# Practice Questions Chapter 4 & 5

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Practice Questions Chapter 4 & 5 Use the following to answer questions 1-3: Ignoring twins and other multiple births, assume babies born at a hospital are independent events with the probability that a baby is a boy and the probability that a baby is a girl both equal to What is the probability that the next three babies are of the same sex? A) B) C) D) Define event B = {at least one of the next two babies is a boy}. What is the probability of the complement of event B? A) B) C) D) What is the probability that at least one of the next three babies is a boy? A) B) C) D) A valid probability is any number between 1 and 1. A) True B) False 5. In a probability model, all possible outcomes together must have a probability of 1? A) True B) False 6. If two events have no outcomes in common, then those two events are. A) independent B) disjoint Page 1

2 7. Two events are considered independent if the outcome of one does not influence the outcome of the other? A) True B) False 8. You decide to visit the health center to be tested for HIV, the virus that causes AIDS. What is the sample space that represents your possible result? 9. Binomial distributions represent random variables. A) discrete B) continuous C) None of the above. 10. Normal distributions represent random variables. A) discrete B) continuous C) None of the above. Use the following to answer questions 11-16: The probability distribution of random variable, X, is defined as follows: X Probability Is the above a valid probability model? A) Yes B) No 12. The table above describes a random variable that is. A) discrete B) continuous C) both discrete and continuous D) None of the above. 13. The expected value of the probability distribution is. 14. The P(X = 0) = Page 2

3 15. The P(X < 4) = 16. The P(X > 0) = Use the following to answer question 17: Consider the following probability histogram for a discrete random variable X: 17. What is P(X < 3)? A) 0.10 B) 0.25 C) 0.35 D) 0.65 Use the following to answer questions 18-20: The probability density of a continuous random variable X is given in the figure below: Page 3

4 18. Based on this density, what is the probability that X is between 0.5 and 1.5? A) 1 3 B) 1 2 C) 3 4 D) What is the P(X = 1.5)? A) 0 B) 1 4 C) ⅓ D) What is the P(X 1.5)? A) 0 B) 1 4 C) ⅓ D) 1 2 Use the following to answer questions 21-23: The weight of medium-size tomatoes selected at random from a bin at the local supermarket is a random variable with mean = 10 oz and standard deviation = 1 oz 21. Suppose we pick four tomatoes from the bin at random and put them in a bag. Define the random variable Y = the weight of the bag containing the four tomatoes. What is the mean of the random variable Y? A) Y = 2.5 oz B) Y = 4 oz C) Y = 10 oz D) Y = 40 oz 22. Suppose we pick four tomatoes from the bin at random and put them in a bag. Define the random variable Y = the weight of the bag containing the four tomatoes. What is the standard deviation of the random variable Y? A) Y = 0.50 oz B) Y = 1.0 oz C) Y = 2.0 oz D) Y = 4.0 oz Page 4

5 23. Suppose we pick two tomatoes at random from the bin. Let the random variable V = the difference in the weights of the two tomatoes selected (the weight of the first tomato minus the weight of the second tomato). What is the standard deviation of the random variable V? A) V = 0.00 oz B) V = 1.00 oz C) V = 1.41 oz D) V = 2.00 oz Use the following to answer questions 24-27: The table below shows the political affiliation of 1000 randomly selected American voters and their positions on the school of choice program: Political party Position Democrat Republican Other Favor Oppose Let the event D = {voter is a Democrat}, R = {voter is a Republican}, and F = {voter favors the school of choice program}. For each of the following questions, write the probability in symbols (e.g., P(D)) and calculate the probability. 24. What is the probability that a randomly selected voter favors the school of choice program? A) P(F) = 0.30 B) P(F) = 0.36 C) P(F) = 0.38 D) P(F) = What is the probability that a randomly selected Republican favors the school of choice program? A) P(F R) = 0.12 B) P(R F) = 0.19 C) P(F R) = 0.33 D) P(R F) = 0.36 Page 5

