STAT 35A HW2 Solutions

Size: px
Start display at page:

Transcription

1 STAT 35A HW2 Solutions 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i }, for i = 1, 2, 3, and suppose that P(A 1 ) = 0.22, P(A 2 ) = 0.25, P(A 3 ) = 0.28, P(A 1 A 2 ) = 0.11, P(A 1 A 3 ) = 0.05, P(A 2 A 3 ) = 0.07, P(A 1 A 2 A 3 ) = Express in words each of the following events and compute the probability of each event. 1.A (4 POINTS): A 1 A 2 The probability that either A 1 or A 2 occurs: P(A 1 ) + P(A 2 ) P(A 1 A 2 ) = =.36 1.B (4 POINTS): A' 1 A' 2 The probability that neither A 1 or A 2 occurs: P(A' 1 A' 2 ) = P(A 1 A 2 ) ' = 1 P(A 1 A 2 ) = 1.36 =.64 1.C (4 POINTS): A 1 A 2 A 3 The probability that either A 1 or A 2 or A 3 occurs: P(A 1 )+ P(A 2 )+ P(A 3 ) P(A 1 A 2 ) P(A 2 A 3 ) P(A 1 A 3 )+ P(A 1 A 2 A 3 ) = =.53 1.D (4 POINTS): A' 1 A' 2 A' 3 The probability that neither A 1 or A 2 or A 3 occurs: =P (A 1 A 2 A 3 ) ' = 1 P(A 1 A 2 A 3 ) = 1.53 =

2 1.E (5 POINTS): A' 1 A' 2 A 3 The probability that neither A 1 or A 2 occurs, and A 3 occurs: Observing that P(X Y)=P(X) P(X Y ), and using X=A 1 A 2 and Y=A 3 we get P(A 1 A 2 A 3 ) P(A 1 A 2 ) = =.17 You can also reason about this graphically by drawing a Venn diagram to get the same answer. 1.F (4 POINTS): (A' 1 A' 2 ) A 3 The probability that neither A 1 or A 2 occurs, or A 3 occurs: Using the additive rule, and the results from 1.E, we get P(A' 1 A' 2 ) + P(A 3 ) P(A' 1 A' 2 A 3 ) = =

3 2. An insurance company offers four different deductible levels none, low, medium, and high for its homeowner s policyholders and three different levels low (L), medium (M), and high (H) for its automobile policyholders. The accompanying table gives proportions for the various categories of policyholders who have both types of insurance. For example, the proportion of individuals with both low homeowner s deductible and low auto deductible is 0.06 (6% of all such individuals). Suppose an individual having both types of policies is randomly selected. Home policies None Low Medium High Low Auto Policies Medium High A (4 POINTS): WHAT IS THE PROBABILITY THAT THE INDIVIDUAL HAS A MEDIUM AUTO DEDUCTIBLE AND A HIGH HOMEOWNER S DEDUCTIBLE? And corresponds to the intersection of the high home column and the medium auto row, which is B (4 POINTS): WHAT IS THE PROBABILITY THAT THE INDIVIDUAL HAS A LOW AUTO DEDUCTIBLE? A LOW HOMEOWNER S DEDUCTIBLE? Summing the entire row for low auto: =.18 Summing the entire column for low home: =.19 2.C (4 POINTS): WHAT IS THE PROBABILITY THAT THE INDIVIDUAL IS IN THE SAME CATEGORY FOR BOTH AUTO AND HOMEOWNER S DEDUCTIBLES? Sum the diagonal where both home and auto policies are low, medium, and high: =.41 2.D (4 POINTS): BASED ON YOUR ANSWER IN PART (C), WHAT IS THE PROBABILITY THAT THE TWO CATEGORIES ARE DIFFERENT? This is the compliment of the event defined in (c): 1.41 =.59 2.E (5 POINTS): WHAT IS THE PROBABILITY THAT THE INDIVIDUAL HAS AT LEAST ONE LOW DEDUCTIBLE LEVEL? Sum both the low auto row and low home column but don t double count the intersection: ( ) + ( ) 0.06 =.31 2.F (4 POINTS): USING THE ANSWER IN PART (E), WHAT IS THE PROBABILITY THAT NEITHER DEDUCTIBLE LEVEL IS LOW? Again, taking the compliment of (e): 1.31 =

