Chapter 5. Discrete Probability Distributions

Size: px
Start display at page:

Download "Chapter 5. Discrete Probability Distributions"

Transcription

1 Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable traits, one of them will be dominant and the other will be recessive. 2. Experiment using pea plants. Green dominant, yellow recessive. 3. P(green pod) = ¾ = offspring, 428 with green pods, 428/580 = Gene from Gene from Offspring Color of Parent 1 Parent 2 Genes Offspring Pod green + green green/green green green + yellow green/yellow green yellow + green yellow/green green yellow + yellow yellow/yellow yellow 1

2 5.1 Review and Preview Combine the descriptive statistics presented in chapter 2 and 3 and those of probability present in chapter 4. x f Chapters 2 and 3 Chapters 4 Collect sample 1 8 data, then 2 10 get statistics 3 11 x = 3.6 and graphs 4 12 s = P(1) = 1/6 Find the P(2) = 1/6 probability for P(3) = 1/6 Each outcome P(4) = 1/6 and graphs P(5) = 1/6 P(6) = 1/6 chapter 5 Create a theoretical model describing how the experiment is expected to behave, then get its parameter. x P(x) 1 1/6 2 1/6 3 1/6 = /6 = /6 6 1/6 Figure 5 1 Combining Descriptive Methods and Probability to Form a Theorem model of Behavior 2

3 5.2 Random Variables 1. Related Concepts 2. Graphs 3. Mean, Variance, and Standard Deviation 4. Rationale for Formula 5-1 through Identifying Unusual Results with the Range Rule of Thumb 6. Identifying Unusual Results with Probabilities 7. Expected Value 3

4 1. Related Concepts 5.2 Random Variables Definition A random variable is a variable (typically represented by x) that has a single numerical value, determined by chance, for each outcome of a procedure A probability distribution is a description that gives the probability for each value of the random variable. It is often expressed in the format of a graph, table, or formula 4

5 1. Related Concepts 5.2 Random Variables e.g.1 Genetics Consider the offspring of peas from parents both having the green/yellow combination of pod genes. Under these combinations, the probability that the offspring has a green pod is ¾ or If 5 such offspring is obtained, and let x = number of peas with green pods among 5 offspring peas then x is a random variable. Table 5-1 is a probability distribution. (5-3 will tell how the values of P(x) is obtained) x ( Number of Peas with Green Pods) P(x) Table 5-1. Probability Distribution: Probabilities of Numbers of Peas with Green Pods Among 5 Offspring Peas 5

6 1. Related Concepts 5.2 Random Variables Definition. A discrete random variable has either a finite number of values or a countable number of values A continuous random variable has infinitely many values, those values can be associated with measurements on a continuous scale without gaps or interruptions (voltmeter). 6

7 1. Related Concepts 5.2 Random Variables e.g.2 Determine each variable as discrete or continuous. 1). x = the # of eggs that a hen lays in a day Discrete 2). x = the # of stat students present in class on a given day Discrete 3). x = the amount of milk a cow produces Continuous 4). x = the measure of voltage for a particular smoke detector Continuous 7

8 Probability 2. Graphs Probability Histogram. 5.2 Random Variables Figure 5-3 Probabilities Histogram Number of Peas with Green Pods Among 5 8

9 5.2 Random Variables 2. Graphs Requirement for a Probability Distribution 1. P(x) = 1, where x assumes all possible values (the sum of all probabilities must be 1) 2. 0 P(x) 1, for every individual value of x, (that is, each probability value must be between 0 and 1 inclusive.) Example 3. Is Table 5-2 a probability distribution? x No P(x) Table 5-2 Cell Phones per Household 9

10 2. Graphs 5.2 Random Variables Example 4. P(x) = x/10, where x = 0, 1, 2, 3, 4. Is P a probability distribution? Yes 3. Mean, Variance, and Standard Deviation Formula 5-1 Formula 5-2 x P(x) 2 2 ( x ) P( x) Mean for a probability distribution Variance for a probability distribution Formula x P( x) Variance for a probability distribution Formula x P( ) x Standard Deviation for a probability distribution 10