6 26. What is the probability that a randomly selected voter who favors the school of choice program is a Democrat? A) P(D F) = 0.26 B) P(D F) = 0.42 C) P(F D) = 0.48 D) P(F D) = A candidate thinks she has a good chance of gaining the votes of anyone who is a Democrat or who is in favor of the school of choice program. What proportion of the 1000 voters is that? A) P(D or F) = 0.26 B) P(D and F) = 0.65 C) P(D or F) = 0.66 D) P(D F) = Suppose a simple random sample is selected from a population with mean and variance 2. The central limit theorem tells us that A) the sample mean x gets closer to the population mean as the sample size increases. B) if the sample size n is sufficiently large, the sample will be approximately Normal. C) the mean of x will be if the sample size n is sufficiently large. D) if the sample size is sufficiently large, the distribution of x will be approximately Normal with mean and standard deviation, n. E) the distribution of x will be Normal only if the population from which the sample is selected is also Normal. Use the following to answer question 29: Let X represent the SAT score of an entering freshman at University X. The random variable X is known to have a N(1200, 90) distribution. Let Y represent the SAT score of an entering freshman at University Y. The random variable Y is known to have a N(1215, 110) distribution. A random sample of 100 freshmen is obtained from each university. Let X = the sample mean of the 100 scores from University X, and Y = the sample mean of the 100 scores from University Y. Page 6

7 29. What is the distribution of the difference in sample means between University X and University Y: X Y? A) N( 15, 20) B) N( 15, 14.2) C) N( 15, 142.1) D) N( 15, 200) Use the following to answer questions 30-31: A population variable has a distribution with mean = 50 and variance 2 = 225. From this population a simple random sample of n observations is to be selected and the mean x of the sample values calculated. 30. How big must the sample size n be so that the standard deviation of the sample mean, x, is equal to 1.4, i.e., x = 1.4? A) n = 11 B) n = 161 C) n = 115 D) n = 36 E) n = If the population variable is known to be Normally distributed and the sample size used is to be n = 16, what is the probability that the sample mean will be between and 55.74, i.e., P(48.35 x 55.74)? A) B) C) D) E) Not within ± of any of the above. Page 7

8 Answer Key 1. B 2. B 3. D 4. B 5. A 6. B 7. A 8. S = {Positive for HIV, Negative for HIV} 9. A 10. B 11. A 12. A C 18. B 19. A 20. B 21. D 22. C 23. C 24. D 25. C 26. B 27. C 28. D 29. B 30. C 31. B Page 8

### Name: Date: Use the following to answer questions 2-4:

Name: Date: 1. A phenomenon is observed many, many times under identical conditions. The proportion of times a particular event A occurs is recorded. What does this proportion represent? A) The probability

### Test of proportion = 0.5 N Sample prop 95% CI z- value p- value (0.400, 0.466)

STATISTICS FOR THE SOCIAL AND BEHAVIORAL SCIENCES Recitation #10 Answer Key PROBABILITY, HYPOTHESIS TESTING, CONFIDENCE INTERVALS Hypothesis tests 2 When a recent GSS asked, would you be willing to pay

### Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

### AP STATISTICS TEST #2 - REVIEW - Ch. 14 &15 Period:

AP STATISTICS Name TEST #2 - REVIEW - Ch. 14 &15 Period: 1) The city council has 6 men and 3 women. If we randomly choose two of them to co-chair a committee, what is the probability these chairpersons

### PROBABILITY. Chapter Overview Conditional Probability

PROBABILITY Chapter. Overview.. Conditional Probability If E and F are two events associated with the same sample space of a random experiment, then the conditional probability of the event E under the

### The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

### STT 315 Practice Problems II for Sections

STT 315 Practice Problems II for Sections 4.1-4.8 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Classify the following random

### Statistics 100 Midterm Practice Problems

STATISTICS 100 MIDTERM PRACTICE PROBLEMS PAGE 1 OF 8 Statistics 100 Midterm Practice Problems 1. (26 points total) Suppose that in 2004, the verbal portion of the Scholastic Aptitude Test (SAT) had a mean

### Chapter 6 Continuous Probability Distributions

Continuous Probability Distributions Learning Objectives 1. Understand the difference between how probabilities are computed for discrete and continuous random variables. 2. Know how to compute probability

### An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

### Tree Diagrams. on time. The man. by subway. From above tree diagram, we can get

1 Tree Diagrams Example: A man takes either a bus or the subway to work with probabilities 0.3 and 0.7, respectively. When he takes the bus, he is late 30% of the days. When he takes the subway, he is

### Mind on Statistics. Chapter 10

Mind on Statistics Chapter 10 Section 10.1 Questions 1 to 4: Some statistical procedures move from population to sample; some move from sample to population. For each of the following procedures, determine

### Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions 1. A phone-in poll conducted by a newspaper reported that 73% of those who called in liked business tycoon Donald Trump. The number 73% is a A) statistic. B) sample. C)

### SOME EXTRA QUESTIONS. I will try to post three new questions per week - just to keep your mind active. The answers are on the last page.

SOME EXTRA QUESTIONS I will try to post three new questions per week - just to keep your mind active. The answers are on the last page. (1) A simple random sample of 1200 adult Americans is selected and

### Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Regular smoker

Exam Chapters 4&5 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) A 28-year-old man pays \$181 for a one-year

### 6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.

Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.

### AP Stats - Probability Review

AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

### The statistics of a particular basketball player state that he makes 4 out of 5 free-throw attempts.

Name: Date: Use the following to answer question 1: The statistics of a particular basketball player state that he makes 4 out of 5 free-throw attempts. 1. The basketball player is just about to attempt

### Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

### Measuring the Power of a Test

Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection

### Worked examples Basic Concepts of Probability Theory

Worked examples Basic Concepts of Probability Theory Example 1 A regular tetrahedron is a body that has four faces and, if is tossed, the probability that it lands on any face is 1/4. Suppose that one

### 4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

### Population and sample; parameter and statistic. Sociology 360 Statistics for Sociologists I Chapter 11 Sampling Distributions. Question about Notation

Population and sample; parameter and statistic Sociology 360 Statistics for Sociologists I Chapter 11 Sampling Distributions The Population is the entire group we are interested in A parameter is a number

### Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

### m (t) = e nt m Y ( t) = e nt (pe t + q) n = (pe t e t + qe t ) n = (qe t + p) n

1. For a discrete random variable Y, prove that E[aY + b] = ae[y] + b and V(aY + b) = a 2 V(Y). Solution: E[aY + b] = E[aY] + E[b] = ae[y] + b where each step follows from a theorem on expected value from

### Power and Sample Size Determination

Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,

### Math 140: Introductory Statistics Instructor: Julio C. Herrera Exam 3 January 30, 2015

Name: Exam Score: Instructions: This exam covers the material from chapter 7 through 9. Please read each question carefully before you attempt to solve it. Remember that you have to show all of your work

### Models for Discrete Variables

Probability Models for Discrete Variables Our study of probability begins much as any data analysis does: What is the distribution of the data? Histograms, boxplots, percentiles, means, standard deviations

### Chapter 6 Random Variables

Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340-344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:

### The number of phone calls to the attendance office of a high school on any given school day A) continuous B) discrete

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) State whether the variable is discrete or continuous.

### Stat 210 Exam Four. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Stat 210 Exam Four Read these directions carefully. As usual, you may pick any part of one problem to omit by writing OMIT in the answer blank (any one multiple choice or any one part of the other problems).

### Sampling Distribution of a Sample Proportion

Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given

### Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

### Binomial Probabilities

Lab 8: Break free from tables! STT 421: Summer, 2004 Vince Melfi For many years published tables of probabilities, like Tables A F of Normal, Binomial, etc., probabilites, were indispensible to statisticians.

### 2) The ph level in a shampoo 2) A) Discrete B) Continuous. 3) The number of field goals kicked in a football game 3)

ch5practice test Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level in a shampoo

### The Normal Curve. The Normal Curve and The Sampling Distribution

Discrete vs Continuous Data The Normal Curve and The Sampling Distribution We have seen examples of probability distributions for discrete variables X, such as the binomial distribution. We could use it

### Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter problem: Does the MicroSort method of gender selection increase the likelihood that a baby will be girl? MicroSort: a gender-selection method developed by Genetics

### M 1313 Review Test 4 1

M 1313 Review Test 4 1 Review for test 4: 1. Let E and F be two events of an experiment, P (E) =. 3 and P (F) =. 2, and P (E F) =.35. Find the following probabilities: a. P(E F) b. P(E c F) c. P (E F)

### Lecture 5 : The Poisson Distribution. Jonathan Marchini

Lecture 5 : The Poisson Distribution Jonathan Marchini Random events in time and space Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

### 8-2 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis

8-2 Basics of Hypothesis Testing Definitions This section presents individual components of a hypothesis test. We should know and understand the following: How to identify the null hypothesis and alternative

### Example. For example, if we roll a die

3 Probability A random experiment has an unknown outcome, but a well defined set of possible outcomes S. The set S is called the sample set. An element of the sample set S is called a sample point (elementary

### Chapter 4. Probability and Probability Distributions

Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

### 9. Sampling Distributions

9. Sampling Distributions Prerequisites none A. Introduction B. Sampling Distribution of the Mean C. Sampling Distribution of Difference Between Means D. Sampling Distribution of Pearson's r E. Sampling

### Probability Distributions

Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

### LAMC Math 137 Test 1 Module 1-2 Yun 10/1/2014

LAMC Math 137 Test 1 Module 1-2 Yun 10/1/2014 Last name First name You may use a calculator but not a cellphone, tablet or an ipod. Please clearly mark your choices on multiple choice questions and box

### Quiz CHAPTER 16 NAME: UNDERSTANDING PROBABILITY AND LONG- TERM EXPECTATIONS

Quiz CHAPTER 16 NAME: UNDERSTANDING PROBABILITY AND LONG- TERM EXPECTATIONS 1. Give two examples of ways that we speak about probability in our every day lives. NY REASONABLE ANSWER OK. EXAMPLES: 1) WHAT

### Math 240 Practice Exam 1 Note: Show all work whenever possible for full credit. You may leave your answers in terms of fractions.

Name: (Solution on last page)... Math 240 Practice Exam 1 Note: Show all work whenever possible for full credit. You may leave your answers in terms of fractions. Formulas: 2 2 x x n x x s x x n f x f

### Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams

Review for Final Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams Histogram Boxplots Chapter 3: Set

### Math 150 Sample Exam #2

Problem 1. (16 points) TRUE or FALSE. a. 3 die are rolled, there are 1 possible outcomes. b. If two events are complementary, then they are mutually exclusive events. c. If A and B are two independent

### 13 Two-Sample T Tests

www.ck12.org CHAPTER 13 Two-Sample T Tests Chapter Outline 13.1 TESTING A HYPOTHESIS FOR DEPENDENT AND INDEPENDENT SAMPLES 270 www.ck12.org Chapter 13. Two-Sample T Tests 13.1 Testing a Hypothesis for

### MAT 1000. Mathematics in Today's World

MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities

### The Binomial Probability Distribution

The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the mean for the given sample data. 1) Bill kept track of the number of hours he spent

### How to Do it: Math 227 Elementary Statistics-Minitab Handout Ch4, Ch5, and Ch6. Number of days stayed(x) Frequency

Ch4 Ex) #1. Consider the following data. The random variable X represent the number of days patients stayed in the hospital. Calculate Relative Frequency Probabilities. Number of days stayed(x) Frequency

### How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some

### Math 1011 Homework Set 2

Math 1011 Homework Set 2 Due February 12, 2014 1. Suppose we have two lists: (i) 1, 3, 5, 7, 9, 11; and (ii) 1001, 1003, 1005, 1007, 1009, 1011. (a) Find the average and standard deviation for each of

### Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0.

Ch. 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 1 Find Areas Under the Standard Normal Curve 1) Find the area under the standard normal

### In this chapter, we use sample data to make conclusions about the population. Many of these conclusions are based on probabilities of the events.

Lecture#4 Chapter 4: Probability In this chapter, we use sample data to make conclusions about the population. Many of these conclusions are based on probabilities of the events. 4-2 Fundamentals Definitions:

### Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

### number of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.

12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.

### Probability Review. ICPSR Applied Bayesian Modeling

Probability Review ICPSR Applied Bayesian Modeling Random Variables Flip a coin. Will it be heads or tails? The outcome of a single event is random, or unpredictable What if we flip a coin 10 times? How

### Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

### Stats Review Chapters 5-6

Stats Review Chapters 5-6 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test

### BE ALERT FOR CORRECTIONS TO THIS KEY

A statistical hypothesis test acts on data to arrive at a decision to either reject or not reject a stated null hypothesis. One important focus is to design a test achieving a given alpha. Then there is

### Key Concept. Properties

MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

### Do Now: 1. SWBAT: Use a probability distribution to calculate the mean and standard deviation of a discrete random variable.

