# Pigeonhole Principle Solutions

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such as 3 and 4) don t have any factors in common. Therefore, it suffices to show that we d have a pair of numbers that are consecutive. Let our pigeonholes be the following sets: {1, 2}, {3, 4},..., {2n 1, 2n} Here, our pigeons are the n + 1 numbers we re choosing from the set {1, 2,..., 2n}. By the pigeonhole principle, two of our n + 1 numbers will be in the same pigeonhole and since the above sets were chosen to contain pairs of consecutive numbers, this means that we ll have a pair of consecutive numbers. This means we ll have a pair of numbers with no factors in common. 2. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then there will be some pair in which one number is a multiple of the other one. Solution: Here, our pigeonholes are a little more complicated. To be precise, for each odd numbers 2m 1 in the set {1, 2,..., 2n}, we make the set S m = {2m 1, 2(2m 1), 4(2m 1),..., 2 k (2m 1),... } That is, S m contains the odd number 2m 1 and any number that can be obtained by multiplying 2m 1 by a power of 2. Then, our pigeonholes are defined to be the sets S 1, S 2,..., S n. The above is a lot of notation. The easiest thing to do is to make up an example to illustrate what s going on. For example, for n = 4, the pigeonholes are: S 1 = {1, 2, 4, 8} S 2 = {3, 6} S 3 = {5} S 4 = {7} 1

2 For a more complicated example, if n = 7, the pigeonholes are: S 1 = {1, 2, 4, 8} S 2 = {3, 6, 12} S 3 = {5, 10} S 4 = {7, 14} S 5 = {9} S 6 = {11} S 7 = {13} Now, note that we have n pigeonholes and n + 1 pigeons that is, we re picking n + 1 numbers. This means that a pair of the numbers will be in the same set S m. But the sets S m were carefully chosen so that out of any pair of numbers in the same set, one number divides the other. Thus, the presence of a pair of numbers in same S m ensures that we will have two numbers one of which is a multiple of the other, as required. 3. Given 5 points in the plane with integer coordinates, show that there exists a pair of points whose midpoint also has integer coordinates. Solution: If (a, b) and (c, d) are two points in the plane, then the midpoint is the point ( a+c 2, b+d 2 ). This point is an integer precisely if a + c and b + d are both even. After a little bit of thought, it s clear that this happens if both the following statements hold: a and c have the same parity, and b and d have the same parity. Let the pigeonholes be defined by the parity of the two numbers. That is, the pigeonholes are: S OO = {(x, y) x odd, y odd} S OE = {(x, y) x odd, y even} S EO = {(x, y) x even, y odd} S EE = {(x, y) x even, y even} So, for example, (1, 1) is in S OO, and (2, 1) is in S EO. Since we re picking 5 points, we ll have two points in the same pigeonhole. Therefore, we will have two points (a, b) and (c, d) such that a and c as well as b and d are the same parity. From our arguments above, this will mean that the midpoint between them will be an integer, as required. 4. During a month with 30 days a baseball team plays at least a game a day, but no more than 45 games. Show that there must be a period of some number of consecutive days during which the team must play exactly 14 games. 2

3 Solution: For this question, it helps to set up some notation. Let the number of games played on day i be g i. Then, the total number of games played starting on day m, and ending on day n is g m + g m g n Now, define s i to be the total number of games played during the first i days. That is, Now, note that s 1 = g 1 s 2 = g 1 + g 2. s 30 = g 1 + g g 30 g m + g m g n = (g g n ) (g 1 + g m 1 ) = s n s m 1 Therefore, what we need to show that is that s n s m 1 takes on the value 14 for some m and n between 1 and 30. What we re given is that the total number of games played on all thirty days is no more than 45, which tells us that each s i is at most 45. Furthermore, we re told that the team plays at least a game a day, which means that s 1, s 2,, s 30 are distinct integers between 1 and 45. The s i are going to be the pigeons in this question. Now, let our pigeonholes be the following sets: {1, 15}, {2, 16},..., {14, 28} {29, 43}, {30, 44}, {31, 45} {32}, {33},..., {42} We re picking 30 numbers s 1, s 2,..., s 30 out of the set {1, 2,..., 45}. Counting, we see that that we have exactly = 28 pigeonholes. Therefore, some two of the s i are going to be in the same pigeonhole. By our definition, a pair of numbers in a pigeonhole differ by exactly 14 this means we ll have an s i and s j such that s j s i = 14. But as noted above, this means that the total number of games played on days i+1, i+2,..., j is exactly 14, as required. 5. Show that among any five points inside an equilateral triangle of side length 1, there exist two points whose distance is at most 1 2. Solution: This question is best solved with a picture. Split up the equilateral triangle into 4 little equilateral triangles of side 1 2 as shown here: 3