11 5.2 Random Variables 4. Rationale for Formula 5-1 through 5-4 Consider mean for example. From Formula 3-2, section 3-2, we have Similarly, one can derive 5-2 (using formula on page 103 for Standard Deviation). Formula 5-3 is derived from Formula from 5-3 directly. f N x f x N x f N x P(x) 11

12 5.2 Random Variables 4. Rationale for Formula 5-1 through 5-4 Round-off Rule for 2,, and Round results by carrying one more decimal place than the number of decimal places used for the random variable x. If the value of x are integers, round decimal place 2,, and to one 12

13 5.2 Random Variables 5. Identifying Unusual Results with the Range Rule of Thumb e.g.5 Continue use the Chapter example. x P(x) x P(x) sum = x x 2 P(x) sum = Table 5-3 Calculating,, and for a Probability Distribution = = =

14 5.2 Random Variables 5. Identifying Unusual Results with the Range Rule of Thumb e.g.6 Identifying unusual results with the range rule of thumb. By Range Rule of Thumb Maximum usual value = + 2 = (1.0) = 5.8 Minimum usual value = 2 = 3.8 2(1.0) = 1.8 Interpretation. Based this result, we conclude that for groups of 5 offspring peas, the number of offspring peas with green pods should usually fall between 1.8 and 5.8. If 5 offspring peas are generated as described, it would be unusual to get only 1 with a green pod. 14

15 5.2 Random Variables 6. Identifying Unusual Results with Probabilities Rare Event Rule If, under a given assumption (such as the assumption that a 2 coin is fair), the probability of a particular observed event (such as 992 heads in 1000 tosses of a coin) is extremely small, we conclude that the assumption is probably not correct

16 5.2 Random Variables 6. Identifying Unusual Results with Probabilities Probabilities can be used to apply the rare event rule as follows: Using Probabilities to Determine When Results Are Unusual Unusually high number of success: x successes among n trials is an unusually high number of successes if P(x or more) 0.05.* e.g. 9 success in 10 trials is high if P(9 or more successes) 0.05 Unusually low number of success: x successes among n trials is an unusually low number of successes if P(x or fewer) 0.05.* e.g. 2 success in 10 trials is low if P(2 or fewer successes) 0.05 * The value of 0.05 is commonly used, but is not absolutely rigid. 16

17 5.2 Random Variables 6. Identifying Unusual Results with Probabilities Let s flip a coin to see it favors heads, 1000 tosses resulted in 501 heads. This is not an evidence that the coin favors heads P(501 heads in 1000 flips) = , a very low probability. However, P(at least 501 heads in 1000 flips) = 0.487, a high probability 17

18 5.2 Random Variables 6. Identifying Unusual Results with Probabilities e.g.7. Identifying Unusual Results with Probabilities Use probability to determine whether 1 is an unusually low number of peas with green pods when 5 offspring are generated from parents both having the green/yellow pair of genes. Solution. P( 1 or fewer ) = P(0 or 1) = P(0) + P(1) = = < 0.05 Interpretation: the result of 1 pea with a green pod is unusually low. There is a very small likelihood (0.016) of generating 1 or fewer peas with green pods. 18

19 7. Expected Value 5.2 Random Variables Definition the expected value of a discrete random variable is denoted by E, and it represents the average value of a the outcomes. It is obtained by finding the value of x P(x), E = x P(x) From formula 5-1, we see that E =. Thus the expected value of the number of peas with green pods is also

20 7. Expected Value 5.2 Random Variables e.g.8 How to be a Better Bettor. You are considering placing a bet either on the number 7 in a roulette or on the pass line in the dice game of craps at the Venetian casino in Las Vegas. a. If you bet $5 on the number 7 in roulette, the probability of losing $5 is 37/38 and the probability of making a net gain of $175 is 1/38. (the prize is $180, including your $5 bet, so the net gain is $175.) Find your expected value if you bet $5 on the number 7 in roulette. Table 5-4 Roulette Event x P(x) xp(x) Lose Gain (net) Total $5 37/38 $4.87 $175 1/38 $4.61 E = $0.26 (or 26 ) 20

