range of temperature is between 86 F and 95 F. Example 20 A manufacturer has 600 litres of a 12% solution of acid. How many litres of a 30% acid solution must be added to it so that acid content in the resulting mixture will be more than 15% but less than 18%? Solution Let x litres of 30% acid solution is required to be added. Then Total mixture = (x + 600) litres Therefore 30% x + 12% of 600 > 15% of (x + 600) and 30% x + 12% of 600 < 18% of (x + 600) or 30x (600) > (x + 600) and 30x (600) < or 30x > 15x and 30x < 18x or 15x > 1800 and 12x < 3600 or x > 120 and x < 300, i.e. 120 < x < 300 (x + 600)

17 132 MATHEMATICS Thus, the number of litres of the 30% solution of acid will have to be more than 120 litres but less than 300 litres. Miscellaneous Exercise on Chapter 6 Solve the inequalities in Exercises 1 to x (2x 4) < x (x 2) 15< 0 5 3x ( 3x + 11) 5. 12< Solve the inequalities in Exercises 7 to 11 and represent the solution graphically on number line. 7. 5x + 1 > 24, 5x 1 < (x 1) < x + 5, 3 (x + 2) > 2 x 9. 3x 7 > 2 (x 6), 6 x > 11 2x (2x 7) 3 (2x + 3) 0, 2x x A solution is to be kept between 68 F and 77 F. What is the range in temperature in degree Celsius (C) if the Celsius / Fahrenheit (F) conversion formula is given by F = 9 5 C + 32? 12. A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 litres of the 8% solution, how many litres of the 2% solution will have to be added? 13. How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content? 14. IQ of a person is given by the formula IQ = MA CA 100, where MA is mental age and CA is chronological age. If 80 IQ 140 for a group of 12 years old children, find the range of their mental age.

18 LINEAR INEQUALITIES 133 Summary Two real numbers or two algebraic expressions related by the symbols <, >, or form an inequality. Equal numbers may be added to (or subtracted from ) both sides of an inequality. Both sides of an inequality can be multiplied (or divided ) by the same positive number. But when both sides are multiplied (or divided) by a negative number, then the inequality is reversed. The values of x, which make an inequality a true statement, are called solutions of the inequality. To represent x < a (or x > a) on a number line, put a circle on the number a and dark line to the left (or right) of the number a. To represent x a (or x a) on a number line, put a dark circle on the number a and dark the line to the left (or right) of the number x. If an inequality is having or symbol, then the points on the line are also included in the solutions of the inequality and the graph of the inequality lies left (below) or right (above) of the graph of the equality represented by dark line that satisfies an arbitrary point in that part. If an inequality is having < or > symbol, then the points on the line are not included in the solutions of the inequality and the graph of the inequality lies to the left (below) or right (above) of the graph of the corresponding equality represented by dotted line that satisfies an arbitrary point in that part. The solution region of a system of inequalities is the region which satisfies all the given inequalities in the system simultaneously.

### LINEAR INEQUALITIES. Chapter Overview

Chapter 6 LINEAR INEQUALITIES 6.1 Overview 6.1.1 A statement involving the symbols >, 3, x 4, x + y 9. (i) Inequalities which do not involve variables are called

### LINEAR EQUATIONS IN TWO VARIABLES

66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### LINEAR PROGRAMMING PROBLEM: A GEOMETRIC APPROACH

59 LINEAR PRGRAMMING PRBLEM: A GEMETRIC APPRACH 59.1 INTRDUCTIN Let us consider a simple problem in two variables x and y. Find x and y which satisfy the following equations x + y = 4 3x + 4y = 14 Solving

### 3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes

Solving Simultaneous Linear Equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

### Section 8-7 Systems of Linear Inequalities

658 8 SYSTEMS; MATRICES Section 8-7 Systems of Linear Inequalities FIGURE Half-planes. Graphing Linear Inequalities in Two Variables Solving Systems of Linear Inequalities Graphically Application Many

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

### Sect Solving and graphing inequalities

81 Sect 2.7 - Solving and graphing inequalities Concepts #1 & 2 Graphing Linear Inequalities Definition of a Linear Inequality in One Variable Let a and b be real numbers such that a 0. A Linear Inequality

### Lecture 7 : Inequalities 2.5

3 Lecture 7 : Inequalities.5 Sometimes a problem may require us to find all numbers which satisfy an inequality. An inequality is written like an equation, except the equals sign is replaced by one of

### 3.5. Solving Inequalities. Introduction. Prerequisites. Learning Outcomes

Solving Inequalities 3.5 Introduction An inequality is an expression involving one of the symbols,, > or

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

### 3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Outcomes

Solving simultaneous linear equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

### Domain Essential Question Common Core Standards Resources

Middle School Math 2016-2017 Domain Essential Question Common Core Standards First Ratios and Proportional Relationships How can you use mathematics to describe change and model real world solutions? How

CHAPTER Roots of quadratic equations Learning objectives After studying this chapter, you should: know the relationships between the sum and product of the roots of a quadratic equation and the coefficients

### P.E.R.T. Math Study Guide

A guide to help you prepare for the Math subtest of Florida s Postsecondary Education Readiness Test or P.E.R.T. P.E.R.T. Math Study Guide www.perttest.com PERT - A Math Study Guide 1. Linear Equations

### Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Grade 6 Mathematics Performance Level Descriptors

Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this

### MATH REVIEW KIT. Reproduced with permission of the Certified General Accountant Association of Canada.

MATH REVIEW KIT Reproduced with permission of the Certified General Accountant Association of Canada. Copyright 00 by the Certified General Accountant Association of Canada and the UBC Real Estate Division.

