Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE

Size: px
Start display at page:

Download "Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE"

Transcription

1 Set operations and Venn Diagrams

2 Set operations and Venn diagrams! = { x x " and x " } This is the intersection of and. # = { x x " or x " } This is the union of and. n element of! belongs to both and, an element of # is required to belong to at least one of the sets.

3 ! = { x x " and x " }

4 # = { x x " or x " }

5 Sets and the Universal Set = {1,2,3,4}, = {1,3,5,7}, and C = {7,9,3}, and the universal set U = {1,2,3,4,5,6,7,8,9}. Locate all this information appropriately in a Venn diagram.

6 Sets and the Universal Set = {1,2,3,4}, = {1,3,5,7}, and C = {7,9,3}, and the universal set U = {1,2,3,4,5,6,7,8,9}. Locate all this information appropriately in a Venn diagram. With each number, place it in the appropriate region. C

7 Sets and the Universal Set = {1,2,3,4}, = {1,3,5,7}, and C = {7,9,3}, and the universal set U = {1,2,3,4,5,6,7,8,9}. Locate all this information appropriately in a Venn diagram. With each number, place it in the appropriate region. 1 C

8 Sets and the Universal Set = {1,2,3,4}, = {1,3,5,7}, and C = {7,9,3}, and the universal set U = {1,2,3,4,5,6,7,8,9}. Locate all this information appropriately in a Venn diagram. With each number, place it in the appropriate region. 2 1 C

9 Sets and the Universal Set = {1,2,3,4}, = {1,3,5,7}, and C = {7,9,3}, and the universal set U = {1,2,3,4,5,6,7,8,9}. Locate all this information appropriately in a Venn diagram. With each number, place it in the appropriate region C

10 Sets and the Universal Set = {1,2,3,4}, = {1,3,5,7}, and C = {7,9,3}, and the universal set U = {1,2,3,4,5,6,7,8,9}. Locate all this information appropriately in a Venn diagram. With each number, place it in the appropriate region. Check out the Venn diagram and make sure you agree with where all the elements have been placed C

11 Distributive Law for Unions # (! C) = ( # )! ( # C)

12 Distributive Law for Unions # (! C) = ( # )! ( # C) C

13 Distributive Law for Unions # (! C) = ( # )! ( # C) C ( # )! ( # C)

14 Distributive Law for Unions # (! C) = ( # )! ( # C) C # (! C) C ( # )! ( # C)

15 Distributive Law for Unions # (! C) = ( # )! ( # C) C # (! C) C ( # )! ( # C)

16 DeMorgan s Law ( # ) c = c! c

17 DeMorgan s Law ( # ) c = c! c ( # ) c is the gray region in this picture

18 DeMorgan s Law ( # ) c = c! c ( # ) c is the gray region in this picture t this stage is painted green.

19 DeMorgan s Law ( # ) c = c! c ( # ) c is the gray region in this picture Now is painted red, so what s outside of and outside of hasn t been painted.

20 DeMorgan s Law ( # ) c = c! c ( # ) c is the gray region in this picture What hasn t been painted is c! c

21 DeMorgan s Other Law (! ) c = c # c

22 DeMorgan s Other Law (! ) c = c # c

23 Grouping Students Let s denote by M and the students in a particular university that are studying mathematics and business. Write down the set that describes each of the following groups of students: (a) students studying math but not business

24 Grouping Students Let s denote by M and the students in a particular university that are studying mathematics and business. Write down the set that describes each of the following groups of students: (a) students studying math but not business M! c

25 Grouping Students Let s denote by M and the students in a particular university that are studying mathematics and business. Write down the set that describes each of the following groups of students: (b) students studying both math and business

26 Grouping Students Let s denote by M and the students in a particular university that are studying mathematics and business. Write down the set that describes each of the following groups of students: (b) students studying both math and business M!

27 Grouping Students Let s denote by M and the students in a particular university that are studying mathematics and business. Write down the set that describes each of the following groups of students: (c) students studying either math or business

28 Grouping Students Let s denote by M and the students in a particular university that are studying mathematics and business. Write down the set that describes each of the following groups of students: (c) students studying either math or business M #

29 Grouping Students Let s denote by M and the students in a particular university that are studying mathematics and business. Write down the set that describes each of the following groups of students: (d) students who study neither math nor business

30 Grouping Students Let s denote by M and the students in a particular university that are studying mathematics and business. Write down the set that describes each of the following groups of students: (d) students who study neither math nor business (M # ) c or M c! c