21 7. Expected Value 5.2 Random Variables e.g.8 How to be a Better Bettor. Continue b. If you bet $5 on the pass line in the dice game of craps, the probability of losing $5 is 251/495 and the probability of making a net gain of $5 is 244/495. (If you bet $5 on the pass line and win, you are given $10 that includes your bet, so the net gain is $5). Find your expected value if you bet on the pass line. which one is better: a $5 on the number 7 in roulette or a $5 on the pass line in the dice game? Why? Table 5-5 Dice Event x P(x) xp(x) Lose Gain (net) Total $5 251/495 $2.54 $5 244/495 $2.46 E = $0.08 (or 8 ) 21

22 7. Expected Value 5.2 Random Variables Interpretation. The $5 bet in the roulette results in an expected value of 26 and the $5 bet in the dice game results in an expected value of 8. The bet in the dice game is better because it has large expected value. That is, you are better off losing 8 instead of losing 26. Even though the roulette game provides an opportunity for a larger payoff, the craps game is better in the long run. So far, we introduced the discrete probability distribution Next, the binomial probability distribution, a special case of the discrete distribution Other case, Poisson, geometric, hyper-geometric 22

23 5.3 Binomial Probability Distribution 1. Related Concepts 2. Rationale for Binomial Probability Formula 23

24 5.3 Binomial Probability Distribution 1. Related Concepts Definition A Binomial probability Distribution results from a procedure that meets all of the following requirements: 1) Fixed number of trials 2) The trials must be independent (the outcome of any individual trial doesn t affect the probabilities in the other trials) 3) Each trial must have all outcomes classified into two categories (commonly referred as success and failure) 4) The probability of a success remains the same in all trials. 24

25 5.3 Binomial Probability Distribution 1. Related Concepts Notation for Binomial Probability Distributions S and F (success and failure) denote the two possible categories of all outcomes; P(S) = p ( p = probability of a success) P(F) = q ( q = probability of a failure, q = 1 p ) n denote the fixed number of trial x specific number of success in n trials, 0 x n p denote the probability of success in one of n trials q denote the probability of failure in one of n trials P(x) the probability of getting exactly x success in n trials 25

26 5.3 Binomial Probability Distribution 1. Related Concepts e.g.1. Genetics. Consider an experiment in which 5 offspring peas are generated from 2 parents each having the green/yellow combination of genes for pod color. P(green pod) = We want to find the probability that exact 3 of the 5 offspring peas have a green pod. a. Does this procedure result in a binomial distribution? i. The number of trails is fixed (5) ii. iii. iv. The 5 trails are independent, because the probability of any spring pea having a green pod is not affected by the outcome of any other offspring pea. Each of the 5 trails has two categories of outcomes: the pea has a green pod or it does not For each offspring pea, the probability that it has a green pod is ¾ and the probability remains the same for each of the 5 peas 26

27 5.3 Binomial Probability Distribution 1. Related Concepts b. If yes, identify n, x, p and q. a) n = 5 b) x = 3 c) p = 0.75 d) q = 0.25 Method 1: Using the Binomial Probability Formula. Formula 5-5 P(x) = n! x!( n x)! p x q nx for x = 0, 1,, n 27

28 5.3 Binomial Probability Distribution 1. Related Concepts e.g.2. Continued. Method 1: Using the Formula 5-5 P(3) = 5! 3 53 (0.75) (0.25) 3!(5 3)! 5! 3 2 (0.75) (0.25) 3!2! = (10)( )(0.0625) = The probability of getting exactly 3 peas with green pods among among 5 offspring peas is (round to 3 significant digits) 28

29 5.3 Binomial Probability Distribution 1. Related Concepts Method 2: Using Technology Use Excel (function name: binom(x, n, p)) Use TI-84 (function name: binompdf(n, p, x)) 29

30 5.3 Binomial Probability Distribution 1. Related Concepts Method 3: Using Table A-1 in Appendix A Table A-1 cannot be used for e.g.2 because p = 0.75 is not included. e.g.3 McDonald s Brand Recognition. The fast food chain has a brand name recognition rate of 95% around the world. Randomly select 5 people, find a. The probability that exactly 3 of the 5 recognize McDonald s. b. The probability that the number of people who recognize McDonald s is 3 or fewer. Solution. a. P(3) = b. P(3 or fewer) = P(0) + P(1) + P(2) + P(3) = =