Do Now: 1. SWBAT: Use a probability distribution to calculate the mean 2. Random Variable: Takes numerical values that describe the outcomes of some event Probability Distribution: The probability distribution

### Sample Proportions. Example 1

Sample Proportions Start with a population of units and a variable that is categorical with two categories on the basis of some attribute that each unit either succeeds in having, or fails to have. These

### 11-1 Permutations and Combinations

Fundamental Counting Principal 11-1 Permutations and Combinations Using the Fundamental Counting Principle 1a. A make-your-own-adventure story lets you choose 6 starting points, gives 4 plot choices, and

### Sampling Central Limit Theorem Proportions. Outline. 1 Sampling. 2 Central Limit Theorem. 3 Proportions

Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Populations and samples When we use statistics, we are trying to find out information about

### Chapters 5. Multivariate Probability Distributions

Chapters 5. Multivariate Probability Distributions Random vectors are collection of random variables defined on the same sample space. Whenever a collection of random variables are mentioned, they are

### Practice#1(chapter1,2) Name

Practice#1(chapter1,2) Name Solve the problem. 1) The average age of the students in a statistics class is 22 years. Does this statement describe descriptive or inferential statistics? A) inferential statistics

### Sample Term Test 2A. 1. A variable X has a distribution which is described by the density curve shown below:

Sample Term Test 2A 1. A variable X has a distribution which is described by the density curve shown below: What proportion of values of X fall between 1 and 6? (A) 0.550 (B) 0.575 (C) 0.600 (D) 0.625

Using Your TI-NSpire Calculator: Binomial Probability Distributions Dr. Laura Schultz Statistics I This handout describes how to use the binompdf and binomcdf commands to work with binomial probability

### Univariate and Bivariate Tests

Univariate and BUS 230: Business and Economics Research and Communication Univariate and Goals Hypotheses Tests Goals 1/ 20 Specific goals: Be able to distinguish different types of data and prescribe

PROBLEM SET 1 For the first three answer true or false and explain your answer. A picture is often helpful. 1. Suppose the significance level of a hypothesis test is α=0.05. If the p-value of the test

### Math 251, Review Questions for Test 3 Rough Answers

Math 251, Review Questions for Test 3 Rough Answers 1. (Review of some terminology from Section 7.1) In a state with 459,341 voters, a poll of 2300 voters finds that 45 percent support the Republican candidate,

### AP * Statistics Review. Probability

AP * Statistics Review Probability Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,

### FINAL EXAM REVIEW - Fa 13

FINAL EXAM REVIEW - Fa 13 Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate. 1) The temperatures of eight different plastic spheres. 2) The sample

### Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

### Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

### Statistics 100 Binomial and Normal Random Variables

Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random

### An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 7 - Sampling and Sampling Distributions

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 7 - Sampling and Sampling

### MAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions

MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard

### Review #2. Statistics

Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of

### Chapter 3 - Practice Problems 1

Chapter 3 - Practice Problems 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) The two most frequently used measures

### Fundamentals of Probability

Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

### ANOVA MULTIPLE CHOICE QUESTIONS. In the following multiple-choice questions, select the best answer.

ANOVA MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard

### Normal distribution. ) 2 /2σ. 2π σ

Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

### Math 140 Introductory Statistics

The Big Picture of Statistics Math 140 Introductory Statistics Lecture 10 Introducing Probability Chapter 10 2 Example Suppose that we are interested in estimating the percentage of U.S. adults who favor

### Answers: a. 87.5325 to 92.4675 b. 87.06 to 92.94

1. The average monthly electric bill of a random sample of 256 residents of a city is \$90 with a standard deviation of \$24. a. Construct a 90% confidence interval for the mean monthly electric bills of

### 1. Which of the following questions on a job application does not naturally give rise to a binomial variable?

1. Which of the following questions on a job application does not naturally give rise to a binomial variable? a) What is your gender? b) Have you graduated high school? c) Have you ever been convicted

### + Section 6.2 and 6.3

Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

### Dangling thread from last time. Lecture 8: Geometric and Binomial distributions. Milgram experiment. Statistics 101

Recap Dangling thread from last time From OpenIntro quiz 2: Lecture 8: Geometric and s Statistics 101 Mine Çetinkaya-Rundel September 22, 2011 P(took not valuable) P(took and not valuable) = P(not valuable)

### once? These kinds of questions can be answered by applying some basic probability rules that you will

TOPIC 30 Probability Rules What is the probability that a randomly selected movie will be one that neither you nor your friend has seen yet? What is the probability that you have not seen the film, given

### Statistics Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Statistics Final Exam Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assume that X has a normal distribution, and find the indicated