Ch5: Discrete Probability Distributions Section 51: Probability Distribution


 Oswald Booker
 1 years ago
 Views:
Transcription
1 Recall: Ch5: Discrete Probability Distributions Section 51: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g. X, Y, Z) are used to represent variables. A random variable is a variable whose values are determined by chance. Discrete variables are countable. Example: Roll a die and let X represent the outcome so X = {1,2,3,4,5,6} Ch5: Discrete Probability Distributions Santorico  Page 147
2 Discrete probability distribution  the values a random variable can assume and the corresponding probabilities of the values. The probabilities may be determined theoretically or by observation. They can be displayed by a graph or a table. How does this connect to our frequency distributions, tables and graphs from Chapter 2? Ch5: Discrete Probability Distributions Santorico  Page 148
3 Example: Create a probability distribution for the number of girls out of 3 children. We previously used a tree diagram to construct the sample space which consisted of 8 possible outcomes: BBB X=0 BBG, BGB, GBB X=1 BGG, GBG, GGB X=2 GGG X=3 The corresponding (discrete) probability distribution is: Number of Girls X Probability P(X) 1/8 3/8 3/8 1/8 Check of calculations in table: MUST SUM TO 1! Ch5: Discrete Probability Distributions Santorico  Page 149
4 Probability Graph the probability distribution above Number of Girls Ch5: Discrete Probability Distributions Santorico  Page 150
5 Example: The World Series played by Major League Baseball is a 4 to 7 game series won by the team winning four games. The data shown consists of the number of games played in the World Series from 1965 through The number of games played is represented by the variable X. Ch5: Discrete Probability Distributions Santorico  Page 151
6 Construct the corresponding discrete probability distribution and graph the probability distribution above. Ch5: Discrete Probability Distributions Santorico  Page 152
7 Two Requirements for a Probability Distribution 1. The sum of the probabilities of all the outcomes in the sample space must be 1; that is P(X) The probability of each outcome in the sample space must be between or equal to 0 and 1; that is 0 P(X) 1. These are good checks for you to use after you have computed a discrete probability distribution! The sums to 1 check will often find a calculation error! Ch5: Discrete Probability Distributions Santorico  Page 153
8 Example: Determine whether each distribution is a probability distribution. Explain. Ch5: Discrete Probability Distributions Santorico  Page 154
9 Section 52: Mean, Variance, Standard Deviation, and Expectation The mean, variance, and standard deviation for a probability distribution are computed differently from the mean, variance, and standard deviation for sample. Recall that a parameter is a numerical characteristic of a population. The mean of a probability distribution is denoted by the symbol,. The mean of a probability distribution for a discrete random variable is X P( X ) where the sum is taken over all possible values of X. Rounding Rule: Round to one more decimal place than the outcome X when finding the mean, variance, and standard deviation for variables of a probability distribution. Ch5: Discrete Probability Distributions Santorico  Page 155
10 Example: Find the mean number of girls in a family with two children using the probability distribution below X P( X ) X Ch5: Discrete Probability Distributions Santorico  Page 156
11 Example: Find the mean number of trips lasting five nights or longer that American adults take per year using the probability distribution below. X P(X) Ch5: Discrete Probability Distributions Santorico  Page 157
12 Variance and Standard Deviation The variance of a probability distribution, σ², for a discrete random variable is found by multiplying the square of each outcome, X, by its corresponding probability, summing those products, and subtracting the square of the mean. 2 X 2 P(X) 2 The standard deviation, σ, of a probability distribution is: 2 Ch5: Discrete Probability Distributions Santorico  Page 158
13 Example: Calculate the variance and standard deviation for the number of girls in the previous example: [ X P( X )] [ X P( X )] Ch5: Discrete Probability Distributions Santorico  Page 159
