# Lecture 17 : Equivalence and Order Relations DRAFT

Save this PDF as:

Size: px
Start display at page:

Download "Lecture 17 : Equivalence and Order Relations DRAFT"

## Transcription

1 CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion of a relation. A relation between sets A and B is a subset of their Cartesian product. We discussed a special case of relations, namely functions, where every element of A is related to at most one element of B. We also mentioned reflexive, symmetric, and transitive relations. Today we combine those three properties and discuss equivalence relations and order relations. After that, we mention graphs which are closely connected to relations Relations Continued Last time we saw special types of relations. In the list below, R is a relation on A. R is reflexive if ( a A) ara. R is antireflexive if ( a A) ara. R is symmetric if ( a, b A) arb bra. R is antisymmetric if ( a, b A) (arb bra) (a = b). R is transitive if ( a, b, c A) (arb brc) arc. We gave some examples of these properties. We summarize them below in Table Recall that a b means a and b are propositional formulas with the same truth tables, and a 3 b means a and b have the same remainder after division by 3. relation reflexive symmetric transitive yes anti yes < anti anti yes yes anti yes yes anti yes yes yes yes 3 yes yes yes Table 17.1: Properties of some relations Equivalence Relations Definition A relation R on set A is an equivalence relation if it is reflexive, symmetric, and transitive. 1

2 17.1. Relations Continued Example 17.1: From the relations in Table 17.1, only and 3 are equivalence relations. None of the other relations are symmetric, so they are not equivalence relations either. This may lead you to believe that every symmetric relation is an equivalence relation; however, this is not true. For example is symmetric, but it is not an equivalence relation because it is neither reflexive nor transitive. An equivalence relation on A divides the elements of A into clusters of mutually related elements, and where no two elements of different clusters are related. This gives an alternative characterization of equivalence relations, which we explore next. Definition A partition of A is a collection of subsets A 1, A 2,... of A such that i A i = A and A i A j = whenever i j. In Definition 17.2, we could also say that the sets A 1, A 2,... are pairwise disjoint. We call the individual sets A i clusters, partition classes, or equivalence classes. We will now show that a partition of A induces an equivalence relation on A, and an equivalence relation on A induces a partition of A. Let s start with an example. Example 17.2: Consider the set A = {1, 2, 3, 4, 5, 6, 7}. The subsets A 1 = {1, 4, 7}, A 2 = {2, 5} and A 3 = {3, 6} are a partition of A. Observe that a 3 b implies a and b are in the same partition class. This is what we have in mind when we say that the partition of A into A 1, A 2 and A 3 is induced by the equivalence relation 3 on A. Now we describe the correspondence between partitions of A and equivalence relations on A formally. Proposition Given a partition A 1, A 2,... of A, define R such that arb if and only if a and b belong to the same partition class A i. Then R is an equivalence relation. Proof. First note that a belongs to the same partition class as itself, so R is reflexive. If a belongs to the same partition class as b, then b belongs to the same partition class as a too, so R is symmetric. Finally, if a is in the same partition class as b and b is in the same partition class as c, then a is in the same partition class as c, so R is also transitive. It follows that R is an equivalence relation. Proposition Let R be an equivalence relation on a set A. For each a A, define the set [a] = {b A arb}. The collection P = {[a] a A} is a partition of A. In Proposition 17.4, we call [a] the equivalence class of a. By saying collection of sets [a] we mean that we drop duplicates. There is no reason to believe that the various equivalence classes [a] don t overlap in all sorts of arbitrary ways. Let s start with an example to give ourselves some confidence that the equivalence classes overlap in a very structured way. Example 17.3: Consider the congruence modulo 3 ( 3 ) relation on A = {1, 2, 3, 4, 5, 6, 7}. The equivalence classes are: [1] = {1, 4, 7} [2] = {2, 5} [3] = {3, 6} [4] = {1, 4, 7} = [1] [5] = {2, 5} = [2] [6] = {3, 6} = [3] [7] = {1, 4, 7} = [1] We make the following observations about Example