4 It should be clear that any two points within one of the smaller 4 triangles are within distance 1 2. Since we have 5 points in the bigger triangle, some two of them will necessarily be in the same small triangle hence, that pair of points will have distance at most 1 2, and we re done. 6. Prove that from ten distinct two-digit numbers, one can always choose two disjoint nonempty subsets, so that their elements have the same sum. Solution: Let the ten numbers be a 1, a 2,..., a 10. For any subset T of {1, 2,..., 10}, let S T = a i i T For example, S {1,2,4} = a 1 + a 2 + a 4 S {2,5,8} = a 2 + a 5 + a 8 Since the a i are two-digit numbers, and each sum contains at most 10 terms, we see that S T is between 10 and 990 for each subset T. Now, the number of subsets of {1, 2,..., 10} is precisely 2 10 = 1024, and therefore the number of non-empty subsets is Since there are fewer than 1023 choices for possible values of S T, this means that there exist subsets T and R of {1, 2,..., 10} such that S T = S R If R and T are disjoint, then we re done. However, if they overlap, we can just subtract the overlapping items from both sides. For example, if we have that S {1,3,4,5} = S {3,5,7,8} then a 1 + a 3 + a 4 + a 5 = a 3 + a 5 + a 7 + a 8 a 1 + a 4 = a 7 + a 8 Thus, this will allow us to find two disjoint subsets of the 10 numbers with the same sum. 4

5 7. A checkerboard has 4 rows and 7 columns. A subboard of a checkerboard is a board you can cut-out of the checkerboard by only taking the squares which are between a specified pair of rows and a specified pair of columns. Here s an example of a subboard, with squares shaded in red: Now, suppose that each of the 28 squares is colored either blue or white. Show that there is a subboard all of whose corners are blue or all of whose corners are white. Here s an example of a coloring: see if you can find a subboard with four corners of the same color! Solution: Let us first discuss how to approach this. Note that we get a subboard whose corners are the same color if two columns agree on two squares: for example, if column 2 and column 5 both have blue squares in the 1nd and 4th rows, then we d get the following (the squares for which we don t know the colors are colored in light blue): As another example, in the coloring given in the question, columns 1 and 6 both have blue squares in the 3rd and 4th row, which similarly leads to a desired subboard. Let us proceed by contradiction: assume that there exists a coloring such that no subboard has all four corners of the same color. We need to consider a couple of cases. Let s consider the first column of the checkerboard. Either the first column has 2 of each color, or we have at least 3 squares of 5

6 one color (either blue or white.) Since there s no difference between blue and white in the context of the problem, let s start with the case where we have at least 3 blue squares in the first column. Case 1: 3 blue squares in the first column. Since permuting the rows doesn t change anything, let s assume that the first column has blue squares in rows 1, 2 and 3. As noted above, if any of the remaining columns have blue squares in 2 of those rows, we d have a subboard with matching corners; for example, if column 5 has 2 blue squares in the first 3 rows, here s what can happen: Therefore, we need to assume that each of the remaining 6 columns each have at least 2 white squares in the first 3 rows; here s an example of such a coloring: (note that for now, we re ignoring the fourth row, hence the light blue squares) As should be clear, we re now having an issue with having a subboard all of whose corners are white. Indeed, there are only 4 ways to color in the first 3 rows of a column by using at most 1 blue square; here they are: By the pigeonhole principle, since there are only 4 potential colorings, and 6 columns to color in, some two columns will agree on the first 3 rows. This means that we ll have a subboard all of whose corners are white, as required. Case 2: 2 blue squares in the first column. First, note that the argument above would hold even if we assumed that another column had 3 blue squares. (This is because permuting rows and permuting columns doesn t change anything.) Therefore, for this case we may assume that 6