14 Example: Calculate the variance and standard deviation for the number of trips five nights or more in the previous example. 2 [X 2 P(X)] 2 2 Ch5: Discrete Probability Distributions Santorico  Page 160
15 Expectation Another concept closely related to the mean of a probability distribution is the concept of expectation. Expected value has wide uses in the insurance industry, gambling, and other areas such as decision theory. The expected value of a discrete random variable of a probability distribution is the theoretical average of the variable. Does this look familiar? E(X) X P(X) Ch5: Discrete Probability Distributions Santorico  Page 161
16 Example: Suppose one thousand tickets are sold at $10 each to win a used car valued at $5,000. What is the expected value of the gain if a person purchases one ticket? The person will either win or lose. If they win which will happen with probability 1/1000, they have gained $5000$10. If they lose, they have lost $10. Gain, X Probability, P(X) $4990 1/1000 $10 999/ E X $4990 ( $10) $ Ch5: Discrete Probability Distributions Santorico  Page 162
17 Example: Suppose one thousand tickets are sold at $1 each for 3 prizes of $150, $100, and $50. After each prize drawing, the winning ticket is then returned to the pool of tickets. What is the expected value if a person purchases 3 tickets? Gain, X Probability, P(X) E(X) = Ch5: Discrete Probability Distributions Santorico  Page 163
18 When gambling: If the expected value of the game is zero, the game is said to be fair. If the expected value of a game is positive, then the game is in the favor of the player. If the expected value of the game is negative, then the game is said to be in the favor of the house. o This means you lose should expect to lose money in the long run. o Every game in Las Vegas has a negative expected value!!! Ch5: Discrete Probability Distributions Santorico  Page 164
19 Section 53: The Binomial Distribution A binomial experiment is a probability experiment that satisfies the following four requirements: 1. Each of the n trials has two possible outcomes or can be reduced to two outcomes: success and failure. The outcome of interest is called a success and the other outcome is called a failure. 2. The outcomes of each trial must be independent of each other. 3. There must be a fixed number of trials. 4. Each trial has the same probability of success, denoted by p. Ch5: Discrete Probability Distributions Santorico  Page 165
20 The acronym BINS may help you remember the conditions: B Binary outcomes I Independent outcomes N number of trials is fixed S same probability of success Examples: Ch5: Discrete Probability Distributions Santorico  Page 166
21 Notation: P(S), probability of success P(F), probability of failure p, the numerical probability of success q, The numerical probability of failure P(S) p and P(F) 1 P(S) 1 p q n, the number of trials. X, the number of successes in n trials. NOTE: 0 X n and X 0,1,2,3,..., n Binomial distribution the outcomes of a binomial experiment along with the probabilities of these outcomes. Ch5: Discrete Probability Distributions Santorico  Page 167
22 Probabilities for a Binomial Distribution In a binomial experiment, the probability of exactly X successes in n trials is P(X) n! X!(n X)! px (1 p) n X. Note: x! stands for x factorial where x is a nonnegative integer. x! x( x 1)( x 2)...(2)(1) when x > 0 0! 1 You can use your calculator or Table C at the back of the book to solve binomial probabilities for selected values of n and p. Ch5: Discrete Probability Distributions Santorico  Page 168
23 Examples: 5! = 5*4*3*2*1 = 120 8! = 5! = 5*4=20 3! 25! = Ch5: Discrete Probability Distributions Santorico  Page 169
24 Example: Dionne Warwick claims to possess ESP. An experiment is conducted to test her. A person in one room picks one of the integers 1, 2, 3, 4, 5 at random. In another room, Dionne identifies the number she believes was picked. The experiment is done with eight trials. Dionne gets the correct answer four times. If Dionne does not actually have ESP and is actually guessing the number, what is the probability that she d make a correct guess in four of the eight trials? We have a Binomial experiment here since with each guess she will either be right (success) or wrong (failure). If she does not have ESP, then the probability of a correct guess is 1/5. Hence, we would like to know P(X=4) given we have a Binomial distribution with n=8 and p=1/ ! 1 4 PX ( 4) !8! 5 5 Ch5: Discrete Probability Distributions Santorico  Page 170