3 17.1. Relations Continued Observation Let R be an equivalence relation on A. Then the following are true. (i) ( a A) a [a] (ii) ( a, b A) arb ([a] = [b]) (iii) ( a, b A) arb ([a] [b] = ) Observation 17.5 is actually true in general. Before we prove it, let s see how it helps us in proving Proposition Proof of Proposition Part (i) of Observation 17.5 tells us that the union of all equivalence classes [a], a A [a], is all of A. Parts (ii) and (iii) of Observation 17.5 tell us that two equivalence classes don t overlap in an arbitrary way. Suppose a, b A. There are two cases to consider. Case 1: arb. In this case, [a] = [b] by part (ii) of Observation Since P is a set, [a] and [b] are actually the same element of P, and not two different elements of P that have a nonempty intersection. Thus, a and b don t make P violate the definition of a partition. Case 2: arb. In this case [a] [b] =, so a and b such that arb also cannot cause P to violate the definition of a partition. Proof of Observation Since R is reflexive, ara, so a [a]. This proves part (i). Let arb and pick x [a]. Then arx by definition of [a]. Since R is symmetric, we have bra. Now we have bra and arx, so brx because R is transitive. It follows that x [b], and [a] [b]. Now switch the roles of a and b in this argument to get [b] [a] and [a] = [b]. This proves part (ii). We conclude the proof by proving the contrapositive of part (iii). That is, if [a] [b], then arb. If [a] [b], there is some x A such that x [a] and x [b]. Hence, arx and brx. Since R is symmetric, xrb as well. Now we have arx and xrb, so arb. This completes the proof. We conclude our discussion of equivalence relations with a remark about equivalence classes for the equivalence relations from Example We have only discussed 3 on the domain A = {1, 2, 3, 4, 5, 6, 7}. It turns out that we can extend this relation to all of Z and get the following equivalence classes. [1] = {x Z The remainder of x after division by 3 is 1 [2] = {x Z The remainder of x after division by 3 is 2 [3] = {x Z The remainder of x after division by 3 is 0 The equivalence classes for logical equivalence ( ) are the sets of propositional formulas whose truth tables are the same Order Relations Definition A relation on a set A is an order relation if it is antisymmetric and transitive. An order relation is a strict order relation if it is antireflexive. An order relation is a total order relation (usually shorthanded as total order) if ( a, b A) x y (xry yrx). Example 17.4: We deduce from Table 17.1 that, <,, and are order relations. The relation < is also strict, whereas and are not strict. The relations < and are total orders. To show that is not a total order, pick X = {1, 2} and Y = {2, 3}, and observe that X Y and Y X. For the divisibility relation, notice that 3 7 and 7 3, which shows that is not a total order. While an order relation R need not be a total order, one can construct another order relation R that is a total order and that satisfies xry x Ry. If R is as such, we say R is an extension of 3

4 17.2. Graphs R. We do not prove this now, and only give an example. We will prove a more general result when we talk about directed graphs. Example 17.5: We can extend the divisibility relation on positive integers to which is a total order. Observe that if a b, then also a b, so is indeed an extension of. There are other extensions of to total orders, but the one we gave is quite natural k-ary Relations So far we have only talked about binary relations. There are also k-ary relations which generalize the notion of a binary relation. Just like a binary relation is a subset of the Cartesian product of 2 sets, a k-ary relation is a subset of the Cartesian product of k sets. In other words, a k-ary relation is a collection of k-tuples. These come up for example in relational databases. Note that if k = 2, we get the notion of a relation we ve been discussing today and last time. For k = 1, we get regular sets. Example 17.6: The set {(x, y, z) x 2 + y 2 + z 2 = 1} is a ternary (3-ary) relation on R 3. It is the set of points on a sphere of radius 1 centered at the origin. For the rest of this course, we will only consider binary relations Graphs We have seen graphs before in this course. Now we take some time to define what a graph is more formally. In particular, we will discuss directed graphs, also known as digraphs. The definition below uses the term multiset. A multiset is a collection very similar to a set, except duplicates of an element are allowed. Every set is also a multiset, but there are some multisets that are not sets. For example {1, 2, 3} is a set and also a multiset. On the other hand, {1, 1, 2} is a multiset, but not a set. Definition A digraph G is a pair G = (V, E), where V is a set of vertices and E is a multiset of elements of V V. Elements of E are called edges. We often use pictures to represent graphs. Each vertex is a labeled dot or a circle, and an edge is a line connecting two such dots, with an arrow indicating the direction of the edge. Example 17.7: Consider the directed graph in Figure We have V = {a, b, c, d} E = {e 1, e 2, e 3, e 4, e 5, e 6 } = {(a, b), (b, c), (c, d), (c, d), (d, b), (d, a)} Notice that since E is a multiset, it is fine that it contains two copies of the pair (c, d). We said graphs were a continuation of our study of binary relations. Indeed, if E is a set, E is a binary relation on V. When this is the case, we say G = (V, E) is a simple graph Paths Another important notion is a path in a graph. Informally speaking, a path is a sequence of edges that connect together. 4