31 5.3 Binomial Probability Distribution 2. Rationale for the Binomial Probability Formula The number of outcomes with exactly x successes among n trials The probability of x successes among n trials for any one particular order P( x) n! x!( n x)! p x q nx 31

32 5.4 Mean, Variance, and SD for Binomial Distribution For Any Discrete Prob. Distribution For Binomial distribution Formula 5-1 = [x P(x)] Formula 5-6 = np Formula = [x 2 P(x)] 2 Formula = npq 2 2 Formula 5-4 [ x P( x)] Formula 5-8 npq Using the range rule of thumb, we can consider values to be unusual if they fall outside of the limits obtained from the following: maximum usual value: + 2 minimum usual value: 2 32

33 5.4 Mean, Variance, and SD for Binomial Distribution Example 1. Genetics. Use the formula 5-6 and 5-8 to find the mean and standard deviation for the number of peas with green pods when groups of 5 offspring peas are generated. Assume that there is a 0.75 probability that an offspring pea has a green pod (as described in the chapter problem).. Solution. Using n = 5, p = 0.75, and q = Now = np = 5(0.75) = 3.75 npq ( 5)(0.75)(0.25) (rounded) This results are consistent with the results on page example 5, section 5-2. But computation is much easy. 33

34 5.4 Mean, Variance, and SD for Binomial Distribution e.g.2. Genetics. In an actual experiment, Mendel generated 580 offspring peas. He claimed that 75%, or 435, of them would have green pods. The actual experiment resulted in 428 peas with green pods. a. Assuming that groups of 580 offspring peas are generated, find the mean and standard deviation for the numbers of peas with green pods. b. Use the range rule of thumb to find the minimum usual number and the maximum usual number of peas with green pods. Based on those numbers, can we conclude that Mendel s actual result of 428 peas with green pods is unusal? Does this suggest that Mendel s value of 75% is wrong? 34

35 5.4 Mean, Variance, and SD for Binomial Distribution Solution. a. Using n = 580, p = 0.75, and q = Now = np = (580)(0.75) = npq ( 580)(0.75)(0.25) 10.4 b. Maximum usual value: + 2 = (10.4) = Minimum usual value: 2 = (10.4) = Interpretation... If Mendel generated 580 offspring peas and if his 75% rate is correct, the number of peas with green pods should usually fall between and Mendel actually got 428 peas with green pods, and that value does fall within the range of usual values. So the experimental result is consistent with the 75% rate. 35

Discrete Probability. Distributions. 5-1 Review and Preview 5-2 Random Variables 5-3 Binomial Probability. Distributions

Discrete Probability. Distributions. 5-1 Review and Preview 5-2 Random Variables 5-3 Binomial Probability. Distributions 5-1 Review and Preview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 5-5 Poisson Probability Distributions Discrete

More information

Chapter 4. Probability Distributions

Chapter 4. Probability Distributions Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

MAT 155. Key Concept. September 22, 2010. 155S5.3_3 Binomial Probability Distributions. Chapter 5 Probability Distributions

MAT 155. Key Concept. September 22, 2010. 155S5.3_3 Binomial Probability Distributions. Chapter 5 Probability Distributions MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance, and Standard

More information

MAT 155. Key Concept. February 03, 2011. 155S4.1 2_3 Review & Preview; Basic Concepts of Probability. Review. Chapter 4 Probability

MAT 155. Key Concept. February 03, 2011. 155S4.1 2_3 Review & Preview; Basic Concepts of Probability. Review. Chapter 4 Probability MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 4 Probability 4 1 Review and Preview 4 2 Basic Concepts of Probability 4 3 Addition Rule 4 4 Multiplication Rule: Basics 4 7 Counting To find

More information

MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables

MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you

More information

The Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going?

The Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going? The Normal Approximation to Probability Histograms Where are we going? Probability histograms The normal approximation to binomial histograms The normal approximation to probability histograms of sums

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025. Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of

More information

Random Variable: A function that assigns numerical values to all the outcomes in the sample space.