7 every single column has exactly 2 blue squares and 2 white squares. There are exactly 6 ways to color in a column in this way; here they are: Since we have 7 columns, but only 6 ways of coloring them, two columns will be colored in the exact same fashion. This means that we will again have a subboard all of whose corners are the same color, and we re done. The Remaining Problems: I didn t see too many people try the last three problems; besides, they are Putnam problems and it s easy enough to find their solutions online. So I m not going to post solutions to them yet let me know if you ve tried them and really want to see how they work! 7

### COLORED GRAPHS AND THEIR PROPERTIES

COLORED GRAPHS AND THEIR PROPERTIES BEN STEVENS 1. Introduction This paper is concerned with the upper bound on the chromatic number for graphs of maximum vertex degree under three different sets of coloring

### A fairly quick tempo of solutions discussions can be kept during the arithmetic problems.

Distributivity and related number tricks Notes: No calculators are to be used Each group of exercises is preceded by a short discussion of the concepts involved and one or two examples to be worked out

### Spring 2007 Math 510 Hints for practice problems

Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an -chessboard There are doors between all adjacent cells A prisoner in one

### 1. Determine all real numbers a, b, c, d that satisfy the following system of equations.

altic Way 1999 Reykjavík, November 6, 1999 Problems 1. etermine all real numbers a, b, c, d that satisfy the following system of equations. abc + ab + bc + ca + a + b + c = 1 bcd + bc + cd + db + b + c

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### 1 Introduction to Counting

1 Introduction to Counting 1.1 Introduction In this chapter you will learn the fundamentals of enumerative combinatorics, the branch of mathematics concerned with counting. While enumeration problems can

### MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

### LESSON 1 PRIME NUMBERS AND FACTORISATION

LESSON 1 PRIME NUMBERS AND FACTORISATION 1.1 FACTORS: The natural numbers are the numbers 1,, 3, 4,. The integers are the naturals numbers together with 0 and the negative integers. That is the integers

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### Solution to Homework 2

Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if

### Permutation Groups. Rubik s Cube

Permutation Groups and Rubik s Cube Tom Davis tomrdavis@earthlink.net May 6, 2000 Abstract In this paper we ll discuss permutations (rearrangements of objects), how to combine them, and how to construct

### 94 Counting Solutions for Chapter 3. Section 3.2

94 Counting 3.11 Solutions for Chapter 3 Section 3.2 1. Consider lists made from the letters T, H, E, O, R, Y, with repetition allowed. (a How many length-4 lists are there? Answer: 6 6 6 6 = 1296. (b

### 1.16 Factors, Multiples, Prime Numbers and Divisibility

1.16 Factors, Multiples, Prime Numbers and Divisibility Factor an integer that goes into another integer exactly without any remainder. Need to be able to find them all for a particular integer it s usually

### Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Colin Stirling Informatics Slides originally by Kousha Etessami Colin Stirling (Informatics) Discrete Mathematics (Chapter 6) Today 1 /

### Discrete Mathematics: Homework 6 Due:

Discrete Mathematics: Homework 6 Due: 2011.05.20 1. (3%) How many bit strings are there of length six or less? We use the sum rule, adding the number of bit strings of each length to 6. If we include the

### (Refer Slide Time: 01.26)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 27 Pigeonhole Principle In the next few lectures

### Solution, Assignment #6, CSE 191 Fall, 2014

Solution, Assignment #6, CSE 191 Fall, 2014 General Guidelines: This assignment will NOT be collected, nor graded. However, you should carefully complete it as if it were to be graded. There will be a

### Elementary Algebra. Section 0.4 Factors

Section 0.4 Contents: Definitions: Multiplication Primes and Composites Rules of Composite Prime Factorization Answers Focus Exercises THE MULTIPLICATION TABLE x 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5

### 3. BINARY NUMBERS AND ARITHMETIC

3. BINARY NUMBERS AND ARITHMETIC 3.1. Binary Numbers The only place in a computer where you will find the number 9 is on the keyboard. Inside the computer you will only find 0 s and 1 s. All computer memory