5 17.2. Graphs e 2 c a e 1 b e 3 e 4 e 6 e 5 d Figure 17.1: An example of a digraph. Definition Let G = (V, E) be a graph, and u, v V. A path from u to v is a sequence of edges such that the start vertex of the first edge is u, the end vertex of the last edge is v, and the start vertex of the (i + 1)st edge is the same as the end vertex of the ith edge. The length of a path is the number of edges. Example 17.8: We list some paths in the graph from Figure 17.1 in Table 17.2 and point out a few things. The path P 1 is the empty sequence. Such a path has length zero and has the same start and end vertex. Following this path corresponds to starting at a and staying put. There can be multiple paths between two vertices. For example, P 2 and P 3 are both paths from a to c. A path can also repeat edges. For example, the edge e 2 appears twice on path P 3. Finally, observe that the path P 4 starts and ends at a. We call any path that starts and ends at the same vertex a cycle. Path Start vertex End vertex Sequence of edges Length P 1 a a Empty sequence 0 P 2 a c e 1, e 2 2 P 3 a c e 1, e 2, e 3, e 4, e 2 5 P 4 a a e 1, e 2, e 3, e 5, e 2, e 4, e 6 7 Table 17.2: Some paths in the graph from Figure The notion of a path allows us to look at another relation. Consider the relation R on V where ur v if there is a path in G from u to v. This is a transitive relation, and is called the transitive closure of the graph G. 5

### Lecture 16 : Relations and Functions DRAFT

CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

### 3. Equivalence Relations. Discussion

3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

### Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

### Relations Graphical View

Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Introduction Recall that a relation between elements of two sets is a subset of their Cartesian product (of ordered pairs). A binary

### Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

### Math 3000 Running Glossary

Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (

### Week 5: Binary Relations

1 Binary Relations Week 5: Binary Relations The concept of relation is common in daily life and seems intuitively clear. For instance, let X be the set of all living human females and Y the set of all

### POWER SETS AND RELATIONS

POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

### In mathematics there are endless ways that two entities can be related

CHAPTER 11 Relations In mathematics there are endless ways that two entities can be related to each other. Consider the following mathematical statements. 5 < 10 5 5 6 = 30 5 5 80 7 > 4 x y 8 3 a b ( mod

### Logic & Discrete Math in Software Engineering (CAS 701) Dr. Borzoo Bonakdarpour

Logic & Discrete Math in Software Engineering (CAS 701) Background Dr. Borzoo Bonakdarpour Department of Computing and Software McMaster University Dr. Borzoo Bonakdarpour Logic & Discrete Math in SE (CAS

### Solutions to In-Class Problems Week 4, Mon.

Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions

### Reading 13 : Finite State Automata and Regular Expressions

CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

### Partitioning edge-coloured complete graphs into monochromatic cycles and paths

arxiv:1205.5492v1 [math.co] 24 May 2012 Partitioning edge-coloured complete graphs into monochromatic cycles and paths Alexey Pokrovskiy Departement of Mathematics, London School of Economics and Political