31 Grouping Students Let s denote by M and the students in a particular university that are studying mathematics and business. Write down the set that describes each of the following groups of students: (e) students who don t study math and who don t study business

32 Grouping Students Let s denote by M and the students in a particular university that are studying mathematics and business. Write down the set that describes each of the following groups of students: (e) students who don t study math and who don t study business (M # ) c or M c! c

33 Sketching regions representing sets: Sketch the region corresponding to the set ( # c )! C C

34 Sketching regions representing sets: Sketch the region corresponding to the set ( # c )! C C

35 Sketching regions representing sets: Sketch the region corresponding to the set ( # c )! C C

36 Sketching regions representing sets: Sketch the region corresponding to the set ( # c )! C C

EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS

EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

More information

A Little Set Theory (Never Hurt Anybody)

A Little Set Theory (Never Hurt Anybody) A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra

More information

Math 166 - Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.

Math 166 - Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Week in Review #4 Sections A.1 and A.2 - Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that

More information

Statistics 100A Homework 1 Solutions

Statistics 100A Homework 1 Solutions Chapter 1 tatistics 100A Homework 1 olutions Ryan Rosario 1. (a) How many different 7-place license plates are possible if the first 2 places are for letters and the other 5 for numbers? The first two

More information

Lecture 1. Basic Concepts of Set Theory, Functions and Relations

Lecture 1. Basic Concepts of Set Theory, Functions and Relations September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2

More information

THE LANGUAGE OF SETS AND SET NOTATION

THE LANGUAGE OF SETS AND SET NOTATION THE LNGGE OF SETS ND SET NOTTION Mathematics is often referred to as a language with its own vocabulary and rules of grammar; one of the basic building blocks of the language of mathematics is the language

More information

Green = 0,255,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (43,215,35) Equal Luminance Gray for Green

Green = 0,255,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (43,215,35) Equal Luminance Gray for Green Red = 255,0,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (184,27,26) Equal Luminance Gray for Red = 255,0,0 (147,147,147) Mean of Observer Matches to Red=255

More information

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know

More information

Homework 20: Compound Probability

Homework 20: Compound Probability Homework 20: Compound Probability Definition The probability of an event is defined to be the ratio of times that you expect the event to occur after many trials: number of equally likely outcomes resulting

More information

Check Skills You ll Need. New Vocabulary union intersection disjoint sets. Union of Sets

Check Skills You ll Need. New Vocabulary union intersection disjoint sets. Union of Sets NY-4 nion and Intersection of Sets Learning Standards for Mathematics..31 Find the intersection of sets (no more than three sets) and/or union of sets (no more than three sets). Check Skills You ll Need

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

1 The Concept of a Mapping

1 The Concept of a Mapping Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 1 The Concept of a Mapping The concept of a mapping (aka function) is important throughout mathematics. We have been dealing

More information

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS TABLE OF CONTENTS Welcome and Introduction 1 Chapter 1: INTEGERS AND INTEGER OPERATIONS

More information

4.1. Title: data analysis (systems analysis). 4.2. Annotation of educational discipline: educational discipline includes in itself the mastery of the

4.1. Title: data analysis (systems analysis). 4.2. Annotation of educational discipline: educational discipline includes in itself the mastery of the 4.1. Title: data analysis (systems analysis). 4.4. Term of study: 7th semester. 4.1. Title: data analysis (applied mathematics). 4.4. Term of study: 6th semester. 4.1. Title: data analysis (computer science).

More information

Basic Probability Theory II

Basic Probability Theory II RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Problem Set 1 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Problem Set 1 (with solutions) Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand Problem Set 1 (with solutions) About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the years,

More information

GRADE 5 SUPPLEMENT. Set A2 Number & Operations: Primes, Composites & Common Factors. Includes. Skills & Concepts

GRADE 5 SUPPLEMENT. Set A2 Number & Operations: Primes, Composites & Common Factors. Includes. Skills & Concepts GRADE 5 SUPPLEMENT Set A Number & Operations: Primes, Composites & Common Factors Includes Activity 1: Primes & Common Factors A.1 Activity : Factor Riddles A.5 Independent Worksheet 1: Prime or Composite?

More information

Year 12 Pure Mathematics. C1 Coordinate Geometry 1. Edexcel Examination Board (UK)

Year 12 Pure Mathematics. C1 Coordinate Geometry 1. Edexcel Examination Board (UK) Year 1 Pure Mathematics C1 Coordinate Geometry 1 Edexcel Examination Board (UK) Book used with this handout is Heinemann Modular Mathematics for Edexcel AS and A-Level, Core Mathematics 1 (004 edition).

More information

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9. SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid

More information

Statistics 100A Homework 2 Solutions

Statistics 100A Homework 2 Solutions Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Chih-Wei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can

More information

This satellite photo was taken on October 29th, 2011 and locates the project neighborhood and site for the project.

This satellite photo was taken on October 29th, 2011 and locates the project neighborhood and site for the project. Page 1 of 6 N This satellite photo was taken on October 29th, 2011 and locates the project neighborhood and site for the project. The following page is the Assessor s Parcel Map which was used in coordination

More information

Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A.

Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. Complement If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. For example, if A is the event UNC wins at least 5 football games, then A c is the

More information

Teacher: Maple So School: Herron High School. Comparing the Usage Cost of Electric Vehicles Versus Internal Combustion Vehicles

Teacher: Maple So School: Herron High School. Comparing the Usage Cost of Electric Vehicles Versus Internal Combustion Vehicles Teacher: Maple So School: Herron High School Name of Lesson: Comparing the Usage Cost of Electric Vehicles Versus Internal Combustion Vehicles Subject/ Course: Mathematics, Algebra I Grade Level: 9 th

More information

Pantone Matching System Color Chart PMS Colors Used For Printing

Pantone Matching System Color Chart PMS Colors Used For Printing Pantone Matching System Color Chart PMS Colors Used For Printing Use this guide to assist your color selection and specification process. This chart is a reference guide only. Pantone colors on computer

More information

Open-Ended Problem-Solving Projections

Open-Ended Problem-Solving Projections MATHEMATICS Open-Ended Problem-Solving Projections Organized by TEKS Categories TEKSING TOWARD STAAR 2014 GRADE 7 PROJECTION MASTERS for PROBLEM-SOLVING OVERVIEW The Projection Masters for Problem-Solving

More information

ACTIVITY: Identifying Common Multiples

ACTIVITY: Identifying Common Multiples 1.6 Least Common Multiple of two numbers? How can you find the least common multiple 1 ACTIVITY: Identifying Common Work with a partner. Using the first several multiples of each number, copy and complete

More information

South Carolina College- and Career-Ready (SCCCR) Probability and Statistics

South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR)

More information

Greatest Common Factors and Least Common Multiples with Venn Diagrams

Greatest Common Factors and Least Common Multiples with Venn Diagrams Greatest Common Factors and Least Common Multiples with Venn Diagrams Stephanie Kolitsch and Louis Kolitsch The University of Tennessee at Martin Martin, TN 38238 Abstract: In this article the authors

More information

S.CP.A.1: Venn Diagrams

S.CP.A.1: Venn Diagrams Regents Exam Questions www.jmap.org Name: 1 Monique has three sons who play football, two sons who play baseball, and one son who plays both sports. If all of her sons play baseball or football, how many

More information

STAT 360 Probability and Statistics. Fall 2012

STAT 360 Probability and Statistics. Fall 2012 STAT 360 Probability and Statistics Fall 2012 1) General information: Crosslisted course offered as STAT 360, MATH 360 Semester: Fall 2012, Aug 20--Dec 07 Course name: Probability and Statistics Number

More information

Set Theory: Shading Venn Diagrams

Set Theory: Shading Venn Diagrams Set Theory: Shading Venn Diagrams Venn diagrams are representations of sets that use pictures. We will work with Venn diagrams involving two sets (two-circle diagrams) and three sets (three-circle diagrams).

More information

Factorizations: Searching for Factor Strings

Factorizations: Searching for Factor Strings " 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write

More information

Two-Way Tables. Lesson 16. Main Idea. New Vocabulary two-way table relative frequency

Two-Way Tables. Lesson 16. Main Idea. New Vocabulary two-way table relative frequency Lesson 16 Main Idea Construct and interpret two-way tables. New Vocabulary two-way table relative frequency Math Online glencoe.com Two-Way Tables SCHOOL The data from a survey of 50 students is shown

More information

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

More information

Linear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

Linear Equations ! 25 30 35$ &  350 150% &  11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

More information

Grade 8 Classroom Assessments Based on State Standards (CABS)

Grade 8 Classroom Assessments Based on State Standards (CABS) Grade 8 Classroom Assessments Based on State Standards (CABS) A. Mathematical Processes and E. Statistics and Probability (From the WKCE-CRT Mathematics Assessment Framework, Beginning of Grade 10) A.

More information

Student Activity: To investigate an ESB bill

Student Activity: To investigate an ESB bill Student Activity: To investigate an ESB bill Use in connection with the interactive file, ESB Bill, on the Student s CD. 1. What are the 2 main costs that contribute to your ESB bill? 2. a. Complete the

More information

MAS113 Introduction to Probability and Statistics

MAS113 Introduction to Probability and Statistics MAS113 Introduction to Probability and Statistics 1 Introduction 1.1 Studying probability theory There are (at least) two ways to think about the study of probability theory: 1. Probability theory is a

More information

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that

More information

Algebra I Notes Relations and Functions Unit 03a

Algebra I Notes Relations and Functions Unit 03a OBJECTIVES: F.IF.A.1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element

More information

PROBABILITY II BEGINNER CIRCLE 4/21/2013

PROBABILITY II BEGINNER CIRCLE 4/21/2013 PROBABILITY II BEGINNER CIRCLE 4/21/2013 1. WARM-UP: GOING SHOPPING The math circle instructors go to the store to shop. The set of all items in the store will be called S, and there is a function that

More information

Probability and Venn diagrams UNCORRECTED PAGE PROOFS

Probability and Venn diagrams UNCORRECTED PAGE PROOFS Probability and Venn diagrams 12 This chapter deals with further ideas in chance. At the end of this chapter you should be able to: identify complementary events and use the sum of probabilities to solve

More information

37 Basic Geometric Shapes and Figures

37 Basic Geometric Shapes and Figures 37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars

More information

Factory example D MA ND 0 MB D ND

Factory example D MA ND 0 MB D ND Bayes Theorem Now we look at how we can use information about conditional probabilities to calculate reverse conditional probabilities i.e., how we calculate ( A B when we know ( B A (and some other things.

More information

COURSE SYLLABUS -----------------------------------------------------------------------------------

COURSE SYLLABUS ----------------------------------------------------------------------------------- Last Reviewed by: Leslie Wurst Date Approved: Date Revised: Fall 2012 COURSE SYLLABUS Syllabus for: MATH 1010 Math for General Studies Former Course and Title: Former Quarter Course(s): Mat 1260 Contemporary

More information

Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price

Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price Three functions of importance in business are cost functions, revenue functions and profit functions. Cost functions

More information

Exploring Tangrams. Goal. You will need scissors and a ruler. At-Home Help. 1. Trace and cut out the 7 tans.

Exploring Tangrams. Goal. You will need scissors and a ruler. At-Home Help. 1. Trace and cut out the 7 tans. HPTER 7 1 Exploring Tangrams Solve tangram puzzles. You will need scissors and a ruler. 1. Trace and cut out the 7 tans. t-home Help tangram is an ancient hinese puzzle. It has the 7 shapes, or tans, shown

More information

Let P denote the payment amount. Then the accumulated value of the annuity on the daughter s eighteenth birthday is. P s 18.

Let P denote the payment amount. Then the accumulated value of the annuity on the daughter s eighteenth birthday is. P s 18. MATH 3060 Introduction to Financial Mathematics February 2, 205 Example. (Annuity-immediate with unknown payment and a given discount rate. From Vaaler and Daniel, Example 3.2.5, p. 5. ) Mr. Liang wishes

More information

3.2 Conditional Probability and Independent Events

3.2 Conditional Probability and Independent Events Ismor Fischer, 5/29/2012 3.2-1 3.2 Conditional Probability and Independent Events Using population-based health studies to estimate probabilities relating potential risk factors to a particular disease,

More information

Probability Using Dice

Probability Using Dice Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you

More information

Life Systems: Animals vs. Plants

Life Systems: Animals vs. Plants Life Systems: Animals vs. Plants Overview: Plants and animals are a part of everyday life. It is important for students to understand the basic fundamental differences between the two. Procedures: -Have

More information

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions) Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

More information

Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University

Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University Overview The GeoGebra documents allow exploration of four geometric transformations taught

More information

Mathematics (Project Maths Phase 3)

Mathematics (Project Maths Phase 3) 2013. M328 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2013 Mathematics (Project Maths Phase 3) Paper 2 Ordinary Level Monday 10 June Morning 9:30 12:00

More information

Risk Analysis of Development Programs

Risk Analysis of Development Programs P. P. PANDOLFINI A Risk Analysis of Development Programs Peter P. Pandolfini set-theory methodology for risk analysis was first proposed by Benjamin Blanchard. The methodology is explained here in terms

More information

Classifying Lesson 1 Triangles

Classifying Lesson 1 Triangles Classifying Lesson 1 acute angle congruent scalene Classifying VOCABULARY right angle isosceles Venn diagram obtuse angle equilateral You classify many things around you. For example, you might choose

More information

Math 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above.

Math 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above. Math 210 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. 2. Suppose that 80% of students taking calculus have previously had a trigonometry course. Of those that did, 75% pass their calculus

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

More information

Chapter 13 & 14 - Probability PART

Chapter 13 & 14 - Probability PART Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph

More information

Adapted from activities and information found at University of Surrey Website http://www.mcs.surrey.ac.uk/personal/r.knott/fibonacci/fibnat.

Adapted from activities and information found at University of Surrey Website http://www.mcs.surrey.ac.uk/personal/r.knott/fibonacci/fibnat. 12: Finding Fibonacci patterns in nature Adapted from activities and information found at University of Surrey Website http://www.mcs.surrey.ac.uk/personal/r.knott/fibonacci/fibnat.html Curriculum connections

More information

Applied Liberal Arts Mathematics MAT-105-TE

Applied Liberal Arts Mathematics MAT-105-TE Applied Liberal Arts Mathematics MAT-105-TE This TECEP tests a broad-based overview of mathematics intended for non-math majors and emphasizes problem-solving modeled on real-life applications. Topics

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Access The Mathematics of Internet Search Engines

Access The Mathematics of Internet Search Engines Lesson1 Access The Mathematics of Internet Search Engines You are living in the midst of an ongoing revolution in information processing and telecommunications. Telephones, televisions, and computers are

More information

The Set Data Model CHAPTER 7. 7.1 What This Chapter Is About

The Set Data Model CHAPTER 7. 7.1 What This Chapter Is About CHAPTER 7 The Set Data Model The set is the most fundamental data model of mathematics. Every concept in mathematics, from trees to real numbers, is expressible as a special kind of set. In this book,

More information

Online Test Monitor Certification Course 2014-2015 Transcript

Online Test Monitor Certification Course 2014-2015 Transcript Online Test Monitor Certification Course 2014-2015 Transcript Slide # Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Slide 7 Minnesota Assessments Test Security Training for Districts and Schools Welcome

More information

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Workbench

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Workbench Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Workbench 5.1 Introduction The problem selected to illustrate the use of ANSYS software for a three-dimensional steadystate

More information

2-1 Position, Displacement, and Distance

2-1 Position, Displacement, and Distance 2-1 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:

More information

Graphing Equations. with Color Activity

Graphing Equations. with Color Activity Graphing Equations with Color Activity Students must re-write equations into slope intercept form and then graph them on a coordinate plane. 2011 Lindsay Perro Name Date Between The Lines Re-write each

More information

Washington State K 8 Mathematics Standards April 2008

Washington State K 8 Mathematics Standards April 2008 Washington State K 8 Mathematics Standards Data Analysis, Statistics, and Probability Strand In kindergarten through grade 5, students learn a variety of ways to display data, and they interpret data to

More information

Tree sums and maximal connected I-spaces

Tree sums and maximal connected I-spaces Tree sums and maximal connected I-spaces Adam Bartoš drekin@gmail.com Faculty of Mathematics and Physics Charles University in Prague Twelfth Symposium on General Topology Prague, July 2016 Maximal and

More information

How To Understand And Solve A Linear Programming Problem

How To Understand And Solve A Linear Programming Problem At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

More information

Millfields Community School Learning Environment Policy

Millfields Community School Learning Environment Policy Millfields Community School Learning Environment Policy CONTENTS 1. Aims 2. The Classroom Environment in KS1 and KS2 2a. The Early Years classroom environment 3. Resources 4. Books and folders 5. Health

More information

Grade 8 Mathematics Data Analysis, Probability, and Discrete Mathematics: Lesson 3

Grade 8 Mathematics Data Analysis, Probability, and Discrete Mathematics: Lesson 3 Grade 8 Mathematics Data Analysis, Probability, and Discrete Mathematics: Lesson 3 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type

More information

Schemas Supporting Physical Data Storage

Schemas Supporting Physical Data Storage s Supporting Data Storage 21 st January 2014 (30 th March 2001) s Supporting Physical Data Storage Introduction A RAQUEL DB is made up of a DB, which itself consists of a set of schemas. These schemas

More information

Bachelor of Science or Arts Degree Minor Environmental Science Check List

Bachelor of Science or Arts Degree Minor Environmental Science Check List Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman Success Mathematics & 6 LA 10101 Freshman

More information

Possible Stage Two Mathematics Test Topics

Possible Stage Two Mathematics Test Topics Possible Stage Two Mathematics Test Topics The Stage Two Mathematics Test questions are designed to be answerable by a good problem-solver with a strong mathematics background. It is based mainly on material

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Circles - Part page Sample Problems. Find an equation for the circle centered at (; ) with radius r = units.. Graph the equation + + = ( ).. Consider the circle ( ) + ( + ) =. Find all points

More information

AP Stats - Probability Review

AP Stats - Probability Review AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

More information

Benchmark Test : Algebra 1

Benchmark Test : Algebra 1 1 Benchmark: MA.91.A.3.3 If a ar b r, what is the value of a in terms of b and r? A b + r 1 + r B 1 + b r + b C 1 + b r D b r 1 Benchmark: MA.91.A.3.1 Simplify: 1 g(5 3) 4g 13 4 F 11 4 g 16 G g 1 H 15

More information

Linear Equations. 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber

Linear Equations. 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber Linear Equations 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber Tools: Geometer s Sketchpad Software Overhead projector with TI- 83

More information

Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008

Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008 Basic Set Theory LX 502 - Semantics I September 11, 2008 1. Motivation When you start reading these notes, the first thing you should be asking yourselves is What is Set Theory and why is it relevant?

More information

STAT 35A HW2 Solutions

STAT 35A HW2 Solutions STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

More information

Licensed to: Printed in the United States of America 1 2 3 4 5 6 7 15 14 13 12 11

Licensed to: Printed in the United States of America 1 2 3 4 5 6 7 15 14 13 12 11 Licensed to: CengageBrain User This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any

More information

x 2 if 2 x < 0 4 x if 2 x 6

x 2 if 2 x < 0 4 x if 2 x 6 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) = x if 0 x < 4 x if x 6 Piecewise-defined Functions Example Consider the function f defined by x if x < 0 f (x) =

More information

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314 Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

More information

Two-Way ANOVA tests. I. Definition and Applications...2. II. Two-Way ANOVA prerequisites...2. III. How to use the Two-Way ANOVA tool?...

Two-Way ANOVA tests. I. Definition and Applications...2. II. Two-Way ANOVA prerequisites...2. III. How to use the Two-Way ANOVA tool?... Two-Way ANOVA tests Contents at a glance I. Definition and Applications...2 II. Two-Way ANOVA prerequisites...2 III. How to use the Two-Way ANOVA tool?...3 A. Parametric test, assume variances equal....4

More information

7. 080207a, P.I. A.A.17

7. 080207a, P.I. A.A.17 Math A Regents Exam 080 Page 1 1. 08001a, P.I. A.A.6 On a map, 1 centimeter represents 40 kilometers. How many kilometers are represented by 8 centimeters? [A] 48 [B] 30 [C] 5 [D] 80. 0800a, P.I. G.G.38

More information

Estimating the Average Value of a Function

Estimating the Average Value of a Function Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

More information

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Final Examination Spring Session 2008 WUCT121

More information

Please Excuse My Dear Aunt Sally

Please Excuse My Dear Aunt Sally Really Good Stuff Activity Guide Order of Operations Poster Congratulations on your purchase of the Really Good Stuff Order of Operations Poster a colorful reference poster to help your students remember

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Midterm Exam #1 Instructions:

Midterm Exam #1 Instructions: Public Affairs 818 Professor: Geoffrey L. Wallace October 9 th, 008 Midterm Exam #1 Instructions: You have 10 minutes to complete the examination and there are 6 questions worth a total of 10 points. The

More information

MATHEMATICS. Y5 Multiplication and Division 5330 Square numbers, prime numbers, factors and multiples. Equipment. MathSphere

MATHEMATICS. Y5 Multiplication and Division 5330 Square numbers, prime numbers, factors and multiples. Equipment. MathSphere MATHEMATICS Y5 Multiplication and Division 5330 Square numbers, prime numbers, factors and multiples Paper, pencil, ruler. Equipment MathSphere 5330 Square numbers, prime numbers, factors and multiples

More information

Mathematics Test Book 2

Mathematics Test Book 2 Mathematics Test Book 2 Grade 6 March 9 13, 2009 Name 21316 Developed and published under contract with the New York State Education Department by CTB/McGraw-Hill LLC, a subsidiary of The McGraw-Hill Companies,

More information

The study of probability has increased in popularity over the years because of its wide range of practical applications.

The study of probability has increased in popularity over the years because of its wide range of practical applications. 6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,

More information