25 Example: Consider a family with six children and suppose there is a 25% chance that each child will be a carrier of a particular mutated gene, independent of the other children. What is the probability that exactly 2 of the children will carry the mutated gene? What is the probability that 2 or less children will carry the mutated gene? Ch5: Discrete Probability Distributions Santorico  Page 171
26 Binomial Mean and Standard Deviation The binomial probability distribution for n trials with probability p of success on each trial has mean, variance 2, and standard deviation given by: np 2 npq npq Ch5: Discrete Probability Distributions Santorico  Page 172
27 Example: You will take a 10 question multiplechoice test with 4 possible answers for each question. Find the mean, variance, and standard deviation if you simply guess the answer for each question. Each question represents a success/failure. We have: X=number of correct answers n=10 p=0.25 np npq npq Ch5: Discrete Probability Distributions Santorico  Page 173
28 Example: In the U.S., 85% of the population has Rh positive blood. Suppose we take an independent random sample of 10,000 persons and count the number with Rh positive blood. Find the mean, variance, and standard deviation for the number of Rh positive individuals in the sample. Ch5: Discrete Probability Distributions Santorico  Page 174
Construct and Interpret Binomial Distributions
CH 6.2 Distribution.notebook A random variable is a variable whose values are determined by the outcome of the experiment. 1 CH 6.2 Distribution.notebook A probability distribution is a function which
More informationCounting principle, permutations, combinations, probabilities
Counting Methods Counting principle, permutations, combinations, probabilities Part 1: The Fundamental Counting Principle The Fundamental Counting Principle is the idea that if we have a ways of doing
More information8.5 Probability Distributions; Expected Value
Math 07  Finite Math.5 Probability Distributions; Expected Value In this section, we shall see that the expected value of a probability distribution is a type of average. A probability distribution depends
More informationDiscrete Probability Distribution discrete continuous
CHAPTER 5 Discrete Probability Distribution Objectives Construct a probability distribution for a random variable. Find the mean, variance, and expected value for a discrete random variable. Find the exact
More informationRandom Variable: A variable whose value is the numerical outcome of an experiment or random phenomenon.
STAT 515  Chapter 4: Discrete Random Variables Random Variable: A variable whose value is the numerical outcome of an experiment or random phenomenon. Discrete Random Variable : A numerical r.v. that
More information5.1 Probability Distributions
5/3/03 Discrete Probability Distributions C H 5A P T E R Outline 5 Probability Distributions 5 Mean, Variance, Standard Deviation, and Expectation 5 3 The Binomial Distribution C H 5A P T E R Objectives
More informationMath C067 Practice Questions
Math C067 Practice Questions Richard Beigel March, 06 Note: you will be expected to show your work on the test. If you use a calculator, write down the formulas that you entered into the calculator. I
More informationTree Diagrams. on time. The man. by subway. From above tree diagram, we can get
1 Tree Diagrams Example: A man takes either a bus or the subway to work with probabilities 0.3 and 0.7, respectively. When he takes the bus, he is late 30% of the days. When he takes the subway, he is
More informationProbability Distributions and Statistics
8 Probability Distributions and Statistics Distributions of Random Variables Expected Value Variance and Standard Deviation Binomial Distribution Normal Distribution Applications of the Normal Distribution
More informationSection 6.1 Discrete Random variables Probability Distribution
Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values
More informationSection 52 Random Variables
Section 52 Random Variables 5.11 Combining Descriptive Methods and Probabilities In this chapter we will construct probability distributions by presenting possible outcomes along with the relative frequencies
More informationChapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
More informationDoes one roll of a 6 mean that the chance of getting a 15 increases on my next roll?
Lecture 7 Last time The connection between randomness and probability. Each time we roll a die, the outcome is random (we have no idea and no control over which number, 16, will land face up). In the
More informationProbability and Counting Rules
C H A P T E R F O U R Probability and Counting Rules 1 Probability and Counting Rules Outline 41 Sample Spaces and Probability 42 The Addition Rules for Probability 43 The Multiplication Rules and Conditional
More informationChapter 5: Discrete Probability Distributions
Chapter 5: Discrete Probability Distributions 5.2 Random Variables Random variable: Probability distribution: often expressed as a graph, table, or formula Ex: 12 jurors are to be randomly selected (without
More informationDef: A random variable, x, represents a numerical value, determined by chance, assigned to an outcome of a probability experiment.
Lecture #5 chapter 5 Discrete Probability Distributions 52 Random Variables Def: A random variable, x, represents a numerical value, determined by chance, assigned to an outcome of a probability experiment.
More informationProbability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
More informationChapter 6: Probability Distributions. Section 6.1: How Can We Summarize Possible Outcomes and Their Probabilities?
Chapter 6: Probability Distributions Section 6.1: How Can We Summarize Possible Outcomes and Their Probabilities? 1 Learning Objectives 1. Random variable 2. Probability distributions for discrete random
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups
More informationChapter 6: Random Variables and the Normal Distribution. 6.1 Discrete Random Variables. 6.2 Binomial Probability Distribution
Chapter 6: Random Variables and the Normal Distribution 6.1 Discrete Random Variables 6.2 Binomial Probability Distribution 6.3 Continuous Random Variables and the Normal Probability Distribution 6.1 Discrete
More informationChapter 7. Random Variables
Chapter 7 Random Variables Lesson 71, Part 1 Discrete and Continuous Random Variables. Random Variable A numerical variable whose value depends on the outcome of a chance experiment is called random variable.
More informationPROBABILITY. Chapter Overview Conditional Probability
PROBABILITY Chapter. Overview.. Conditional Probability If E and F are two events associated with the same sample space of a random experiment, then the conditional probability of the event E under the
More information5.3: The Binomial Probability Distribution
5.3: The Binomial Probability Distribution 5.3.1 Bernoulli trials: A Bernoulli trial is an experiment with exactly two possible outcomes. We refer to one of the outcomes as a success (S) and to the other
More informationChapter 5  Practice Problems 1
Chapter 5  Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level
More informationProbability Distributions
Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.
More informationPick a Card, Any Card... Random Variables. The Perfect' Theoretical World. Math 140. Chapter 16 and Cost to play: $5
Pick a Card, Any Card... Cost to play: $5 Draw the ace of hearts Win $100 Draw any other ace Win $10 Draw any other heart Win $5 Anyone willing to play? What if top prize is $200? $1000? Historical dice
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More informationChapter 4. Probability Distributions
Chapter 4 Probability Distributions Lesson 41/42 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive
More informationMAT S5.1 2_3 Random Variables. February 09, Review and Preview. Chapter 5 Probability Distributions. Preview
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard
More information7.4 Expected Value and Variance
7.4 Expected Value and Variance Recall: A random variable is a function from the sample space of an experiment to the set of real numbers. That is, a random variable assigns a real number to each possible
More informationChapter 6: Random Variables and the Normal Distribution. 6.1 Discrete Random Variables. 6.2 Binomial Probability Distribution
Chapter 6: Random Variables and the Normal Distribution 6.1 Discrete Random Variables 6.2 Binomial Probability Distribution 6.3 Continuous Random Variables and the Normal Probability Distribution 6.4 Standard
More information5.2 Random Variables:
5.2 Random Variables: Objectives: 1. Distinguish between discrete and continuous random variables 2. Determine whether a probability distribution is given 3. Find the mean and standard deviation of a probability
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics Homework Ch 6 Name Provide an appropriate response. 1) State whether the variable is discrete or continuous. 1) The number of cups of coffee sold in a cafeteria during lunch A) continuous B)
More informationHOLLOMAN S PROBABILITY AND STATISTICS BRASE CHAPTER 6, PAGE 1 OF 5
6 The Binomial Probability Distribution and Related Topics Now that we are able to calculate probabilities, we can turn our attention to a related, and probably more important topic. 6.1 Introduction to
More informationReview the following from Chapter 5
Bluman, Chapter 6 1 Review the following from Chapter 5 A surgical procedure has an 85% chance of success and a doctor performs the procedure on 10 patients, find the following: a) The probability that
More informationMath 140 Introductory Statistics
The Big Picture of Statistics Math 140 Introductory Statistics Lecture 10 Introducing Probability Chapter 10 2 Example Suppose that we are interested in estimating the percentage of U.S. adults who favor
More informationReview for Test 2. Chapters 4, 5 and 6
Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair sixsided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than
More informationEach trial has only two possible outcomes success and failure. The possible outcomes are exactly the same for each trial.
Section 8.: Bernoulli Experiments and Binomial Distribution We have already learned how to solve problems such as if a person randomly guesses the answers to 0 multiple choice questions, what is the probability
More informationChapter 4 Probability
The Big Picture of Statistics Chapter 4 Probability Section 42: Fundamentals Section 43: Addition Rule Sections 44, 45: Multiplication Rule Section 47: Counting (next time) 2 What is probability?
More informationOdds: Odds compares the number of favorable outcomes to the number of unfavorable outcomes.
MATH 11008: Odds and Expected Value Odds: Odds compares the number of favorable outcomes to the number of unfavorable outcomes. Suppose all outcomes in a sample space are equally likely where a of them
More informationExample. For example, if we roll a die
3 Probability A random experiment has an unknown outcome, but a well defined set of possible outcomes S. The set S is called the sample set. An element of the sample set S is called a sample point (elementary
More informationChapter 4. Discrete Random Variable Has a finite or countable number of possible outcomes that can be listed. Example
Chapter 4 Section 4.1  Probability Distributions Objectives: Distinguish between discrete random variables and continuous random variables Construct a discrete probability distribution and its graph Determine
More informationKey Concept. Properties
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal
More informationChapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More information8.1 Distributions of Random Variables
8.1 Distributions of Random Variables A random variable is a rule that assigns a number to each outcome of an experiment. We usually denote a random variable by X. There are 3 types of random variables:
More informationThe number of phone calls to the attendance office of a high school on any given school day A) continuous B) discrete
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) State whether the variable is discrete or continuous.
More informationChapter 5. X P(X=x) x 2. 0 P(x) 1
Chapter 5 Key Ideas Random Variables Discrete and Continuous, Epected Value Probability Distributions Properties, Mean, Variance and Standard Deviation Unusual Results and the Rare Event Rule Binomial
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.
More informationCh. 13.2: Mathematical Expectation
Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we
More informationChapter 5: Discrete Probability Distributions
Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter
More informationMATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables
MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you
More informationMath 112 Elementary Statistics Exam 2 Summer points total
Directions: Please use a pencil, write neatly and succinct. Show all calculations when ever possible. If you use calculator write down what function you are using. Round zvalues and standard deviations
More informationDiscrete Random Variables
October 7, 2010 Random Variables In many situations, we are interested in numbers associated with the outcomes of a random experiment. For example: Testing cars from a production line, we are interested
More information6.2: The Binomial Probability Distribution
6.2: The Binomial Probability Distribution 6.2.1 Bernoulli trials: A Bernoulli trial is an experiment with exactly two possible outcomes. We refer to one of the outcomes as a success (S) and to the other
More informationChapter 6 Review 0 (0.083) (0.917) (0.083) (0.917)
Chapter 6 Review MULTIPLE CHOICE. 1. The following table gives the probabilities of various outcomes for a gambling game. Outcome Lose $1 Win $1 Win $2 Probability 0.6 0.25 0.15 What is the player s expected
More informationHypergeometric Distribution
Assume we are drawing cards from a deck of wellshulffed cards with replacement, one card per each draw. We do this 5 times and record whether the outcome is or not. Then this is a binomial experiment.
More informationLecture 11 The Binomial Distribution
Lecture  The Binomial Distribution Now that we have seen the basic ideas behind a discrete probability distribution we are going to see our first example: the binomial distribution. The binomial distribution
More informationWeek in Review #6 ( , )
Math 66 WeekinReview  S. Nite 0/3/0 Page of 6 Week in Review #6 (..4, 3.3.4) n( E) In general, the probability of an event is P ( E) =. n( S) The Multiplication Principle: Suppose there are m ways
More informationLecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000
Lecture 4 Nancy Pfenning Stats 000 Chapter 7: Probability Last time we established some basic definitions and rules of probability: Rule : P (A C ) = P (A). Rule 2: In general, the probability of one event
More informationChapter 6 The Binomial Probability Distribution and Related Topics
Chapter 6 The Binomial Probability Distribution and Related Topics Statistical Experiments and Random Variables Statistical Experiments any process by which measurements are obtained. A quantitative variable,
More informationYou flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
More informationDiscrete Random Variables
Chapter 4 Discrete Random Variables 4.1 Discrete Random Variables 1 4.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand discrete probability
More informationMath 1313 The Binomial Distribution. Binomial Experiments
Math 1313 The Binomial Distribution Binomial Experiments The remainder of the course material will be presentation of two very important probability distributions and the types of problems that we can
More informationCh. 8 Review. IB Statistics
Ch. 8 Review IB Statistics 1. In a large population of college students, 20% of the students have experienced feelings of math anxiety. If you take a random sample of 10 students from this population,
More informationAP * Statistics Review. Probability
AP * Statistics Review Probability Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,
More informationThe Binomial Distribution
The Binomial Distribution ames H. Steiger November 10, 2003 Page 1 of 16 1. Topics for this Module 1. 2. The Binomial Random Variable 3. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing
More informationIntermediate Math Circles March 28, 2012 Probability: Expectation and Ruination
Intermediate Math Circles March 28, 202 Probability: Expectation and Ruination Last week we talked about conditional probabilities, like if we pick a twochild family at random, if one of the children
More information2) The ph level in a shampoo 2) A) Discrete B) Continuous. 3) The number of field goals kicked in a football game 3)
ch5practice test Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level in a shampoo
More informationNormal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
More informationIdentify the given random variable as being discrete or continuous. 1) The cost of a randomly selected orange 1) A) Continuous B) Discrete
m227(ch5 practice test) Identify the given random variable as being discrete or continuous. 1) The cost of a randomly selected orange 1) A) Continuous B) Discrete 2) The ph level in a shampoo 2) A) Continuous
More informationThe full sample space for this problem has 8 elements and is listed below: BBB BBG BGB BGG GBB GBG GGB GGG
Homework #1 8: Create a reduced sample space and find the requested probabilities. A family has three children. Assuming that boys and girls are equally likely, determine the probability that the family
More information1 Probability Distributions
1 Probability Distributions In the chapter about descriptive statistics samples were discussed, and tools introduced for describing the samples with numbers as well as with graphs. In this chapter models
More informationNormal Distribution as an Approximation to the Binomial Distribution
Chapter 1 Student Lecture Notes 11 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable
More informationThe Binomial Distribution
The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing
More informationThe Central Limit Theorem
Chapter 7 The Central Limit Theorem 7.1 The Central Limit Theorem 1 7.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the Central Limit Theorem problems.
More informationProbability Distributions and Expected Values
Probability Distributions and Expected Values In this section we develop tools to be able to answer the following questions. (1) In a certain country males are born with.51 probability and females are
More informationSample Questions for Mastery #5
Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could
More informationProbability and Discrete Random Variable Probability
Probability and Discrete Random Variable Probability What is Probability? When we talk about probability, we are talking about a (mathematical) measure of how likely it is for some particular thing to
More information7.3 Introduction to Probability
7.3 Introduction to Probability A great many problems that come up in applications of mathematics involve random phenomena  those for which exact prediction is impossible. The best we can do is determine
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
MA 116  Chapter 5 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Determine the possible values of the random variable. 1) Suppose that two
More informationSTAT 200. Guided Exercise 4
STAT 200 Guided Exercise 4 1. Let s Revisit this Problem. Fill in the table again. Diagnostic tests are not infallible. We often express a fale positive and a false negative with any test. There are further
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 35, 36 Special discrete random variable distributions we will cover
More informationMath 150 Sample Exam #2
Problem 1. (16 points) TRUE or FALSE. a. 3 die are rolled, there are 1 possible outcomes. b. If two events are complementary, then they are mutually exclusive events. c. If A and B are two independent
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. 1) Focus groups of 12 people are randomly selected to discuss products
More information3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.
3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately
More informationRANDOM VARIABLES, EXPECTATION, AND VARIANCE
RANDOM VARIABLES, EXPECTATION, AND VARIANCE MATH 70 This writeup was originally created when we were using a different textbook in Math 70. It s optional, but the slightly different style may help you
More informationMore Discrete Probability Models
Chapter 8 More Discrete Probability Models 8.1 Introduction In the previous chapter we started to look at discrete probability models. This week we look at two of the most common models for discrete data:
More informationCombinatorics: The Fine Art of Counting
Combinatorics: The Fine Art of Counting Week 7 Lecture Notes Discrete Probability Continued Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. The Bernoulli
More informationMCQ BINOMIAL AND HYPERGEOMETRIC DISTRIBUTIONS
MCQ BINOMIAL AND HYPERGEOMETRIC DISTRIBUTIONS MCQ 8.1 A Bernoulli trial has: (a) At least two outcomes (c) Two outcomes (b) At most two outcomes (d) Fewer than two outcomes MCQ 8.2 The two mutually exclusive
More informationAP Stats Chapter 8. What are the parameters of a binomial distribution? How can you abbreviate this information?
AP Stats Chapter 8 8.1: The Binomial Distribution What are the conditions for a binomial setting? 1. 2. 3. 4. What is a binomial random variable? What are the possible values of a binomial random variable?
More informationOutcome {(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)} (1, 1) 2 (2, 1) 3 (3, 1) 4 (4, 1) 5
Section 84: Random Variables and probability distributions of discrete random variables In the previous sections we saw that when we have numerical data, we can calculate descriptive statistics such as
More information8.1 What is a Random Variable? Homework: Chapter 8: #1,14, 27 Due Wed, October 27
Homework: Chapter 8: #1,14, 7 Due Wed, October 7 Announcements: Quiz starts after class today, ends Wed. Order switched from original plan start Chapter 8 today, finish Chapter 7 on Wed. Chapter 8 Random
More informationSOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions
SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2
More informationStatistics 100 Binomial and Normal Random Variables
Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random
More information16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION
6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics SIA #2 Practice Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Estimate the probability of the event. ) Of 232 people who came
More informationTransforming and Combining Random Variables. Binomial and Geometric Random Variables. Random Variable and Probability Distribution
Chapter 6 Random Variables 1 6.1 6.2 6.3 Discrete and Continuous Random Variables Random Variable and Probability Distribution A probability model describes the possible outcomes of a chance process and
More information6.1 Discrete and Continuous Random Variables
6.1 Discrete and Continuous Random Variables A probability model describes the possible outcomes of a chance process and the likelihood that those outcomes will occur. For example, suppose we toss a fair
More informationSection 6.2 ~ Basics of Probability. Introduction to Probability and Statistics SPRING 2016
Section 6.2 ~ Basics of Probability Introduction to Probability and Statistics SPRING 2016 Objective After this section you will know how to find probabilities using theoretical and relative frequency
More informationLecture 6: Special Probability Distributions
Lecture 6: Special Probability Distributions Assist. Prof. Dr. Emel YAVUZ DUMAN MCB1007 Introduction to Probability and Statistics İstanbul Kültür University Outline 1 The Discrete Uniform Distribution
More information