### Sets, Relations and Functions

Sets, Relations and Functions Eric Pacuit Department of Philosophy University of Maryland, College Park pacuit.org epacuit@umd.edu ugust 26, 2014 These notes provide a very brief background in discrete

### Discrete Mathematics. Hans Cuypers. October 11, 2007

Hans Cuypers October 11, 2007 1 Contents 1. Relations 4 1.1. Binary relations................................ 4 1.2. Equivalence relations............................. 6 1.3. Relations and Directed Graphs.......................

### Sets and Cardinality Notes for C. F. Miller

Sets and Cardinality Notes for 620-111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use

### Discrete Mathematics, Chapter 5: Induction and Recursion

Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Well-founded

### INTRODUCTORY SET THEORY

M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

### vertex, 369 disjoint pairwise, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws

Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 466 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,

### Examination paper for MA0301 Elementær diskret matematikk

Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750

### 136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

### Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

### Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

### Divisor graphs have arbitrary order and size

Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G

### This chapter describes set theory, a mathematical theory that underlies all of modern mathematics.

Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.

### (a) (b) (c) Figure 1 : Graphs, multigraphs and digraphs. If the vertices of the leftmost figure are labelled {1, 2, 3, 4} in clockwise order from

4 Graph Theory Throughout these notes, a graph G is a pair (V, E) where V is a set and E is a set of unordered pairs of elements of V. The elements of V are called vertices and the elements of E are called

### Students in their first advanced mathematics classes are often surprised

CHAPTER 8 Proofs Involving Sets Students in their first advanced mathematics classes are often surprised by the extensive role that sets play and by the fact that most of the proofs they encounter are

### MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

### Relations and Functions

Section 5. Relations and Functions 5.1. Cartesian Product 5.1.1. Definition: Ordered Pair Let A and B be sets and let a A and b B. An ordered pair ( a, b) is a pair of elements with the property that:

### (Refer Slide Time: 1:41)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must

### A set is a Many that allows itself to be thought of as a One. (Georg Cantor)

Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains

### INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

### COLORED GRAPHS AND THEIR PROPERTIES

COLORED GRAPHS AND THEIR PROPERTIES BEN STEVENS 1. Introduction This paper is concerned with the upper bound on the chromatic number for graphs of maximum vertex degree under three different sets of coloring

### Sets and functions. {x R : x > 0}.

Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.

### Chapter 1. Logic and Proof

Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known

### princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of

### Classical Analysis I

Classical Analysis I 1 Sets, relations, functions A set is considered to be a collection of objects. The objects of a set A are called elements of A. If x is an element of a set A, we write x A, and if

### Theory of Computation

Theory of Computation For Computer Science & Information Technology By www.thegateacademy.com Syllabus Syllabus for Theory of Computation Regular Expressions and Finite Automata, Context-Free Grammar s

### Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

### CSE 20: Discrete Mathematics for Computer Science. Prof. Miles Jones. Today s Topics: Graphs. The Internet graph

Today s Topics: CSE 0: Discrete Mathematics for Computer Science Prof. Miles Jones. Graphs. Some theorems on graphs. Eulerian graphs Graphs! Model relations between pairs of objects The Internet graph!

### 1.3 Induction and Other Proof Techniques

4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.

### 6.3 Conditional Probability and Independence

222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

### Sets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object.

Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: real numbers, complex numbers, C integers, All students in

### Graph Theory. Introduction. Distance in Graphs. Trees. Isabela Drămnesc UVT. Computer Science Department, West University of Timişoara, Romania

Graph Theory Introduction. Distance in Graphs. Trees Isabela Drămnesc UVT Computer Science Department, West University of Timişoara, Romania November 2016 Isabela Drămnesc UVT Graph Theory and Combinatorics

### Some Definitions about Sets

Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish

### Degree Hypergroupoids Associated with Hypergraphs

Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

### Matthias Beck Ross Geoghegan. The Art of Proof. Basic Training for Deeper Mathematics

Matthias Beck Ross Geoghegan The Art of Proof Basic Training for Deeper Mathematics ! "#\$\$%&#'!()*+!!,-''!.)-/%)/#0! 1)2#3\$4)0\$!-5!"#\$%)4#\$&*'!! 1)2#3\$4)0\$!-5!"#\$%)4#\$&*#6!7*&)0*)'! 7#0!83#0*&'*-!7\$#\$)!90&:)3'&\$;!

### TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS

TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS VIPUL NAIK Abstract. In this journey, we are going to explore the so called separation axioms in greater detail. We shall try to understand how these axioms

### the lemma. Keep in mind the following facts about regular languages:

CPS 2: Discrete Mathematics Instructor: Bruce Maggs Assignment Due: Wednesday September 2, 27 A Tool for Proving Irregularity (25 points) When proving that a language isn t regular, a tool that is often

### Problem Set I: Preferences, W.A.R.P., consumer choice

Problem Set I: Preferences, W.A.R.P., consumer choice Paolo Crosetto paolo.crosetto@unimi.it Exercises solved in class on 18th January 2009 Recap:,, Definition 1. The strict preference relation is x y

### You know from calculus that functions play a fundamental role in mathematics.

CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### Cartesian Products and Relations

Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

### Mathematical Induction. Lecture 10-11

Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

### Midterm Practice Problems

6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

### Sample Problems in Discrete Mathematics

Sample Problems in Discrete Mathematics This handout lists some sample problems that you should be able to solve as a pre-requisite to Computer Algorithms Try to solve all of them You should also read

### CSE Discrete Structures

CSE 2315 - Discrete Structures Lecture 12: Relations - Fall 2010 1 Motivation Given different sets it is important to be able to manipulate different elements and to be able to relate them to each other.

### Preference Relations and Choice Rules

Preference Relations and Choice Rules Econ 2100, Fall 2015 Lecture 1, 31 August Outline 1 Logistics 2 Binary Relations 1 Definition 2 Properties 3 Upper and Lower Contour Sets 3 Preferences 4 Choice Correspondences

### 1 Introduction to Counting

1 Introduction to Counting 1.1 Introduction In this chapter you will learn the fundamentals of enumerative combinatorics, the branch of mathematics concerned with counting. While enumeration problems can

### . 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

### (Refer Slide Time: 01.26)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 27 Pigeonhole Principle In the next few lectures

### The Language of Mathematics

CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

### Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes)

Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes) by Jim Propp (UMass Lowell) March 14, 2010 1 / 29 Completeness Three common

### Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

### Axiom A.1. Lines, planes and space are sets of points. Space contains all points.

73 Appendix A.1 Basic Notions We take the terms point, line, plane, and space as undefined. We also use the concept of a set and a subset, belongs to or is an element of a set. In a formal axiomatic approach

### Tree-representation of set families and applications to combinatorial decompositions

Tree-representation of set families and applications to combinatorial decompositions Binh-Minh Bui-Xuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no

### Quiz 1. Ashish Carole Christos Eric George Jack Nick Tina

Massachusetts Institute of Technology 6.042J/18.062J, Spring 02: Mathematics for Computer Science March 1 Professor Albert Meyer and Dr. Radhika Nagpal revised April 28, 2002, 858 minutes Quiz 1 Circle

### Lecture Notes on Spanning Trees

Lecture Notes on Spanning Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 26 April 26, 2011 1 Introduction In this lecture we introduce graphs. Graphs provide a uniform model

### 88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### Chapter 10. Abstract algebra

Chapter 10. Abstract algebra C.O.S. Sorzano Biomedical Engineering December 17, 2013 10. Abstract algebra December 17, 2013 1 / 62 Outline 10 Abstract algebra Sets Relations and functions Partitions and

### Full and Complete Binary Trees

Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

### Introduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim

6. Sets Terence Sim 6.1. Introduction A set is a Many that allows itself to be thought of as a One. Georg Cantor Reading Section 6.1 6.3 of Epp. Section 3.1 3.4 of Campbell. Familiar concepts Sets can