### LINEAR EQUATIONS 7YEARS. A guide for teachers - Years 7 8 June The Improving Mathematics Education in Schools (TIMES) Project

LINEAR EQUATIONS NUMBER AND ALGEBRA Module 26 A guide for teachers - Years 7 8 June 2011 7YEARS 8 Linear Equations (Number and Algebra : Module 26) For teachers of Primary and Secondary Mathematics 510

### Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

### ( ) # 0. SOLVING INEQUALITIES and Example 1. Example 2

SOLVING INEQUALITIES 9.1.1 and 9.1.2 To solve an inequality in one variable, first change it to an equation and solve. Place the solution, called a boundary point, on a number line. This point separates

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### Linear Equations and Inequalities

Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### Lesson 17: Graphing the Logarithm Function

Lesson 17 Name Date Lesson 17: Graphing the Logarithm Function Exit Ticket Graph the function () = log () without using a calculator, and identify its key features. Lesson 17: Graphing the Logarithm Function

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### Math 018 Review Sheet v.3

Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1 - Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.

### Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers

### MAT 0950 Course Objectives

MAT 0950 Course Objectives 5/15/20134/27/2009 A student should be able to R1. Do long division. R2. Divide by multiples of 10. R3. Use multiplication to check quotients. 1. Identify whole numbers. 2. Identify

### Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

### Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

### COMPLEX NUMBERS. -2+2i

COMPLEX NUMBERS Cartesian Form of Complex Numbers The fundamental complex number is i, a number whose square is 1; that is, i is defined as a number satisfying i 1. The complex number system is all numbers

### Teaching & Learning Plans. Quadratic Equations. Junior Certificate Syllabus

Teaching & Learning Plans Quadratic Equations Junior Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to achieve.

Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)

### Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below.

Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School

### 7 Relations and Functions

7 Relations and Functions In this section, we introduce the concept of relations and functions. Relations A relation R from a set A to a set B is a set of ordered pairs (a, b), where a is a member of A,

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### PROBLEM SOLVING, REASONING, FLUENCY. Year 6 Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Number and Place Value. Measurement Four operations

PROBLEM SOLVING, REASONING, FLUENCY Year 6 Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Number and Place Value Addition and subtraction Large numbers Fractions & decimals Mental and written Word problems,

### Year 6 Maths Objectives

Year 6 Maths Objectives Place Value COUNTING COMPARING NUMBERS IDENTIFYING, REPRESENTING & ESTIMATING NUMBERS READING & WRITING NUMBERS UNDERSTANDING PLACE VALUE ROUNDING PROBLEM SOLVING use negative numbers

### Chapter 3. Algebra. 3.1 Rational expressions BAa1: Reduce to lowest terms

Contents 3 Algebra 3 3.1 Rational expressions................................ 3 3.1.1 BAa1: Reduce to lowest terms...................... 3 3.1. BAa: Add, subtract, multiply, and divide............... 5

### SECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations.

(Section 0.11: Solving Equations) 0.11.1 SECTION 0.11: SOLVING EQUATIONS LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. PART A: DISCUSSION Much

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

### Euclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts:

Euclidean Geometry Students are often so challenged by the details of Euclidean geometry that they miss the rich structure of the subject. We give an overview of a piece of this structure below. We start

### Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

### Charlesworth School Year Group Maths Targets

Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### CCSS Mathematics Implementation Guide Grade 5 2012 2013. First Nine Weeks

First Nine Weeks s The value of a digit is based on its place value. What changes the value of a digit? 5.NBT.1 RECOGNIZE that in a multi-digit number, a digit in one place represents 10 times as much

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### Unified Lecture # 4 Vectors

Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

### 4.1 Solving a System of Linear Inequalities

4.1 Solving a System of Linear Inequalities Question 1: How do you graph a linear inequality? Question : How do you graph a system of linear inequalities? In Chapter, we were concerned with systems of

### Inequalities (Year 9)

Inequalities (Year 9) Contents What is an inequality? Displaying inequalities on a number line Solving inequalities 4 Showing Inequalities on a graph 4 What is an inequality? An inequality is a mathematical

### MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

### 1. By how much does 1 3 of 5 2 exceed 1 2 of 1 3? 2. What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3.

1 By how much does 1 3 of 5 exceed 1 of 1 3? What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3 A ticket fee was \$10, but then it was reduced The number of customers

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

### MACMILLAN/McGRAW-HILL. MATH CONNECTS and IMPACT MATHEMATICS WASHINGTON STATE MATHEMATICS STANDARDS. ESSENTIAL ACADEMIC LEARNING REQUIREMENTS (EALRs)