### New Zealand Mathematical Olympiad Committee. Induction

New Zealand Mathematical Olympiad Committee Induction Chris Tuffley 1 Proof by dominoes Mathematical induction is a useful tool for proving statements like P is true for all natural numbers n, for example

### Pre-Algebra Lecture 6

Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals

### Permutation Groups. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles April 2, 2003

Permutation Groups Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles April 2, 2003 Abstract This paper describes permutations (rearrangements of objects): how to combine them, and how

### Covering a chessboard with dominoes Eight problems

Covering a chessboard with dominoes Eight problems Problem 1 Is it possible to cover a whole chessboard with dominoes? Problem 2 One corner has been removed from a chessboard. Is it possible to cover the

### Squares and Square Roots

SQUARES AND SQUARE ROOTS 89 Squares and Square Roots CHAPTER 6 6.1 Introduction You know that the area of a square = side side (where side means the length of a side ). Study the following table. Side

### Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract

Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.

### 2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2

00 Problem If a and b are nonzero real numbers such that a b, compute the value of the expression ( ) ( b a + a a + b b b a + b a ) ( + ) a b b a + b a +. b a a b Answer: 8. Solution: Let s simplify the

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### We now explore a third method of proof: proof by contradiction.

CHAPTER 6 Proof by Contradiction We now explore a third method of proof: proof by contradiction. This method is not limited to proving just conditional statements it can be used to prove any kind of statement

### Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

### Complex Numbers. Misha Lavrov. ARML Practice 10/7/2012

Complex Numbers Misha Lavrov ARML Practice 10/7/2012 A short theorem Theorem (Complex numbers are weird) 1 = 1. Proof. The obvious identity 1 = 1 can be rewritten as 1 1 = 1 1. Distributing the square

### ORDERS OF ELEMENTS IN A GROUP

ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since

### An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis November 28, 2007 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

### Bored MUMSians. Is it possible that he is left with the number 1?

Sam Chow One Player Games Bored MUMSians Han writes the numbers 1, 2,..., 100 on the whiteboard. He picks two of these numbers, erases them, and replaces them with their difference (so at some point in

### Exponent Properties Involving Products

Exponent Properties Involving Products Learning Objectives Use the product of a power property. Use the power of a product property. Simplify expressions involving product properties of exponents. Introduction

### Fractions and Decimals

Fractions and Decimals Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles December 1, 2005 1 Introduction If you divide 1 by 81, you will find that 1/81 =.012345679012345679... The first

### Why Vedic Mathematics?

Why Vedic Mathematics? Many Indian Secondary School students consider Mathematics a very difficult subject. Some students encounter difficulty with basic arithmetical operations. Some students feel it

### diffy boxes (iterations of the ducci four number game) 1

diffy boxes (iterations of the ducci four number game) 1 Peter Trapa September 27, 2006 Begin at the beginning and go on till you come to the end: then stop. Lewis Carroll Consider the following game.

### Notes on polyhedra and 3-dimensional geometry

Notes on polyhedra and 3-dimensional geometry Judith Roitman / Jeremy Martin April 23, 2013 1 Polyhedra Three-dimensional geometry is a very rich field; this is just a little taste of it. Our main protagonist

### It is not immediately obvious that this should even give an integer. Since 1 < 1 5

Math 163 - Introductory Seminar Lehigh University Spring 8 Notes on Fibonacci numbers, binomial coefficients and mathematical induction These are mostly notes from a previous class and thus include some

### Math Circles: Invariants Part 1

Math Circles: Invariants Part 1 March 23, 2011 What is an Invariant? In the simplest terms, an invariant is something that doesn t change. As easy as that sounds, invariance is a very powerful property

### 5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing

### Grade 6 Math Circles March 24/25, 2015 Pythagorean Theorem Solutions

Faculty of Mathematics Waterloo, Ontario NL 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles March 4/5, 015 Pythagorean Theorem Solutions Triangles: They re Alright When They

### Magic Squares and Modular Arithmetic

Magic Squares and Modular Arithmetic Jim Carlson November 7, 2001 1 Introduction Recall that a magic square is a square array of consecutive distinct numbers such that all row and column sums and are the