### CSL851: Algorithmic Graph Theory Semester I Lecture 1: July 24

CSL851: Algorithmic Graph Theory Semester I 2013-2014 Lecture 1: July 24 Lecturer: Naveen Garg Scribes: Suyash Roongta Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

### Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

### Euclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts:

Euclidean Geometry Students are often so challenged by the details of Euclidean geometry that they miss the rich structure of the subject. We give an overview of a piece of this structure below. We start

### In mathematics you don t understand things. You just get used to them. (Attributed to John von Neumann)

Chapter 1 Sets and Functions We understand a set to be any collection M of certain distinct objects of our thought or intuition (called the elements of M) into a whole. (Georg Cantor, 1895) In mathematics

### Chapter 2. Basic Terminology and Preliminaries

Chapter 2 Basic Terminology and Preliminaries 6 Chapter 2. Basic Terminology and Preliminaries 7 2.1 Introduction This chapter is intended to provide all the fundamental terminology and notations which

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

### Regular Languages and Finite Automata

Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a

### Notes. Sets. Notes. Introduction II. Notes. Definition. Definition. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.

Sets Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### Just the Factors, Ma am

1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

### Solutions to Exercises 8

Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

### PROBLEM SET 7: PIGEON HOLE PRINCIPLE

PROBLEM SET 7: PIGEON HOLE PRINCIPLE The pigeonhole principle is the following observation: Theorem. Suppose that > kn marbles are distributed over n jars, then one jar will contain at least k + marbles.

### Notes on Matrix Multiplication and the Transitive Closure

ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.

### SETS, RELATIONS, AND FUNCTIONS

September 27, 2009 and notations Common Universal Subset and Power Set Cardinality Operations A set is a collection or group of objects or elements or members (Cantor 1895). the collection of the four

### Mathematical Induction

Mathematical Induction Victor Adamchik Fall of 2005 Lecture 2 (out of three) Plan 1. Strong Induction 2. Faulty Inductions 3. Induction and the Least Element Principal Strong Induction Fibonacci Numbers

### Introducing Functions

Functions 1 Introducing Functions A function f from a set A to a set B, written f : A B, is a relation f A B such that every element of A is related to one element of B; in logical notation 1. (a, b 1

### Mathematical Foundations of Computer Science Lecture Outline

Mathematical Foundations of Computer Science Lecture Outline September 21, 2016 Example. How many 8-letter strings can be constructed by using the 26 letters of the alphabet if each string contains 3,4,

### Determination of the normalization level of database schemas through equivalence classes of attributes

Computer Science Journal of Moldova, vol.17, no.2(50), 2009 Determination of the normalization level of database schemas through equivalence classes of attributes Cotelea Vitalie Abstract In this paper,

### Sets and set operations

CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used

### Computing Fundamentals 2 Lecture 4 Lattice Theory. Lecturer: Patrick Browne

Computing Fundamentals 2 Lecture 4 Lattice Theory Lecturer: Patrick Browne Partial Order (e.g. ) A binary relation on a set B is called a partial order on B if it is: reflexive, anti-symmetric, and transitive.

### Math 421, Homework #5 Solutions

Math 421, Homework #5 Solutions (1) (8.3.6) Suppose that E R n and C is a subset of E. (a) Prove that if E is closed, then C is relatively closed in E if and only if C is a closed set (as defined in Definition

### S(A) X α for all α Λ. Consequently, S(A) X, by the definition of intersection. Therefore, X is inductive.

MA 274: Exam 2 Study Guide (1) Know the precise definitions of the terms requested for your journal. (2) Review proofs by induction. (3) Be able to prove that something is or isn t an equivalence relation.

### Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

### GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.

Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the

### THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER

THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER JONATHAN P. MCCAMMOND AND GÜNTER ZIEGLER Abstract. In 1933 Karol Borsuk asked whether every compact subset of R d can be decomposed