4 3. A card is drawn from a standard well shuffled deck of 52 playing cards. What is the theoretical probability of the event A = {the drawn card is a king or a club}? In this applet an outcome of a King is recorded in the first variable Y and corresponds to Y=13; the second variable Z corresponds to the suit of the card with a Club,, represented by Z=0. Using this Card Experiment, from SOCR Experiments, perform 20 experiments and determine the proportion of the outcomes the event A was observed. This would correspond to the empirical probability (the chance) of the event A. How close are the observed and the theoretical probabilities for the event A? Would the discrepancy between these increase or decrease if the number of hands drawn increases? Experiment and report! 3.A WHAT IS THE PROBABILITY OF DRAWING A KING OR A CLUB? P(king) = 1/13 P(club) = 1/4 P(king club) = 1/52 Therefore P(king club) = P(king)+P(club) P(king club) = 1/13 + 1/4 1/52 = B WHAT IS THE EMPIRICAL PROBABILITY OF EVENT A USING YOUR 20 TRIALS? Trial Denom Suit In my 20 trials, I got 4 outcomes that were either a king or a club. This corresponds to an empirical probability of 4/20= C HOW CLOSE ARE THE OBSERVED AND THEORETICAL PROBABILITIES FOR EVENT A? WOULD THE DISCREPANCY BETWEEN THESE INCREASE OR DECREASE IF THE NUMBER OF HANDS DRAWN INCREASES? My discrepancy was We would expect this to decrease as we draw more hands. 4

5 4. Suppose we need to validate that a coin given to us is fair. We toss the coin 6 times independently and observe only one Head. If the coin was fair P(Head)=P(Tail)=0.5 and we would expect about 3 Heads and 3 Tails. 4.A (10 POINTS): UNDER THESE FAIR COIN ASSUMPTIONS WHAT IS THE (THEORETICAL) PROBABILITY THAT ONLY 1 HEAD IS OBSERVED IN 6 TOSSES? Using the binomial distribution with p=0.5 (fair coin), n=6 (total flips), and k=1 (number of heads) we have: 4.B (7 POINTS): EMPIRICALLY COMPUTE THE ODDS (CHANCES) OF OBSERVING ONE HEAD IN 6 FAIR COIN TOSSES (RUN 100 EXPERIMENTS AND RECORD THE NUMBER OF THEM THAT CONTAIN EXACTLY 1 HEAD) Running 100 coin flip experiments, 1 coin was heads in 12 of the trials for a frequency of

6 4.C (8 POINTS): EMPIRICALLY ESTIMATE THE BIAS OF THE COIN WE HAVE TESTED. EXPERIMENT WITH TOSSING 30 COINS AT A TIME. YOU SHOULD CHANGE THE P VALUE=P(HEAD), RUN EXPERIMENTS AND PICK A VALUE ON THE X AXIS THAT THE EMPIRICAL DISTRIBUTION (RED HISTOGRAM) PEAKS AT. PERHAPS YOU WANT THIS PEAK X VALUE TO BE CLOSE TO THE OBSERVED 1 OUT OF 6 HEAD COUNT FOR THE ORIGINAL TEST OF THE COIN. INCLUDE SOME GRAPH SNAPSHOTS AND SOME BRIEF DISCUSSION REGARDING YOUR EXPERIMENTS AND FINDINGS. Below are my results of getting 5 heads out of 30 after running 100 trials for a range of p values: p value Relative frequency of getting 1 head Empirically, the p value that gives the highest frequency of getting 5 head out of 30 is.15. If I plot the results of my trials as a histogram, it is clear that this that the peak is indeed around.15. You can use the binomial coin experiment to visualize the true distribution where you ll see that the probability of getting 1 head out of 6 is indeed maximized around a p value of.15. Plot of binomial distribution with p=.15 and n=6 6

7 5. 5.A (6 POINTS): IN THE BALL AND URN EXPERIMENT HOW DOES THE DISTRIBUTION OF THE NUMBER OF RED BALLS (Y) DEPEND ON THE SAMPLING STRATEGY (WITH OR WITHOUT REPLACEMENT)? At one extreme, if you only sample one ball then replacing it has no impact on your sample. In this respect, the distributions are identical. At the other extreme, where n=n (sample size is the same as the total number of balls), if you are not replacing balls the only possible outcome is the exact ratio of red balls because you removed every ball from the urn. If n is somewhere in the middle between 0 and N, the variance of your outcomes will be smaller when not using replacement. The replacement strategy never affects the mean. 5.B (6 POINTS): DO N, R AND N ALSO PLAY ROLES? Yes, for any given N and R, the influence of not using replacement (decrease in variance) is stronger as n increases. 5.C (6 POINTS): SUPPOSE N=100, n=5, R=30 AND YOU RUN 1,000 EXPERIMENTS. WHAT PROPORTION OF THE 1,000 SAMPLES HAD ZERO OR ONE RED BALLS IN THEM? RECORD THIS VALUE. Using replacement, these are the results of my experiment. The number of balls with 0 or 1 are 1000*( )=538 according to the data column of the output. 7