Random Variable: A function that assigns numerical values to all the outcomes in the sample space. STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.

More information

Chapter 3. Probability

Chapter 3. Probability Chapter 3 Probability Every Day, each us makes decisions based on uncertainty. Should you buy an extended warranty for your new DVD player? It depends on the likelihood that it will fail during the warranty.

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

More information

Week 5: Expected value and Betting systems

Week 5: Expected value and Betting systems Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample

More information

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large

More information

Chapter 6 Random Variables

Chapter 6 Random Variables Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340-344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:

More information

Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.3-4.4) Homework Solutions. Section 4.

Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.3-4.4) Homework Solutions. Section 4. Math 115 N. Psomas Chapter 4 (Sections 4.3-4.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give

More information

Statistics Class 10 2/29/2012

Statistics Class 10 2/29/2012 Statistics Class 10 2/29/2012 Quiz 8 When playing roulette at the Bellagio casino in Las Vegas, a gambler is trying to decide whether to bet $5 on the number 13 or to bet $5 that the outcome is any one

More information

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

More information

Probability. Vocabulary

Probability. Vocabulary MAT 142 College Mathematics Probability Module #PM Terri L. Miller & Elizabeth E. K. Jones revised January 5, 2011 Vocabulary In order to discuss probability we will need a fair bit of vocabulary. Probability

More information

Expected Value and the Game of Craps

Expected Value and the Game of Craps Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

More information

2 GENETIC DATA ANALYSIS

2 GENETIC DATA ANALYSIS 2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

More information

Solutions: Problems for Chapter 3. Solutions: Problems for Chapter 3

Solutions: Problems for Chapter 3. Solutions: Problems for Chapter 3 Problem A: You are dealt five cards from a standard deck. Are you more likely to be dealt two pairs or three of a kind? experiment: choose 5 cards at random from a standard deck Ω = {5-combinations of

More information

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2 Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

Unit 21: Binomial Distributions

Unit 21: Binomial Distributions Unit 21: Binomial Distributions Summary of Video In Unit 20, we learned that in the world of random phenomena, probability models provide us with a list of all possible outcomes and probabilities for how

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

Probability & Probability Distributions

Probability & Probability Distributions Probability & Probability Distributions Carolyn J. Anderson EdPsych 580 Fall 2005 Probability & Probability Distributions p. 1/61 Probability & Probability Distributions Elementary Probability Theory Definitions

More information

Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups

More information

If, under a given assumption, the of a particular observed is extremely. , we conclude that the is probably not

If, under a given assumption, the of a particular observed is extremely. , we conclude that the is probably not 4.1 REVIEW AND PREVIEW RARE EVENT RULE FOR INFERENTIAL STATISTICS If, under a given assumption, the of a particular observed is extremely, we conclude that the is probably not. 4.2 BASIC CONCEPTS OF PROBABILITY

More information

2. Discrete random variables

2. Discrete random variables 2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

More information

Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average

Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average PHP 2510 Expectation, variance, covariance, correlation Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average Variance Variance is the average of (X µ) 2

More information

Toss a coin twice. Let Y denote the number of heads.

Toss a coin twice. Let Y denote the number of heads. ! Let S be a discrete sample space with the set of elementary events denoted by E = {e i, i = 1, 2, 3 }. A random variable is a function Y(e i ) that assigns a real value to each elementary event, e i.

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

More information

HONORS STATISTICS. Mrs. Garrett Block 2 & 3

HONORS STATISTICS. Mrs. Garrett Block 2 & 3 HONORS STATISTICS Mrs. Garrett Block 2 & 3 Tuesday December 4, 2012 1 Daily Agenda 1. Welcome to class 2. Please find folder and take your seat. 3. Review OTL C7#1 4. Notes and practice 7.2 day 1 5. Folders

More information

Binomial Probability Distribution

Binomial Probability Distribution Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are

More information

4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables 4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

More information

Summary of Probability

Summary of Probability Summary of Probability Mathematical Physics I Rules of Probability The probability of an event is called P(A), which is a positive number less than or equal to 1. The total probability for all possible

More information

University of California, Los Angeles Department of Statistics. Random variables

University of California, Los Angeles Department of Statistics. Random variables University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.

More information

STAT 35A HW2 Solutions

STAT 35A HW2 Solutions STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

More information

JANUARY TERM 2012 FUN and GAMES WITH DISCRETE MATHEMATICS Module #9 (Geometric Series and Probability)

JANUARY TERM 2012 FUN and GAMES WITH DISCRETE MATHEMATICS Module #9 (Geometric Series and Probability) JANUARY TERM 2012 FUN and GAMES WITH DISCRETE MATHEMATICS Module #9 (Geometric Series and Probability) Author: Daniel Cooney Reviewer: Rachel Zax Last modified: January 4, 2012 Reading from Meyer, Mathematics

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

More information

We { can see that if U = 2, 3, 7, 11, or 12 then the round is decided on the first cast, U = V, and W if U = 7, 11 X = L if U = 2, 3, 12.

We { can see that if U = 2, 3, 7, 11, or 12 then the round is decided on the first cast, U = V, and W if U = 7, 11 X = L if U = 2, 3, 12. How to Play Craps: Craps is a dice game that is played at most casinos. We will describe here the most common rules of the game with the intention of understanding the game well enough to analyze the probability

More information

Probability distributions

Probability distributions Probability distributions (Notes are heavily adapted from Harnett, Ch. 3; Hayes, sections 2.14-2.19; see also Hayes, Appendix B.) I. Random variables (in general) A. So far we have focused on single events,

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025. Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers

More information

MAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions

MAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard

More information

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables 1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random

More information

Expectations. Expectations. (See also Hays, Appendix B; Harnett, ch. 3).

Expectations. Expectations. (See also Hays, Appendix B; Harnett, ch. 3). Expectations Expectations. (See also Hays, Appendix B; Harnett, ch. 3). A. The expected value of a random variable is the arithmetic mean of that variable, i.e. E() = µ. As Hays notes, the idea of the

More information

DISCRETE RANDOM VARIABLES

DISCRETE RANDOM VARIABLES DISCRETE RANDOM VARIABLES DISCRETE RANDOM VARIABLES Documents prepared for use in course B01.1305, New York University, Stern School of Business Definitions page 3 Discrete random variables are introduced

More information

Lahore University of Management Sciences

Lahore University of Management Sciences Lahore University of Management Sciences CMPE 501: Applied Probability (Fall 2010) Homework 3: Solution 1. A candy factory has an endless supply of red, orange, yellow, green, blue and violet jelly beans.

More information

Mendelian Inheritance & Probability

Mendelian Inheritance & Probability Mendelian Inheritance & Probability (CHAPTER 2- Brooker Text) January 31 & Feb 2, 2006 BIO 184 Dr. Tom Peavy Problem Solving TtYy x ttyy What is the expected phenotypic ratio among offspring? Tt RR x Tt

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Normal Distribution as an Approximation to the Binomial Distribution

Normal Distribution as an Approximation to the Binomial Distribution Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

More information

Expected Value and Variance

Expected Value and Variance Chapter 6 Expected Value and Variance 6.1 Expected Value of Discrete Random Variables When a large collection of numbers is assembled, as in a census, we are usually interested not in the individual numbers,

More information

MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010

MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010 MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times

More information

Computing Binomial Probabilities

Computing Binomial Probabilities The Binomial Model The binomial probability distribution is a discrete probability distribution function Useful in many situations where you have numerical variables that are counts or whole numbers Classic

More information

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution Section 5 3 The Mean and Standard Deviation of a Binomial Distribution Previous sections required that you to find the Mean and Standard Deviation of a Binomial Distribution by using the values from a

More information

Thursday, November 13: 6.1 Discrete Random Variables

Thursday, November 13: 6.1 Discrete Random Variables Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

More information

Expected Value and Variance

Expected Value and Variance Chapter 6 Expected Value and Variance 6.1 Expected Value of Discrete Random Variables When a large collection of numbers is assembled, as in a census, we are usually interested not in the individual numbers,

More information

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

More information

1. chose the pea plant for 3 reasons: a. structure of the pea flower (more later) b. presence of distinctive traits c. rapid reproductive cycle 2.