MACMILLAN/McGRAW-HILL MATH CONNECTS and IMPACT MATHEMATICS TO WASHINGTON STATE MATHEMATICS STANDARDS ESSENTIAL ACADEMIC LEARNING REQUIREMENTS (EALRs) And GRADE LEVEL EXPECTATIONS (GLEs) / Edition, Copyright

### Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

70 MATHEMATICS QUADRATIC EQUATIONS 4 4. Introduction In Chapter, you have studied different types of polynomials. One type was the quadratic polynomial of the form ax + bx + c, a 0. When we equate this

### COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS

COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS Compiled by Dewey Gottlieb, Hawaii Department of Education June 2010 Operations and Algebraic Thinking Represent and solve problems involving

### TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

### Year 1 Maths Expectations

Times Tables I can count in 2 s, 5 s and 10 s from zero. Year 1 Maths Expectations Addition I know my number facts to 20. I can add in tens and ones using a structured number line. Subtraction I know all

### Chapter 8. Quadratic Equations and Functions

Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property

### Park Forest Math Team. Meet #5. Algebra. Self-study Packet

Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number

### Archdiocese of Washington Catholic Schools Academic Standards Mathematics

5 th GRADE Archdiocese of Washington Catholic Schools Standard 1 - Number Sense Students compute with whole numbers*, decimals, and fractions and understand the relationship among decimals, fractions,

### Algorithm set of steps used to solve a mathematical computation. Area The number of square units that covers a shape or figure

Fifth Grade CCSS Math Vocabulary Word List *Terms with an asterisk are meant for teacher knowledge only students need to learn the concept but not necessarily the term. Addend Any number being added Algorithm

### STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

### High School Algebra 1 Common Core Standards & Learning Targets

High School Algebra 1 Common Core Standards & Learning Targets Unit 1: Relationships between Quantities and Reasoning with Equations CCS Standards: Quantities N-Q.1. Use units as a way to understand problems

### Number & Place Value. Addition & Subtraction. Digit Value: determine the value of each digit. determine the value of each digit

Number & Place Value Addition & Subtraction UKS2 The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value

### Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

### Mathematics Success Level H

T393 [OBJECTIVE] The student will solve two-step inequalities and graph the solutions on number lines. [MATERIALS] Student pages S132 S140 Transparencies T372 from Lesson 15, T405, T407, T409, T411, T413,

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### SUPPLEMENT TO CHAPTER

SUPPLEMENT TO CHAPTER 6 Linear Programming SUPPLEMENT OUTLINE Introduction and Linear Programming Model, 2 Graphical Solution Method, 5 Computer Solutions, 14 Sensitivity Analysis, 17 Key Terms, 22 Solved

### TRIGONOMETRY Compound & Double angle formulae

TRIGONOMETRY Compound & Double angle formulae In order to master this section you must first learn the formulae, even though they will be given to you on the matric formula sheet. We call these formulae

### Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

### 4. How many integers between 2004 and 4002 are perfect squares?

5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

10.9 Systems Of Inequalities Copyright Cengage Learning. All rights reserved. Objectives Graphing an Inequality Systems of Inequalities Systems of Linear Inequalities Application: Feasible Regions 2 Graphing

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### Curriculum overview for Year 1 Mathematics

Curriculum overview for Year 1 Counting forward and back from any number to 100 in ones, twos, fives and tens identifying one more and less using objects and pictures (inc number lines) using the language

### Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras

Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras Linear Programming solutions - Graphical and Algebraic Methods

### Sequences with MS

Sequences 2008-2014 with MS 1. [4 marks] Find the value of k if. 2a. [4 marks] The sum of the first 16 terms of an arithmetic sequence is 212 and the fifth term is 8. Find the first term and the common

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### REVISED GCSE Scheme of Work Mathematics Higher Unit T3. For First Teaching September 2010 For First Examination Summer 2011

REVISED GCSE Scheme of Work Mathematics Higher Unit T3 For First Teaching September 2010 For First Examination Summer 2011 Version 1: 28 April 10 Version 1: 28 April 10 Unit T3 Unit T3 This is a working

### Solving Quadratic Equations by Completing the Square

9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

### 2. THE x-y PLANE 7 C7

2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

### Chapter 6 Notes. Section 6.1 Solving One-Step Linear Inequalities

Chapter 6 Notes Name Section 6.1 Solving One-Step Linear Inequalities Graph of a linear Inequality- the set of all points on a number line that represent all solutions of the inequality > or < or circle

### Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5

Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.

### Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions

Natalia Lazzati Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions Note 5 is based on Madden (1986, Ch. 1, 2, 4 and 7) and Simon and Blume (1994, Ch. 13 and 21). Concave functions

### 4. Factor polynomials over complex numbers, describe geometrically, and apply to real-world situations. 5. Determine and apply relationships among syn

I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of

### Maths Area Approximate Learning objectives. Additive Reasoning 3 weeks Addition and subtraction. Number Sense 2 weeks Multiplication and division

Maths Area Approximate Learning objectives weeks Additive Reasoning 3 weeks Addition and subtraction add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar