# Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! 314

Save this PDF as:

Size: px
Start display at page:

Download "Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314"

## Transcription

1 Lesson 1 Basics of Probability 314

2 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space refers to the complete set of all possible outcomes. In the case of rolling a die, the sample space is 1, 2, 3, 4, 5, or 6. Sample spaces are often represented using tree diagrams or charts. Example 1: A coin is flipped three times. Illustrate the sample space using a tree diagram. Step 1: Start the tree diagram by vertically indicating the two possible results from the first flip. (In this case, heads or tails.) Step 2: Continue the tree diagram by connecting all possibilities for the second flip. Step 3: Finish the tree diagram by connecting all possibilities for the third flip. The sample space for this experiment is: HHH HHT HTH HTT THH THT TTH TTT There are 8 possible outcomes 315

3 Part I: Basic Elements of Probability Example 2: Two dice are rolled, and the sum is recorded. Illustrate the sample space in a chart. Step 1: Start the chart as shown below: Step 2: Fill in the sums. The sample space for the sum of two dice is {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} The chart form is useful for large amounts of data since it allows for easy reading. The situation above could be expressed as a tree diagram, but it would be more cumbersome. Sample spaces are useful in quickly determining the number of particular outcomes in an experiment. Example: If you roll two dice and want to know how many possible outcomes have a sum of seven, the chart above can be used very quickly to see there are six possible outcomes

4 Part I: Basic Elements of Probability Basic Probability: The formula for basic probability is Favorable Outcomes P( event ) = Total Number of Possible Outcomes Example 3: A coin is flipped, then a card is randomly drawn from a deck of 52 cards. a) Determine the probability of flipping a head, then pulling a diamond. b) Determine the probability of flipping a head, then pulling a diamond or a heart. a) Step 1: Start by drawing the sample space: Step 2: Now apply the above formula. There is only one favorable outcome out of 8 possible outcomes. 1 P ( Head, Diamond ) = 8 b) Using the sample space above, there are two favorable outcomes out of eight. Favorable Cases 2 1 P ( Head, Diamond or Head, Heart) = = = Total Cases 8 4 Adding Probabilities: The probability of A or B, if the events are mutually exclusive, may be found by adding the individual probabilities. P( A or B ) =P( A ) +P( B ) Example 4: Two fair six-sided die are rolled and the sum is recorded. If the probability of rolling a sum greater than 10 is 0.083, and the probability of rolling a sum less than 5 is 0.167, what is the probability of rolling a sum greater than 10 or a sum less than 5? The probability of rolling a sum greater than 10 is The probability of rolling a sum less than 5 is The probability of getting the first case or the second case is = 0.25 The phrase mutually exclusive means that one event taking place prevents the other event from taking place. Example 1: Flipping a coin gives mutually exclusive outcomes since you can t get heads and tails at the same time. Example 2: The outcomes of tossing a six-sided die are mutually exclusive since no two results can occur at the same time

5 Part I: Basic Elements of Probability Multiplying Probabilities: The probability of A & B, if the events are independent, may be found by multiplying the individual probabilities. ( ) ( ) P( B) P A and B =P A Two events are independent if the outcome of one event does not change the probability of the second event occurring. Example: A student tosses a six-sided die and gets a 3, then re-tosses and gets a 5. The two events do not influence each other in any way, so they are independent events. Example 5: A coin is flipped, then a card is randomly drawn from a deck of 52 cards. If the probability of flipping a head is 0.5, and the probability of drawing a diamond is 0.25, then determine the probability of obtaining a head and a diamond. Use a tree diagram and state the given probabilities. ( ) = ( ) ( ( ) = P Head and Diamond P Head P Diamond P Head and Diamond ( ) P Head and Diamond 1 = = 8 ) The Complement: Probabilities of mutually exclusive events add up to one. Consider a coin: The probability of getting a head is 0.5, and getting a tail is 0.5. There is a 100% chance of getting a head or a tail when you flip a coin, so the total probability is 1. Suppose you now have a weighted (trick) coin, such that the probability of getting a head is 0.43 To calculate the probability of getting a tail, just subtract the given probability from is the compliment probability P ( A) The expression above is another way of writing the complement. The dash above the A tells you to calculate the probability it s NOT A Example: If P( A) = 0.65, calculate P( A ) P P P ( A) =1-P( A) ( A) = ( A) =

6 Part I: Basic Elements of Probability Example 6: A trick (weighted) coin is altered so the probability of it landing on a head for each flip is 5/7. a) The trick coin is flipped 3 times. What is the probability of getting a tail on the first flip and heads on the next two flips? Probability of getting a head = Probability of getting a tail = 1- = 7 7 b) If the trick coin is flipped until two tails appear, what is the probability that the second tail will appear in three flips? Think of this question as follows: What elements in the sample space will have two tails, one of which must be on the third flip? The answer is that you can have HTT or THT, since both of these will have the second tail come up on the third toss. Once you find the probability of each event occurring, add the results to get the total probability. Example 7: A fair six-sided die is tossed twice. What is the probability the first toss will be a number greater than (or equal to) 3, and the second toss will a number less than 3? The probability of getting a 3, 4, 5, or 6 is The probability of getting a 1 or 2 is Multiply the probabilities to get =

7 Questions: Probability Lesson 1 Part I: Basic Elements of Probability 1) Two six-sided dice are rolled and the sum is recorded. Determine the probability of obtaining: a) a sum greater than 8 b) a sum less than 6 c) a sum greater than 8 or less than 6 d) a sum greater than 8 and less than 6 2) A card is drawn from a deck of 52 cards. Determine the probability of drawing: a) the six of clubs or the eight of hearts. Quick Card Facts: b) the six of clubs or a heart. c) a black card or a diamond There are 52 cards in a deck with the jokers removed. There are 26 black cards and 26 red cards. There are 4 suits: Spades, Clubs, Hearts, and Diamonds. d) a nine of any suit Each suit has 13 cards of different rank. e) a black or red card Face cards are Jacks, Queens, and Kings. 3) There are 3 red & 2 yellow balls in one bag, and 6 blue & 7 green balls in a second bag. What is the probability of pulling a yellow ball from the first bag, and then a green ball from the second bag? 4) A fair coin is flipped three times. What is the probability of getting two heads and then a tail? 5) A trick coin (where the probability of getting a head is 3/4), is flipped three times. What is the probability of getting exactly two heads such that the second head will appear on the third flip? 6) A fair six-sided die is tossed twice. What is the probability the first toss will be a number less than 3, and the second toss will a number greater than 3? 320

8 Part I: Basic Elements of Probability Answers: a) b) The probability of pulling a yellow ball from favorable cases 2 the first bag is = total cases 5 The probability of pulling a green ball from favorable cases 7 the second bag is = total cases c) + = d) Zero You can t have two different sums at the same time! a) + = b) + = c) + = d) e) + = What this question is basically saying is that you can have HTH or THH, since both of these will have the second tail come up on the third toss The probability of getting a 1or 2 is The probability of getting a 4, 5, or 6 is Multiply the probabilities to get =

9 Part II: Venn Diagrams Venn Diagrams: Outcomes of events are frequently organized in Venn Diagrams as a visual aid to the underlying mathematics. Venn Diagrams of Mutually Exclusive Events: If two events are mutually exclusive, the Venn diagrams must illustrate that there is no overlap between the two sets of outcomes. Example 1: In a game, discs are thrown into two circles on the other side of the room, as shown in the diagram. a) Calculate the probability of a disc being in Circle 1 favorable cases 5 PCircle ( 1= ) = total cases 8 b) Calculate the probability of a disc being in Circle 2 favorable cases 3 PCircle ( 2 ) = = total cases 8 c) Calculate the probability of a disc being in Circle 1 and Circle 2 PCircle ( 1 and 2 ) =0since a disc can t be in both circles at once! d ) Calculate the probability of a disc being in Circle 1 or Circle 2 Since we have an or probability, simply add the probability of the disc being in Circle 1 to the probability of the disc being in Circle P( Circle 1 or 2 ) = + =

10 Part II: Venn Diagrams Venn Diagrams of Non - Mutually Exclusive Events: If two events are non - mutually exclusive, there is overlap between the two sets of outcomes. Example 2: In a game, discs are thrown into two circles on the other side of the room, as shown in the diagram. a) Calculate the probability of a disc being in Circle 1 favorable cases 5 PCircle ( 1= ) = total cases 8 b) Calculate the probability of a disc being in Circle 2 favorable cases 7 PCircle ( 2 ) = = total cases 8 c) Calculate the probability of a disc being in Circle 1 and Circle 2 favorable cases 4 1 PCircle ( 1 and 2 ) = = total cases 8 2 d) Calculate the probability of a disc being in Circle 1 or Circle 2 Since we have an or probability, simply add the probability of the disc being in Circle 1 to the probability of the disc being in Circle PCircle ( 1 or 2 ) = + = INCORRECT ? Probability can t be bigger than What Happened? Adding the probabilities for Circle 1 and Circle 2 led to Using the new formula to overlap in the middle since the 4 discs are counted in calculate the probability each case! Subtract them out to get the correct answer. for Circle 1 OR 2 gives: P A or B =P A + P B - P A and B + - = one! ( ) ( ) ( ) ( ) This is the correct result

11 Part II: Venn Diagrams Example 3: In a game, discs are thrown into two circles on the other side of the room, as shown in the diagram. a) Calculate the probability of a disc being in Circle 1 favorable cases 6 2 P( Circle 1 ) = = total cases 9 3 b) Calculate the probability of a disc being in Circle 2 d) Calculate the probability of a disc being in Circle 1 or Circle 2 P( Circle 1 or 2 ) = P( Circle 1) + P( Circle 2) P( Circle 1 and 2) ( ) P Circle 1 or 2 = ( ) 7 P Circle 1 or 2 = 9 favorable cases 3 1 P( Circle 2 ) = = total cases 9 3 c) Calculate the probability of a disc being in Circle 1 and Circle 2 e) Calculate the probability of a disc not being in circle 1 P ( NOT Circle 1 ) = 1 - P( Circle 1) ( NOT ) 2 P Circle 1 =1-3 ( NOT ) 1 P Circle 1 = 3 ( ) favorable cases 2 P Circle 1 and 2 = = total cases 9 You may have noticed that the probabilities can be read off the diagram without using the formula. f) Calculate the probability of a disc not being in Circle 1 or Circle 2 P ( NOT Circle 1 ) = 1 - P( Circle 1 or 2) ( NOT ) 7 P Circle 1 =1-9 ( NOT ) 2 P Circle 1 = 9 The formula method is included to show you how to do these calculations when there is no diagram to look at. Some questions will just give you numbers for the probabilities, and you will have to work it out from the formulas only

12 Part II: Venn Diagrams Questions: 1) In a game, discs are thrown into two circles as shown in the diagram. a) Calculate the probability of a disc being in Circle 1 b) Calculate the probability of a disc being in Circle 2 c) Calculate the probability of a disc being in Circle 1 and Circle 2 d) Calculate the probability of a disc being in Circle 1 or Circle 2 2) In a game, discs are thrown into two circles as shown in the diagram. a) Calculate the probability of a disc being in Circle 1 b) Calculate the probability of a disc being in Circle 2 c) Calculate the probability of a disc being in Circle 1 and Circle 2 d) Calculate the probability of a disc being in Circle 1 or Circle

13 Part II: Venn Diagrams 3) In a game, discs are thrown into two circles as shown in the diagram. a) Calculate the probability of a disc being in Circle 1 b) Calculate the probability of a disc being in Circle 2 c) Calculate the probability of a disc being in Circle 1 and Circle 2 d) Calculate the probability of a disc being in Circle 1 or Circle 2 e) Calculate the probability of a disc not being in circle 1 f) Calculate the probability of a disc not being in Circle 1 or Circle 2 4) Calculate the unknown quantity in each of the following: a) P(A) = 0.611, P(B) = 0.833, P(A and B) = Calculate P(A or B) b) P(A) = 0.737, P(B) = 0.789, P(A or B) = 1 Calculate P(A and B) c) P(A) = 0.5, P(A or B) = 1, P(A and B) = Calculate P(B) 326

14 Answers: Probability Lesson 1 Part II: Venn Diagrams P(Circle 1) = 0.8 P(Circle 1) = P(Circle 2) = P(Circle 2) = 0.5 P(Circle 1 & 2) = 0 P(Circle 1 & 2) = 0.3 P(Circle 1 or 2) = 1 P(Circle 1 or 2) = a) P(A or B) = P(A) + P(B) P(A and B) P(A or B) = P(A or B) = 1 P(Circle 1) = 0.3 P(Circle 1 or 2) = 0.6 b) P(A or B) = P(A) + P(B) P(A and B) Solve for P(A and B) P(A and B) = P(A) + P(B) P(A or B) P(A and B) = P(A and B) = P(Circle 2) = 0.4 P(Not Circle 1) = 0.7 c) P(A or B) = P(A) + P(B) P(A and B) Solve for P(B) P(B) = P(A or B) + P(A and B) - P(A) P(B) = P(B) = P(Circle 1 & 2) = 0.1 P(Not Circle 1 or 2) =

### Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com

Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

Probability Worksheet 2 NAME: Remember to leave your answers as unreduced fractions. We will work with the example of picking poker cards out of a deck. A poker deck contains four suits: diamonds, hearts,

### Chapter 4 - Practice Problems 1

Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula

### Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

### Lesson 1: Experimental and Theoretical Probability

Lesson 1: Experimental and Theoretical Probability Probability is the study of randomness. For instance, weather is random. In probability, the goal is to determine the chances of certain events happening.

### Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

### Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

### Basic Probability Theory I

A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population

### 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch. - Problems to look at Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability

### Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

### Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

### PROBABILITY. Thabisa Tikolo STATISTICS SOUTH AFRICA

PROBABILITY Thabisa Tikolo STATISTICS SOUTH AFRICA Probability is a topic that some educators tend to struggle with and thus avoid teaching it to learners. This is an indication that teachers are not yet

### V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay \$ to play. A penny and a nickel are flipped. You win \$ if either

### Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.

1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event

### Chapter 4 - Practice Problems 2

Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the

### Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROBABILITY Random Experiments I. WHAT IS PROBABILITY? The weatherman on 0 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then

Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance

### Basic Probability Theory II

RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

### Probability and Hypothesis Testing

B. Weaver (3-Oct-25) Probability & Hypothesis Testing. PROBABILITY AND INFERENCE Probability and Hypothesis Testing The area of descriptive statistics is concerned with meaningful and efficient ways of

### + Section 6.2 and 6.3

Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

### AP Stats - Probability Review

AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

### Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

### PROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE

PROBABILITY 53 Chapter 3 PROBABILITY The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE 3. Introduction In earlier Classes, we have studied the probability as

### Math 3C Homework 3 Solutions

Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

### Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific

Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin. You

### (b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.

Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw

### Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know

### Pattern matching probabilities and paradoxes A new variation on Penney s coin game

Osaka Keidai Ronshu, Vol. 63 No. 4 November 2012 Pattern matching probabilities and paradoxes A new variation on Penney s coin game Yutaka Nishiyama Abstract This paper gives an outline of an interesting

### Probability OPRE 6301

Probability OPRE 6301 Random Experiment... Recall that our eventual goal in this course is to go from the random sample to the population. The theory that allows for this transition is the theory of probability.

### Fundamentals of Probability

Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

### PROBABILITY. Chapter Overview

Chapter 6 PROBABILITY 6. Overview Probability is defined as a quantitative measure of uncertainty a numerical value that conveys the strength of our belief in the occurrence of an event. The probability

### STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that

### Chapter 4 Probability

The Big Picture of Statistics Chapter 4 Probability Section 4-2: Fundamentals Section 4-3: Addition Rule Sections 4-4, 4-5: Multiplication Rule Section 4-7: Counting (next time) 2 What is probability?

### Chapter 5 A Survey of Probability Concepts

Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible

### Basic concepts in probability. Sue Gordon

Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are

### Combinations and Permutations

Combinations and Permutations What's the Difference? In English we use the word "combination" loosely, without thinking if the order of things is important. In other words: "My fruit salad is a combination

### PROBABILITY NOTIONS. Summary. 1. Random experiment

PROBABILITY NOTIONS Summary 1. Random experiment... 1 2. Sample space... 2 3. Event... 2 4. Probability calculation... 3 4.1. Fundamental sample space... 3 4.2. Calculation of probability... 3 4.3. Non

### Probability and Venn diagrams UNCORRECTED PAGE PROOFS

Probability and Venn diagrams 12 This chapter deals with further ideas in chance. At the end of this chapter you should be able to: identify complementary events and use the sum of probabilities to solve

### number of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.

12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.

### Probabilistic Strategies: Solutions

Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

### Statistics 100A Homework 2 Solutions

Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6

### PROBABILITY 14.3. section. The Probability of an Event

4.3 Probability (4-3) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques

### 4.4 Conditional Probability

4.4 Conditional Probability It is often necessary to know the probability of an event under restricted conditions. Recall the results of a survey of 100 Grade 12 mathematics students in a local high school.

