AP Statistics 7!3! 6!
|
|
|
- Amie Chambers
- 10 years ago
- Views:
Transcription
1 Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20! How are each of the following the same? - Toss a coin 5 times, count the number of heads. - Spin a roulette wheel 8 times, record the number of times the ball lands in a red slot. - Randomly sample 100 babies born in BC on a given date, count the number of males born. - Drawing a card from at standard deck and replacing it four times and observing the number of aces you get. How are these different from: - Tossing a coin until you count 5 heads. - Spinning a roulette wheel until the ball lands in the red slot 8 times. - Randomly sample 100 babies born in BC on a given date, count the number of males born in each ethnicity: Asian, First nations, Caucasian, Afro-American. - Drawing four cards from a standard deck and counting the number of aces you get.
2 Binomial Setting Characteristics of a Binomial Setting: - Binary - only two possible outcomes ( success or failure ) - Independent each trial of the same chance process is independent - Number the number of trials n of the chance process is fixed in advance - Success on each trial, the probability of success must be the same Definition: Binomial random variable and binomial distribution The count X successes in a binomial setting is a binomial random variable. The probability distribution of X is a binomial distribution with parameters n and p, where n is the number of trials of the chance process (experiment) and p is the probability of success on any one trial. The possible values of X are from 0 to n. Ex. #2 In which of the following situations, does the random variable have a binomial distribution? If the variable does not have a binomial distribution, indicate why. a) Shuffle a deck of cards. Turn over the top card. Put the card back in the deck, and shuffle again. Repeat this process 10 times. Let X= the number of aces that you observe. b) Choose three students at random from your class. Let Y= be the number who are over 6 feet tall. c) Flip a coin. If it s heads, roll a 6-sided die. If it s tails, roll and 8=sided die. Repeat this process 5 times. Let W= the number of 5 s you roll. d) Genetics says that children receive genes from each of their parents independently. Each child of a particular pair of parents has a probability of 0.25 of having type O blood. Suppose these parents have 5 children. Let X= the number of children with type O blood.
3 Ex. #3 Consider tossing a biased coin 4 times and recording the number of heads. a) Create a list of all possible outcomes of this experiment. b) Define X to be the number of heads you observe in the 4 tosses. Given P(head) = 0.6. find the following: P(X=0) P(X=1) P(X=2) P(X=3) P(X=4) c) Is the probability distribution in part b) a legitimate probability distribution? Why? The binomial coefficient: The number of ways of arranging k successes among n observations is given by the binomial coefficient: n n! = nc = k k k!( n k)! ** note: you only need to be able to calculate this using your calculator ( n MATH->NUM n C r r) Binomial Probability: If X has the binomial distribution with n trials and the probabilyt p of success on each trial, the possible values of X are 0, 1, 2,, n. If k is any one of these values:
4 Mean and Standard Deviation of a Binomial Distribution: Ex. #4 A student writes a 5 question multiple choice test by guessing on each answer. Each question has 4 possible answers. a) Use the binomial probability model to find the distribution to find the probability distribution of X, where X is the number of correct answers on the test. X P(X) b) Make a histogram of the probability distribution. Describe what you see. c) What would you expect to be the mean of X? d) Calculate the mean and standard deviation for X.
5 Using the Binomial Distribution for Statistical Sampling Ex. #5 An engineer chooses an SRS of 10 switches from a shipment of 10,000 switches. Suppose that 10% of the switches in the shipment are bad, however the engineer is not aware of this statistic. The engineer decides to estimate the percentage of bad switches in the shipment by counting the number of bad switches in his sample. a) Is this a binomial setting? b) What is the probability of getting no defectives in the sample? Sampling without replacement condition: When taking a SRS of size n from a population of size N, we can use the binomial distribution to model the count of successes in the sample as long as: Ex. #6 An airline has just finished training 25 first officers - 15 male and 10 female to become captains. Unfortunately, only eight captain positions are available right now. Airline managers decide to use a lottery to determine which pilots will fill the available positions. Of the 8 captains chosen, 5 are female and 3 are male. Explain why the probability that 5 female pilots are chosen in a fair lottery is NOT: 8 P( x = 5) = (.40) (.60) Note: we will not cover the Normal approximation to the Binomial Distribution at this time (pg ) Homework: Pg. 403 #69, 71, 73, 75, 77, 79, 81, 83, 85, 87
6
Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
Solutions: Problems for Chapter 3. Solutions: Problems for Chapter 3
Problem A: You are dealt five cards from a standard deck. Are you more likely to be dealt two pairs or three of a kind? experiment: choose 5 cards at random from a standard deck Ω = {5-combinations of
Section 5-3 Binomial Probability Distributions
Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial
The Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
Section 7C: The Law of Large Numbers
Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half
Section 6.1 Discrete Random variables Probability Distribution
Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
Second Midterm Exam (MATH1070 Spring 2012)
Second Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [60pts] Multiple Choice Problems
Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups
6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.
Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.
DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables
1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random
Chapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics
Chapter 5 Section 2 day 1 2014f.notebook November 17, 2014 Honors Statistics Monday November 17, 2014 1 1. Welcome to class Daily Agenda 2. Please find folder and take your seat. 3. Review Homework C5#3
STAT 35A HW2 Solutions
STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },
36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
c. Construct a boxplot for the data. Write a one sentence interpretation of your graph.
MBA/MIB 5315 Sample Test Problems Page 1 of 1 1. An English survey of 3000 medical records showed that smokers are more inclined to get depressed than non-smokers. Does this imply that smoking causes depression?
Binomial random variables (Review)
Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die
Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2
Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable
The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
Statistics 100A Homework 4 Solutions
Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.
Chapter 16: law of averages
Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................
Formula for Theoretical Probability
Notes Name: Date: Period: Probability I. Probability A. Vocabulary is the chance/ likelihood of some event occurring. Ex) The probability of rolling a for a six-faced die is 6. It is read as in 6 or out
Ch. 13.3: More about Probability
Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the
ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers
ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages
Statistics 100A Homework 3 Solutions
Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we
Basic Probability Theory II
RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample
Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter
Homework (due Wed, Oct 27) Chapter 7: #17, 27, 28 Announcements: Midterm exams keys on web. (For a few hours the answer to MC#1 was incorrect on Version A.) No grade disputes now. Will have a chance to
In the situations that we will encounter, we may generally calculate the probability of an event
What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead
Binomial random variables
Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance
ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II
ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination
Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.
Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers
(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.
Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw
Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS
Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,
Sample Questions for Mastery #5
Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could
University of California, Los Angeles Department of Statistics. Random variables
University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.
AMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0.
Ch. 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 1 Find Areas Under the Standard Normal Curve 1) Find the area under the standard normal
HONORS STATISTICS. Mrs. Garrett Block 2 & 3
HONORS STATISTICS Mrs. Garrett Block 2 & 3 Tuesday December 4, 2012 1 Daily Agenda 1. Welcome to class 2. Please find folder and take your seat. 3. Review OTL C7#1 4. Notes and practice 7.2 day 1 5. Folders
Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)
Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities
The Procedures of Monte Carlo Simulation (and Resampling)
154 Resampling: The New Statistics CHAPTER 10 The Procedures of Monte Carlo Simulation (and Resampling) A Definition and General Procedure for Monte Carlo Simulation Summary Until now, the steps to follow
The Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
Lecture 13. Understanding Probability and Long-Term Expectations
Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white
Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined
Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris [email protected] Department of Mathematics University of Michigan February 9, 2009 When a large
Section 6-5 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
Unit 4 The Bernoulli and Binomial Distributions
PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population
Chapter 3. Probability
Chapter 3 Probability Every Day, each us makes decisions based on uncertainty. Should you buy an extended warranty for your new DVD player? It depends on the likelihood that it will fail during the warranty.
Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314
Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space
Expected Value. 24 February 2014. Expected Value 24 February 2014 1/19
Expected Value 24 February 2014 Expected Value 24 February 2014 1/19 This week we discuss the notion of expected value and how it applies to probability situations, including the various New Mexico Lottery
13.0 Central Limit Theorem
13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated
Law of Large Numbers. Alexandra Barbato and Craig O Connell. Honors 391A Mathematical Gems Jenia Tevelev
Law of Large Numbers Alexandra Barbato and Craig O Connell Honors 391A Mathematical Gems Jenia Tevelev Jacob Bernoulli Life of Jacob Bernoulli Born into a family of important citizens in Basel, Switzerland
X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001
Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
Chapter 13 & 14 - Probability PART
Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph
Math 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada [email protected], [email protected] Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
Statistics 100A Homework 2 Solutions
Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6
Thursday, November 13: 6.1 Discrete Random Variables
Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific
Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin. You
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,
Chapter 26: Tests of Significance
Chapter 26: Tests of Significance Procedure: 1. State the null and alternative in words and in terms of a box model. 2. Find the test statistic: z = observed EV. SE 3. Calculate the P-value: The area under
You flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.
STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every
Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.
Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate
ECE 316 Probability Theory and Random Processes
ECE 316 Probability Theory and Random Processes Chapter 4 Solutions (Part 2) Xinxin Fan Problems 20. A gambling book recommends the following winning strategy for the game of roulette. It recommends that
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could
AP Stats - Probability Review
AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose
Math 141. Lecture 2: More Probability! Albyn Jones 1. [email protected] www.people.reed.edu/ jones/courses/141. 1 Library 304. Albyn Jones Math 141
Math 141 Lecture 2: More Probability! Albyn Jones 1 1 Library 304 [email protected] www.people.reed.edu/ jones/courses/141 Outline Law of total probability Bayes Theorem the Multiplication Rule, again Recall
High School Statistics and Probability Common Core Sample Test Version 2
High School Statistics and Probability Common Core Sample Test Version 2 Our High School Statistics and Probability sample test covers the twenty most common questions that we see targeted for this level.
MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
Sample Term Test 2A. 1. A variable X has a distribution which is described by the density curve shown below:
Sample Term Test 2A 1. A variable X has a distribution which is described by the density curve shown below: What proportion of values of X fall between 1 and 6? (A) 0.550 (B) 0.575 (C) 0.600 (D) 0.625
Number of observations is fixed. Independent observations --- knowledge of the outcomes of earlier trials does not affect the
Binomial Probability Frequently used in analyzing and setting up surveys Our interest is in a binomial random variable X, which is the count of successes in n trials. The probability distribution of X
John Kerrich s coin-tossing Experiment. Law of Averages - pg. 294 Moore s Text
Law of Averages - pg. 294 Moore s Text When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So, if the coin is tossed a large number of times, the number of heads and the
Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.
Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.2 Homework Answers 4.17 Choose a young adult (age 25 to 34 years) at random. The probability is 0.12 that the person chosen
Responsible Gambling Education Unit: Mathematics A & B
The Queensland Responsible Gambling Strategy Responsible Gambling Education Unit: Mathematics A & B Outline of the Unit This document is a guide for teachers to the Responsible Gambling Education Unit:
Section 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
Math/Stats 342: Solutions to Homework
Math/Stats 342: Solutions to Homework Steven Miller ([email protected]) November 17, 2011 Abstract Below are solutions / sketches of solutions to the homework problems from Math/Stats 342: Probability
Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com
Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
STA 130 (Winter 2016): An Introduction to Statistical Reasoning and Data Science
STA 130 (Winter 2016): An Introduction to Statistical Reasoning and Data Science Mondays 2:10 4:00 (GB 220) and Wednesdays 2:10 4:00 (various) Jeffrey Rosenthal Professor of Statistics, University of Toronto
3.2 Roulette and Markov Chains
238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.
Review #2. Statistics
Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of
Solution (Done in class)
MATH 115 CHAPTER 4 HOMEWORK Sections 4.1-4.2 N. PSOMAS 4.6 Winning at craps. The game of craps starts with a come-out roll where the shooter rolls a pair of dice. If the total is 7 or 11, the shooter wins
Chapter 5 - Practice Problems 1
Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level
Review for Test 2. Chapters 4, 5 and 6
Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair six-sided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover
Mathematical goals. Starting points. Materials required. Time needed
Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about
Chapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008
Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the
Name: Date: Use the following to answer questions 2-4:
Name: Date: 1. A phenomenon is observed many, many times under identical conditions. The proportion of times a particular event A occurs is recorded. What does this proportion represent? A) The probability
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum
Mind on Statistics. Chapter 8
Mind on Statistics Chapter 8 Sections 8.1-8.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable
Gaming the Law of Large Numbers
Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.