### Graph Theory Problems and Solutions

raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

### 2 The Euclidean algorithm

2 The Euclidean algorithm Do you understand the number 5? 6? 7? At some point our level of comfort with individual numbers goes down as the numbers get large For some it may be at 43, for others, 4 In

### Which shapes make floor tilings?

Which shapes make floor tilings? Suppose you are trying to tile your bathroom floor. You are allowed to pick only one shape and size of tile. The tile has to be a regular polygon (meaning all the same

### MATH 289 PROBLEM SET 1: INDUCTION. 1. The induction Principle The following property of the natural numbers is intuitively clear:

MATH 89 PROBLEM SET : INDUCTION The induction Principle The following property of the natural numbers is intuitively clear: Axiom Every nonempty subset of the set of nonnegative integers Z 0 = {0,,, 3,

### 1(a). How many ways are there to rearrange the letters in the word COMPUTER?

CS 280 Solution Guide Homework 5 by Tze Kiat Tan 1(a). How many ways are there to rearrange the letters in the word COMPUTER? There are 8 distinct letters in the word COMPUTER. Therefore, the number of

### Session 6 Number Theory

Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

### Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

### 8. You have three six-sided dice (one red, one green, and one blue.) The numbers of the dice are

Probability Warm up problem. Alice and Bob each pick, at random, a real number between 0 and 10. Call Alice s number A and Bob s number B. The is the probability that A B? What is the probability that

### The Four Numbers Game

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-2007 The Four Numbers Game Tina Thompson University

### The Pigeonhole Principle

The Pigeonhole Principle 1 Pigeonhole Principle: Simple form Theorem 1.1. If n + 1 objects are put into n boxes, then at least one box contains two or more objects. Proof. Trivial. Example 1.1. Among 13

### ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

### Calculus for Middle School Teachers. Problems and Notes for MTHT 466

Calculus for Middle School Teachers Problems and Notes for MTHT 466 Bonnie Saunders Fall 2010 1 I Infinity Week 1 How big is Infinity? Problem of the Week: The Chess Board Problem There once was a humble

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

### PROBLEM SET 7: PIGEON HOLE PRINCIPLE

PROBLEM SET 7: PIGEON HOLE PRINCIPLE The pigeonhole principle is the following observation: Theorem. Suppose that > kn marbles are distributed over n jars, then one jar will contain at least k + marbles.

### NOTES: Justify your answers to all of the counting problems (give explanation or show work).

Name: Solutions Student Number: CISC 203 Discrete Mathematics for Computing Science Test 3, Fall 2010 Professor Mary McCollam This test is 50 minutes long and there are 40 marks. Please write in pen and

### Arithmetic Circuits Addition, Subtraction, & Multiplication

Arithmetic Circuits Addition, Subtraction, & Multiplication The adder is another classic design example which we are obliged look at. Simple decimal arithmetic is something which we rarely give a second

### LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton

LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton 1. Take a two-digit number and write it down three times to form a six-digit number. For example,

### Linear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.

Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a sub-vector space of V[n,q]. If the subspace of V[n,q]

### Tessellating with Regular Polygons

Tessellating with Regular Polygons You ve probably seen a floor tiled with square tiles. Squares make good tiles because they can cover a surface without any gaps or overlapping. This kind of tiling is

### 2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

### A permutation can also be represented by describing its cycles. What do you suppose is meant by this?

Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs

### Square roots by subtraction

Square roots by subtraction Frazer Jarvis When I was at school, my mathematics teacher showed me the following very strange method to work out square roots, using only subtraction, which is apparently

### Mathematical Induction

Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

### 2. INEQUALITIES AND ABSOLUTE VALUES

2. INEQUALITIES AND ABSOLUTE VALUES 2.1. The Ordering of the Real Numbers In addition to the arithmetic structure of the real numbers there is the order structure. The real numbers can be represented by

### Module 6: Basic Counting

Module 6: Basic Counting Theme 1: Basic Counting Principle We start with two basic counting principles, namely, the sum rule and the multiplication rule. The Sum Rule: If there are n 1 different objects