### Formula for Theoretical Probability

Notes Name: Date: Period: Probability I. Probability A. Vocabulary is the chance/ likelihood of some event occurring. Ex) The probability of rolling a for a six-faced die is 6. It is read as in 6 or out

### What is the probability of throwing a fair die and receiving a six? Introduction to Probability. Basic Concepts

Basic Concepts Introduction to Probability A probability experiment is any experiment whose outcomes relies purely on chance (e.g. throwing a die). It has several possible outcomes, collectively called

### 36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

### Conducting Probability Experiments

CHAPTE Conducting Probability Experiments oal Compare probabilities in two experiments. ame. Place a shuffled deck of cards face down.. Turn over the top card.. If the card is an ace, you get points. A

### For two disjoint subsets A and B of Ω, say that A and B are disjoint events. For disjoint events A and B we take an axiom P(A B) = P(A) + P(B)

Basic probability A probability space or event space is a set Ω together with a probability measure P on it. This means that to each subset A Ω we associate the probability P(A) = probability of A with

### Session 8 Probability

Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

### Probability (Day 1 and 2) Blue Problems. Independent Events

Probability (Day 1 and ) Blue Problems Independent Events 1. There are blue chips and yellow chips in a bag. One chip is drawn from the bag. The chip is placed back into the bag. A second chips is then

### MCA SEMESTER - II PROBABILITY & STATISTICS

MCA SEMESTER - II PROBABILITY & STATISTICS mca-5 230 PROBABILITY 1 INTRODUCTION TO PROBABILITY Managers need to cope with uncertainty in many decision making situations. For example, you as a manager may

### Using Laws of Probability. Sloan Fellows/Management of Technology Summer 2003

Using Laws of Probability Sloan Fellows/Management of Technology Summer 2003 Uncertain events Outline The laws of probability Random variables (discrete and continuous) Probability distribution Histogram

### Hoover High School Math League. Counting and Probability

Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches

### https://assessment.casa.uh.edu/assessment/printtest.htm PRINTABLE VERSION Quiz 10

1 of 8 4/9/2013 8:17 AM PRINTABLE VERSION Quiz 10 Question 1 Let A and B be events in a sample space S such that P(A) = 0.34, P(B) = 0.39 and P(A B) = 0.19. Find P(A B). a) 0.4872 b) 0.5588 c) 0.0256 d)

### MAT 1000. Mathematics in Today's World

MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities

### The Central Limit Theorem Part 1

The Central Limit Theorem Part. Introduction: Let s pose the following question. Imagine you were to flip 400 coins. To each coin flip assign if the outcome is heads and 0 if the outcome is tails. Question:

### frequency of E sample size

Chapter 4 Probability (Page 1 of 24) 4.1 What is Probability? Probability is a numerical measure between 0 and 1 that describes the likelihood that an event will occur. Probabilities closer to 1 indicate

### Definition and Calculus of Probability

In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

### Probability distributions

Probability distributions (Notes are heavily adapted from Harnett, Ch. 3; Hayes, sections 2.14-2.19; see also Hayes, Appendix B.) I. Random variables (in general) A. So far we have focused on single events,

### Homework 20: Compound Probability

Homework 20: Compound Probability Definition The probability of an event is defined to be the ratio of times that you expect the event to occur after many trials: number of equally likely outcomes resulting

### Discrete and Continuous Random Variables. Summer 2003

Discrete and Continuous Random Variables Summer 003 Random Variables A random variable is a rule that assigns a numerical value to each possible outcome of a probabilistic experiment. We denote a random

### 4.3. Addition and Multiplication Laws of Probability. Introduction. Prerequisites. Learning Outcomes. Learning Style

Addition and Multiplication Laws of Probability 4.3 Introduction When we require the probability of two events occurring simultaneously or the probability of one or the other or both of two events occurring

### NAME: NUMERACY GAMES WITH DICE AND CARDS. A South African Numeracy Chair initiative

NAME: NUMERACY GAMES WITH DICE AND CARDS A South African Numeracy Chair initiative CONTENTS Games in the classroom 3 Benefits 3 Mathematical games are 'activities' which: 3 More benefits 3 Competition

### Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

### STAT 35A HW2 Solutions

STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

### Probability of Compound Events

Probability of Compound Events Why? Then You calculated simple probability. (Lesson 0-11) Now Find probabilities of independent and dependent events. Find probabilities of mutually exclusive events. Online

### Probability definitions

Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating

### The study of probability has increased in popularity over the years because of its wide range of practical applications.

6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,

### G r a d e 1 2 A p p l i e d M a t h e m a t i c s ( 4 0 S ) Midterm Practice Examination Answer Key

G r a d e 1 2 A p p l i e d M a t h e m a t i c s ( 4 0 S ) Midterm Practice Examination Answer Key G r a d e 1 2 A p p l i e d M a t h e m a t i c s Midterm Practice Examination Answer Key Name: Student

### Ch. 13.3: More about Probability

Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum

### Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

### Curriculum Design for Mathematic Lesson Probability

Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.

### Poker. 10,Jack,Queen,King,Ace. 10, Jack, Queen, King, Ace of the same suit Five consecutive ranks of the same suit that is not a 5,6,7,8,9

Poker Poker is an ideal setting to study probabilities. Computing the probabilities of different will require a variety of approaches. We will not concern ourselves with betting strategies, however. Our

### Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

### Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

### Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence

### Probabilities of Poker Hands with Variations

Probabilities of Poker Hands with Variations Jeff Duda Acknowledgements: Brian Alspach and Yiu Poon for providing a means to check my numbers Poker is one of the many games involving the use of a 52-card

### Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.

Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white

### Introduction to Probability

3 Introduction to Probability Given a fair coin, what can we expect to be the frequency of tails in a sequence of 10 coin tosses? Tossing a coin is an example of a chance experiment, namely a process which

### MTH 110 Chapter 6 Practice Test Problems

MTH 0 Chapter 6 Practice Test Problems Name ) Probability A) assigns realistic numbers to random events. is the branch of mathematics that studies long-term patterns of random events by repeated observations.

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Math 1342 (Elementary Statistics) Test 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the indicated probability. 1) If you flip a coin

### STATISTICS HIGHER SECONDARY - SECOND YEAR. Untouchability is a sin Untouchability is a crime Untouchability is inhuman

STATISTICS HIGHER SECONDARY - SECOND YEAR Untouchability is a sin Untouchability is a crime Untouchability is inhuman TAMILNADU TEXTBOOK CORPORATION College Road, Chennai- 600 006 i Government of Tamilnadu

### Deal or No Deal Lesson Plan

Deal or No Deal Lesson Plan Grade Level: 7 (This lesson could be adapted for 6 th through 8 th grades) Materials: Deck of Playing Cards Fair Coin (coin with head and tail sides) for each pair of students

### Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

### Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

### Name: Date: Use the following to answer questions 2-4:

Name: Date: 1. A phenomenon is observed many, many times under identical conditions. The proportion of times a particular event A occurs is recorded. What does this proportion represent? A) The probability

### Pure Math 30: Explained! 334

www.puremath30.com 334 Lesson 2, Part One: Basic Combinations Basic combinations: In the previous lesson, when using the fundamental counting principal or permutations, the order of items to be arranged

### Chapter 3: The basic concepts of probability

Chapter 3: The basic concepts of probability Experiment: a measurement process that produces quantifiable results (e.g. throwing two dice, dealing cards, at poker, measuring heights of people, recording

### Stats Review Chapters 5-6

Stats Review Chapters 5-6 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test

### Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.

Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5

### 2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement)

Probability Homework Section P4 1. A two-person committee is chosen at random from a group of four men and three women. Find the probability that the committee contains at least one man. 2. Three dice

### Coin Flip Questions. Suppose you flip a coin five times and write down the sequence of results, like HHHHH or HTTHT.

Coin Flip Questions Suppose you flip a coin five times and write down the sequence of results, like HHHHH or HTTHT. 1 How many ways can you get exactly 1 head? 2 How many ways can you get exactly 2 heads?

### Section 6-5 Sample Spaces and Probability

492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

### 1 Combinations, Permutations, and Elementary Probability

1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order

### GCSE Revision Notes Mathematics Probability

GCSE Revision Notes Mathematics Probability irevise.com 2014. All revision notes have been produced by mockness ltd for irevise.com. Email: info@irevise.com Copyrighted material. All rights reserved; no