1. chose the pea plant for 3 reasons: a. structure of the pea flower (more later) b. presence of distinctive traits c. rapid reproductive cycle 2. Genetics I. Genetics A. genetics: scientific study of heredity 1. we have known for centuries that traits are passed from parents to offspring 2. we didn t know how the traits were determined B. recall

More information

Probability Distributions

Probability Distributions CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,

More information

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015. Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

AP Statistics 7!3! 6!

AP Statistics 7!3! 6! Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

More information

Section 5-3 Binomial Probability Distributions

Section 5-3 Binomial Probability Distributions Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial

More information

WEEK #23: Statistics for Spread; Binomial Distribution

WEEK #23: Statistics for Spread; Binomial Distribution WEEK #23: Statistics for Spread; Binomial Distribution Goals: Study measures of central spread, such interquartile range, variance, and standard deviation. Introduce standard distributions, including the

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Week 7 Lecture Notes Discrete Probability Continued Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. The Bernoulli

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

More information

BABY LAB. Let E = the dominant form of the gene / unattached earlobes Let e = the recessive form of the gene / attached earlobes E E

BABY LAB. Let E = the dominant form of the gene / unattached earlobes Let e = the recessive form of the gene / attached earlobes E E Baby Face 1 NAME BABY LAB BACKGROUND INFORMATION: Heredity is the passing of traits from parents to children. Hair color, eye color, eye shape, blood type and some diseases are all examples of traits that

More information

STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS

STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter : Random Variables Section.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter Random Variables.1 Discrete and Continuous Random Variables.2 Transforming and Combining

More information

X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001

X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001 Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

More information

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved. 3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

More information

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

More information

Models for Discrete Variables

Models for Discrete Variables Probability Models for Discrete Variables Our study of probability begins much as any data analysis does: What is the distribution of the data? Histograms, boxplots, percentiles, means, standard deviations

More information

Chapter 7. Estimates and Sample Size

Chapter 7. Estimates and Sample Size Chapter 7. Estimates and Sample Size Chapter Problem: How do we interpret a poll about global warming? Pew Research Center Poll: From what you ve read and heard, is there a solid evidence that the average

More information

PROBABILITIES AND PROBABILITY DISTRIBUTIONS

PROBABILITIES AND PROBABILITY DISTRIBUTIONS Published in "Random Walks in Biology", 1983, Princeton University Press PROBABILITIES AND PROBABILITY DISTRIBUTIONS Howard C. Berg Table of Contents PROBABILITIES PROBABILITY DISTRIBUTIONS THE BINOMIAL

More information

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

More information

Worksheet for Teaching Module Probability (Lesson 1)

Worksheet for Teaching Module Probability (Lesson 1) Worksheet for Teaching Module Probability (Lesson 1) Topic: Basic Concepts and Definitions Equipment needed for each student 1 computer with internet connection Introduction In the regular lectures in

More information

3.2 Measures of Spread

3.2 Measures of Spread 3.2 Measures of Spread In some data sets the observations are close together, while in others they are more spread out. In addition to measures of the center, it's often important to measure the spread

More information

Genetics: The Science of Heredity

Genetics: The Science of Heredity Chapter 3 Genetics: The Science of Heredity Objectives Describe the results of Mendel's Experiment. Identify the role of alleles in controlling the inheritance of traits. Page 70 This Baby Koala What is

More information

In the situations that we will encounter, we may generally calculate the probability of an event

In the situations that we will encounter, we may generally calculate the probability of an event What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

More information

Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results

Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing Chapter problem: Does the MicroSort method of gender selection increase the likelihood that a baby will be girl? MicroSort: a gender-selection method developed by Genetics

More information

Betting systems: how not to lose your money gambling

Betting systems: how not to lose your money gambling Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple

More information

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS TRUE/FALSE 235. The Poisson probability distribution is a continuous probability distribution. F 236. In a Poisson distribution,

More information

3.2 Roulette and Markov Chains

3.2 Roulette and Markov Chains 238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.

More information