8 5.D (7 POINTS): NOW RUN THE BINOMIAL COIN EXPERIMENT WITH N=5 AND P= 0.3. RUN THE BINOMIAL EXPERIMENT 1,000 TIMES? WHAT IS THE PROPORTION OF OBSERVATIONS THAT HAVE ZERO OR ONE HEAD IN THEM? RECORD THIS VALUE ALSO. HOW CLOSE IS THE PROPORTION VALUE YOU OBTAINED BEFORE TO THIS SAMPLE PROPORTION VALUE? IS THERE A REASON TO EXPECT THAT THESE TWO QUANTITIES (COMING FROM TWO DISTINCT EXPERIMENTS AND TWO DIFFERENT UNDERLYING PROBABILITY MODELS) SHOULD BE SIMILAR? EXPLAIN. The number of observation with 0 or 1 head are 1000*( )=542. This is quite close to my ball and urn experiment of 538. When using replacement, these two experiments indeed follow the same binomial distribution. If I do not use replacement, then the ball and urn experiment follows the hypergeometric distribution. From our qualitative observations earlier, we saw that the variance decreases if we do not use replacement, but the mean remains the same. Therefore, we would still expect our results to be similar. 8

Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS

EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the

AP Statistics 7!3! 6!

Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

Solutions: Problems for Chapter 3. Solutions: Problems for Chapter 3

Problem A: You are dealt five cards from a standard deck. Are you more likely to be dealt two pairs or three of a kind? experiment: choose 5 cards at random from a standard deck Ω = {5-combinations of

Foundation of Quantitative Data Analysis

Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10 - October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

AP Stats - Probability Review

AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2

Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

Chapter 2: Systems of Linear Equations and Matrices:

At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

The Binomial Probability Distribution

The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

The study of probability has increased in popularity over the years because of its wide range of practical applications.

6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,

Homework 3 Solution, due July 16

Homework 3 Solution, due July 16 Problems from old actuarial exams are marked by a star. Problem 1*. Upon arrival at a hospital emergency room, patients are categorized according to their condition as

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

Statistics 100A Homework 2 Solutions

Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6

Section 7C: The Law of Large Numbers

Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half

Name: Date: Use the following to answer questions 2-4:

Name: Date: 1. A phenomenon is observed many, many times under identical conditions. The proportion of times a particular event A occurs is recorded. What does this proportion represent? A) The probability

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

Characteristics of Binomial Distributions

Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the

\$2 4 40 + ( \$1) = 40

THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014

Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages

Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.

Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

Unit 19: Probability Models

Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

Session 8 Probability

Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.

Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com

Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

Random variables, probability distributions, binomial random variable

Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

6 Scalar, Stochastic, Discrete Dynamic Systems

47 6 Scalar, Stochastic, Discrete Dynamic Systems Consider modeling a population of sand-hill cranes in year n by the first-order, deterministic recurrence equation y(n + 1) = Ry(n) where R = 1 + r = 1

A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event?

Ch 4.2 pg.191~(1-10 all), 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32. 1) What is a probability experiment? A probability experiment is a chance process that leads to well-defined

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

Common Tools for Displaying and Communicating Data for Process Improvement

Common Tools for Displaying and Communicating Data for Process Improvement Packet includes: Tool Use Page # Box and Whisker Plot Check Sheet Control Chart Histogram Pareto Diagram Run Chart Scatter Plot

MINITAB ASSISTANT WHITE PAPER

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

Basic Probability Theory II

RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

Section 6-5 Sample Spaces and Probability

492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

In the situations that we will encounter, we may generally calculate the probability of an event

What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

You flip a fair coin four times, what is the probability that you obtain three heads.

Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

Math/Stats 342: Solutions to Homework

Math/Stats 342: Solutions to Homework Steven Miller (sjm1@williams.edu) November 17, 2011 Abstract Below are solutions / sketches of solutions to the homework problems from Math/Stats 342: Probability

COMMON CORE STATE STANDARDS FOR

COMMON CORE STATE STANDARDS FOR Mathematics (CCSSM) High School Statistics and Probability Mathematics High School Statistics and Probability Decisions or predictions are often based on data numbers in

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

ECE302 Spring 2006 HW1 Solutions January 16, 2006 1

ECE302 Spring 2006 HW1 Solutions January 16, 2006 1 Solutions to HW1 Note: These solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

WHERE DOES THE 10% CONDITION COME FROM?

1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

Gaming the Law of Large Numbers

Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.

Lab 11. Simulations. The Concept

Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know

Remarks on the Concept of Probability

5. Probability A. Introduction B. Basic Concepts C. Permutations and Combinations D. Poisson Distribution E. Multinomial Distribution F. Hypergeometric Distribution G. Base Rates H. Exercises Probability

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay \$ to play. A penny and a nickel are flipped. You win \$ if either

The game of roulette is played by throwing a small ball onto a rotating wheel with thirty seven numbered sectors.

LIVE ROULETTE The game of roulette is played by throwing a small ball onto a rotating wheel with thirty seven numbered sectors. The ball stops on one of these sectors. The aim of roulette is to predict

Simple Random Sampling

Source: Frerichs, R.R. Rapid Surveys (unpublished), 2008. NOT FOR COMMERCIAL DISTRIBUTION 3 Simple Random Sampling 3.1 INTRODUCTION Everyone mentions simple random sampling, but few use this method for

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum

p-values and significance levels (false positive or false alarm rates)

p-values and significance levels (false positive or false alarm rates) Let's say 123 people in the class toss a coin. Call it "Coin A." There are 65 heads. Then they toss another coin. Call it "Coin B."

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination

Probability definitions

Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Problem Set 1 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand Problem Set 1 (with solutions) About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the years,

Unit 4 The Bernoulli and Binomial Distributions

PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

Algebra 2 C Chapter 12 Probability and Statistics

Algebra 2 C Chapter 12 Probability and Statistics Section 3 Probability fraction Probability is the ratio that measures the chances of the event occurring For example a coin toss only has 2 equally likely

Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific

Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin. You

Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter

Homework (due Wed, Oct 27) Chapter 7: #17, 27, 28 Announcements: Midterm exams keys on web. (For a few hours the answer to MC#1 was incorrect on Version A.) No grade disputes now. Will have a chance to

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

Chapter 16: law of averages

Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................

Statistics 100A Homework 3 Solutions

Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win \$ for each black ball selected and we

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that

Sample Term Test 2A. 1. A variable X has a distribution which is described by the density curve shown below:

Sample Term Test 2A 1. A variable X has a distribution which is described by the density curve shown below: What proportion of values of X fall between 1 and 6? (A) 0.550 (B) 0.575 (C) 0.600 (D) 0.625

Math 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above.

Math 210 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. 2. Suppose that 80% of students taking calculus have previously had a trigonometry course. Of those that did, 75% pass their calculus

This document contains Chapter 2: Statistics, Data Analysis, and Probability strand from the 2008 California High School Exit Examination (CAHSEE):

This document contains Chapter 2:, Data Analysis, and strand from the 28 California High School Exit Examination (CAHSEE): Mathematics Study Guide published by the California Department of Education. The

Without data, all you are is just another person with an opinion.

OCR Statistics Module Revision Sheet The S exam is hour 30 minutes long. You are allowed a graphics calculator. Before you go into the exam make sureyou are fully aware of the contents of theformula booklet

Statistics 100A Homework 8 Solutions

Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

Practical Probability:

Practical Probability: Casino Odds and Sucker Bets Tom Davis tomrdavis@earthlink.net April 2, 2011 Abstract Gambling casinos are there to make money, so in almost every instance, the games you can bet

4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

People have thought about, and defined, probability in different ways. important to note the consequences of the definition:

PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models

Probability Distributions

CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution

Teaching the, Gaussian Distribution with Computers in Senior High School

Teaching the, Gaussian Distribution with Computers in Senior High School Reishin Nakamura - Nagoya-city, Japan 1. Background features In keeping pace with the development of information science and technology,

Math 3C Homework 3 Solutions

Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

The normal approximation to the binomial

The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,

6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.

Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.

Binomial random variables (Review)

Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die