### Unit 7 The Number System: Multiplying and Dividing Integers

Unit 7 The Number System: Multiplying and Dividing Integers Introduction In this unit, students will multiply and divide integers, and multiply positive and negative fractions by integers. Students will

### 2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

### Gap Closing. Multiplying and Dividing. Junior / Intermediate Facilitator's Guide

Gap Closing Multiplying and Dividing Junior / Intermediate Facilitator's Guide Module 5 Multiplying and Dividing Diagnostic...5 Administer the diagnostic...5 Using diagnostic results to personalize interventions...5

### Patterns in Pascal s Triangle

Pascal s Triangle Pascal s Triangle is an infinite triangular array of numbers beginning with a at the top. Pascal s Triangle can be constructed starting with just the on the top by following one easy

### NIM Games: Handout 1

NIM Games: Handout 1 Based on notes by William Gasarch 1 One-Pile NIM Games Consider the following two-person game in which players alternate making moves. There are initially n stones on the board. During

### Number boards for mini mental sessions

Number boards for mini mental sessions Feel free to edit the document as you wish and customise boards and questions to suit your learners levels Print and laminate for extra sturdiness. Ideal for working

### Solving Systems of Linear Equations. Substitution

Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,

### ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF SECTION 4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem Copyright Cengage Learning. All rights reserved.

### Working with whole numbers

1 CHAPTER 1 Working with whole numbers In this chapter you will revise earlier work on: addition and subtraction without a calculator multiplication and division without a calculator using positive and

### DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

Professor Kindred Math 04 Graph Theory Homework 7 Solutions April 3, 03 Introduction to Graph Theory, West Section 5. 0, variation of 5, 39 Section 5. 9 Section 5.3 3, 8, 3 Section 7. Problems you should

### ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem

### How to Represent Fluid Level in Two Containers

NWMI ellingham Three Jugs Problem Page 1 How to Represent Fluid Level in Two Containers Suppose the total amount of fluid is 8 pints, divided between Container and Container. Sticking with integer amounts,

### Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours Essential Question: LESSON 4 FINITE ARITHMETIC SERIES AND RELATIONSHIP TO QUADRATIC

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Lecture Notes Counting 101 Note to improve the readability of these lecture notes, we will assume that multiplication takes precedence over division, i.e. A / B*C

### 1. R In this and the next section we are going to study the properties of sequences of real numbers.

+a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real

### HMMT February Saturday 21 February Combinatorics

HMMT February 015 Saturday 1 February 015 1. Evan s analog clock displays the time 1:13; the number of seconds is not shown. After 10 seconds elapse, it is still 1:13. What is the expected number of seconds

### 2. THE x-y PLANE 7 C7

2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

### 13 Solutions for Section 6

13 Solutions for Section 6 Exercise 6.2 Draw up the group table for S 3. List, giving each as a product of disjoint cycles, all the permutations in S 4. Determine the order of each element of S 4. Solution

### Lesson/Unit Plan Name: Multiplication Facts Made Easy

Grade Level/Course: Grades 3-6 Lesson/Unit Plan Name: Multiplication Facts Made Easy Rationale/Lesson Abstract: Teachers can eliminate the stress associated with developing fluency with multiplication

### Introduction to mathematical arguments

Introduction to mathematical arguments (background handout for courses requiring proofs) by Michael Hutchings A mathematical proof is an argument which convinces other people that something is true. Math

### 2014 Chapter Competition Solutions

2014 Chapter Competition Solutions Are you wondering how we could have possibly thought that a Mathlete would be able to answer a particular Sprint Round problem without a calculator? Are you wondering

3. QUADRATIC CONGRUENCES 3.1. Quadratics Over a Finite Field We re all familiar with the quadratic equation in the context of real or complex numbers. The formula for the solutions to ax + bx + c = 0 (where

### UK Junior Mathematical Olympiad 2016

UK Junior Mathematical Olympiad 206 Organised by The United Kingdom Mathematics Trust Tuesday 4th June 206 RULES AND GUIDELINES : READ THESE INSTRUCTIONS CAREFULLY BEFORE STARTING. Time allowed: 2 hours.

### Geometric Transformations

Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted