BINOMIAL DISTRIBUTION

Size: px
Start display at page:

Download "BINOMIAL DISTRIBUTION"

Transcription

1 MODULE IV BINOMIAL DISTRIBUTION A random variable X is said to follow binomial distribution with parameters n & p if P ( X ) = nc x p x q n x where x = 0, 1,2,3..n, p is the probability of success & q is the probability of failure and q = 1 p and p(x) is called the probability density function. Note n For a binomial distribution p(x) = 1 x=0 Proof n p(x) = nc 0 p 0 q n-0 + nc 1 p 1 q n- 1 + nc 2 p 2 q n nc n p n q n-n x=0 = q n + nc 1 p 1 q n- 1 + nc 2 p 2 q n p n = ( p + q ) n = 1 In a binomial distribution 1 ) n, the number of trials is finite. 2 ) each trial has two possible outcomes called success & failure. 3)all the trials are independent 4) p & hence q is constant for all the trials. Mean and Variance of a binomial distribution Mean = = x p(x) p(x) But for Binomial distribution p(x) = 1 = x p(x) = x nc x p x q n x = 0. nc 0 p 0 q n nc 1 p 1 q n nc 2 p 2 q n n.nc n p n q n-n = np 1 q n- 1 +n(n-1)p 2 q n n p n = np(q n- 1 + (n-1)p q n p n-1 ) = np( q + p ) n-1 = np Mean = = np Variance = 2 = x 2 p(x) 2 p(x) But for the binomial distribution p(x) = 1 2 = x 2 p(x) 2 = 0. nc 0 p 0 q n nc 1 p 1 q n nc 2 p 2 q n n 2.nC n p n q n-n (n 2 p 2 )

2 = np 1 q n- 1 +2n(n-1)p 2 q n /2n(n-1)(n-2) p 3 q n-3..+ n 2 p n - n 2 p 2 = np (q n (n-1)p q n-2 +3 /2 (n-1)(n-2) p 2 q n-3..+ n p n-1 )- n 2 p 2 = np[ (q n- 1 + ( n-1)p q n-2 +1 /2 (n-1)(n-2) p 2 q n-3..+ p n-1 ) +(( n-1)p q n-2 +1 (n-1)(n-2) p 2 q n-3..+ (n-1) p n-1 ) ] -n 2 p 2 = np[( q + p ) n-1 +( n-1)p (q n-2 + (n-2) pq n-3..+ p n-2 )] -n 2 p 2 = np [ ( q + p ) n-1 +( n-1)p(q + p ) n-2 ] -n 2 p 2 = np [ ( q + p ) n-1 +( n-1)p(q + p ) n-2 ] -n 2 p 2 = np ( 1+ (n-1)p) -n 2 p 2 = np + n 2 p 2 n p 2 n 2 p 2 = np(1 p) = npq Standard deviation = npq Problems 1 ) The mean and variance of a binomial variate are 16 & 8. Find i) P (X= 0) ii) P( X 2) Mean = = np = 16 Variance = 2 = npq = 8 i) P ( X = 0 ) = nc 0 p 0 q n-0 = (½) 0 (1/2) 32 = (1/2) 32 npq / np = 8/16 = 1/2 ie, q = ½ p = 1 q = ½ np = 16 ie, n = 32 ii)p( X 2) = 1 P ( X < 2) = 1 P( X = 0,1) = 1 P(X = 0) P(X = 1) = 1-33 (1/2) 32 2) Six dice are thrown 729 times.howmany times do you expect atleast 3 dice to show a 5 or 6? Here n = 6,N = 729 P(x 3) = 6Cx p x q n-x

3 Let p be the probability of getting 5 or 6 with 1 dice ie, p = 2/6 = 1/3 q = 1 1/3 = 2/3 P(x 3) = P ( x = 2,3,4,5,6) = p( x=3)+p(x=4)+p(x=5)+p(x=6) = number of times = 729* = 233 3)A basket contains 20 good oranges and 80 bad oranges. 3 oranges are drawn at random from this basket. Find the probability that out of 3 i) exactly 2 ii)atleast 2 iii)atmost 2 are good oranges. Let p be the probability of getting a good orange ie, p =80C 1 100C 1 = 0.8 q = = 0.2 i ) p (x=2) = 3C2 (0.8) 2 (0.2) 1 = ii) p(x 2) = P(2) +p(3)= iii) p(x 2) = p(0) +p(1) + p(2) = ) In a sampling a large number of parts manufactured by a machine, the mean number of defective in a sample of 20 is 2. Out of 1000 such samples howmany would expected to contain atleast 3 defective parts. n=20 n p =2 ie, p=1/10 q = 1-p = 9/10 p(x 3) = 1 p ( x < 3 ) = 1 p( x = 0,1,2) = Number of samples having atleast 3 defective parts = * 1000 = 323 Home work 1 ) Assume that on the average 1 telephone number out of 15 called between 2 pm and 3pm on a week day is busy. What is the probability that if 6 m randomly selected numbers are called i) not more than 3 will be busy ii) atleast 3 of them will be busy. 2) If 10% of bolts produced by a machine are defective. Determine the probability that out of 10 bolts, chosen at random i) one ii)none iii)atmost 2 bolts will be defective. 3) In 800 families with 5 children each, howmany families would be expected to have i) 3 boys and 2 girls ii)atmost 2 girls.iii) no girl ( Assume the probability for boys & girls tobe equal.) 4) During a war 1 ship out of 9 was sunk on an average in making a certain voyage. Find the probability that exactly 3 out of a convoy of 6 ships would arrive safely. 5) In a large consignment of electric bulbs 10 percent are defective. A random sample of 20 is taken for inspection. Find the probability that

4 i) all are good bulbs ii) at most there are 3 defective bulbs. iii) Exactly there are 3 defective bulbs. FITTING OF BINOMIAL DISTRIBUTION The process of determining the most appropriate values of the parameters from the given observations and writing down the probability distribution function is known as fitting of the binomial distribution. Problems 1) Fit an appropriate binomial distribution and calculate the theoretical distribution x : f : Here n = 5, N = 100 Mean = xi fi = 2.84 fi np = 2.84 p = 2.84/5 = q = p(r) = 5C r (0.568) r (0.432) 5-r, r = 0,1,2,3,4,5 Theoretical distributions are r p(r) N* p(r) = = = = = =6 Total = 100 Homework 1) 5 unbiased coins are tossed and the number of heads are noted.the experiment is repeated 64 times and the following distribution is obtained No. of heads: Frequencies: Fit a binomial distribution and calculate theoretical frequencies 2) The following data are the no. of seeds germinating out of 10 on a damp filter paper for 80 sets of seeds. Fit a binomial distribution to the observed data.

5 x: f: ) Fit a binomial distribution to the following data x : f : Compare the theoretical frequency with the actual frequency. ************************************************ POISSON DISTRIBUTION If the parameters n&p of a binomial distribution are known then we can find the distribution.but when n is large and p is very small the application of binomial distribution is very difficult. Let x be any discrete random variable which can take values 0,1,2,3.. such that the probability distribution function of x, P(x)=e -λ λ x x! where λ is a positive constant, np = λ. This distribution is called the poisson distribution. Eg: 1) Number of printing mistakes on each page of a book published by a good publisher 2) Number of telephone calls arriving at a telephone switch board per minute. The poisson distribution as a limiting case of Binomial distribution RESULT Binomial distribution tends to a poisson distribution when n and p 0 such that np = λ is finite Proof Probability distribution of a binomial distribution is P ( X ) = nc x p x q n x But λ = np p = λ / n q = 1 p = 1 - λ / n p( x) = nc x (λ / n) x ( 1 - λ / n ) n-x = n(n-1)(n-2) [n-(x-1)](n-x)! λ x ( 1 - λ / n ) n x!(n-x)! n x ( 1 - λ / n ) x

6 = λ x n (n-1) ( n-2)(n-3) [n-(x-1)] ( 1 - λ / n ) n x! n x ( 1 - λ / n ) x = λ x n (n-1) (n-2). [n-(x-1)] ( 1 - λ / n ) n x! n n n n ( 1 - λ / n ) x = λ x ( 1-1/n) (1 2/n)..( 1 (x-1)/n) [( 1 - λ /n) n/ λ ] - λ x! ( 1 - λ / n ) x = e -λ λ x x! ( since as n each of the (x-1) factors (1-1/n), (1-2/n) 1- (x-1) /n 1 and since Lt ( 1 + 1/x) x = e) n Result For a poisson distribution p(x) = 1 x=0 Proof For a poisson distribution p(x) = e -λ λ x x=0 x! = e -λ λ 0 + e -λ λ 1 + e -λ λ 2 + e -λ λ ! 1! 2! 3! = e λ [ 1 + λ/1! +λ/2!+..] = e λ e λ = 1 Mean and variance of the poisson distribution Mean = = x p(x) p(x) But for the poisson distribution p(x) = 1 Mean = = x p(x) = x e -λ λ x x! = e -λ λ x = e λ λ x (x-1)! (x-1)! = λe - λ (λ +λ 2 /2!+ λ 3 /3!+ ) = λe - λ e λ = λ

7 Mean = = λ Variance = 2 = x 2 p(x) 2 p(x) But for the Poisson distribution p(x) = 1 2 = x 2 p(x) 2 =( x(x-1) +x(e -λ λ x - λ 2 x! = e -λ λ x + x e -λ λ x - λ 2 (x-2 )! x! = λe - λ (λ + λ 2 / 1!+ λ 3 / 2! +..) +λ λ 2 = λ 2 +λ λ 2 = λ Variance = 2 = λ Problems 1) A poisson variate x such that p(x = 1) = 2 Px =2). Find p(x = 0). p(x = 1) = 2 Px =2). e λ λ 1 = e λ λ 2 1! 2! ie, λ = 1 p(x = 0) = e = 1/e 0! 2)A Car-hire firm has two cars it hires out daily. The number of demands for a car on each day is distributed as poisson variate with mean 1.5.Obtain the proportion of days on which i) there was no demand ii) demand is refused. Here λ = 1.5 p(x = 0 ) = e = ! p(x > 2 ) = 1- p(x 2) = 1- p( x = 0,1,2) = ) Assuming that the probability of an individual being killed in a mine accident during a year is 1/2400. Use poisson distribution to calculate The probability that in a mine employing 200 miners there will be atleast one fatal accident in a year? Here p = 1/2400 n = 200 λ= np = P( x 1 ) = 1 p( x < 1) = 1 p(x = 0) = 1 e = Homework 1) In a certain factory that manufactures razor blades there is small chance 1/500 for any blade tobe defective. The blades are in packets of 10.Use

8 poisson distribution to calculate approximate no. of packets containing no defective, one defective, two defective blades respectively in a consignment of 10,000 packets. 2) If the probability of an individual suffer a bad reaction from a certain Injection is Determine the probability that out of 200 persons i) exactly 3 ii) more than 2 iii) none suffer the bad reaction. NORMAL DISTRIBUTION This is a continuous distribution. It can be derived from the binomial distribution as a limiting case where n The no. of trials is very large.& P the probability of success is close to ½.The general equation is f(x) = 1 e -(x-μ)2 2 2п where the variable x lies between - < x<, μ & are called the parameters of the distribution.f(x) is called pdf of the normal distribution N( μ, 2 ).The graph of the normal distribution is called the normal curve.it is bell shaped and symmetric about its mean.the two tails of the curve extend to + & - The curve is unimodal.the total area under the curve is 1. Standard form of normal distribution If X is a normal random variable with mean μ & standard deviation, then the random variable Z = X-μ has the normal distribution with mean 0 and S.D 1.The pdf is f(z)= 1 / 2п e z 2 / 2, - < z< It is free from any parameters. Area Under the normal curve By taking z = x - μ the standard normal curve is formed.the total area under this curve is divided into two parts.1) z varies from - to 0 and 2) z varies from 0 to, each area is 0.5

9 1. A sample of 100 battery cells is tested to find the length of life, gave the following results. Mean = 12 hrs. S.D. = 3 hrs.assuming the data tobe normally distributed what % of battery cells are expected to have life i) more than 15 hrs.ii)less than 6hrs. Iii) between 10 & 14 hrs. i ) when x = 15 P( x > 15) = P( X-μ > 15 μ ) = P( z > 1) = = = 16% ii) When x = 6 P( x <6) = P( X-μ < 6 μ ) = P( z < -2) = = = 2.28% iii) When P( 10< x<14) = P( 10 - μ < X-μ < 6 μ ) = P( < z < ) = 2*P(0< z < ) = *2=0.497 =50% 2. In a normal distribution 31% of the items are under 45and 8% are over 64.Find the mean and S.D. Of the distribution. Area between 0 and 45-μ = = 0.19 From the table 45-μ = Area between 0& 64-μ = = 0.42

10 From the table 64-μ = μ = (1) 64-μ = (2) Solving (1) & (2) we get μ = 50 = In a normal distribution 7% of the items are below 35 and 11% are above 63.Find the mean and S.D. Of the distribution. Area between 0 & 35-μ = = 0.43 From the table 35-μ = Area between 0 & 63-μ = = 0.39 From the table 63-μ = μ = (1) 63-μ = (2) solving(1) &(2) we get μ = 50 = 10. Home work 1) X is a normal variate with mean 30 and S.D. 5.Find the probability that a) 26<x<40 b) x-30 >5 2)For a normally distributed population 7%of the items have their values less than. 35 and 89% have their values less than 63.Find the mean and S.D.. ************************************************

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

PROBABILITY AND SAMPLING DISTRIBUTIONS

PROBABILITY AND SAMPLING DISTRIBUTIONS PROBABILITY AND SAMPLING DISTRIBUTIONS SEEMA JAGGI AND P.K. BATRA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 0 0 seema@iasri.res.in. Introduction The concept of probability

More information

39.2. The Normal Approximation to the Binomial Distribution. Introduction. Prerequisites. Learning Outcomes

39.2. The Normal Approximation to the Binomial Distribution. Introduction. Prerequisites. Learning Outcomes The Normal Approximation to the Binomial Distribution 39.2 Introduction We have already seen that the Poisson distribution can be used to approximate the binomial distribution for large values of n and

More information

Sample Questions for Mastery #5

Sample Questions for Mastery #5 Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could

More information

Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2. Probability Distributions for Discrete Random Variables Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

Binomial Distribution Problems. Binomial Distribution SOLUTIONS. Poisson Distribution Problems

Binomial Distribution Problems. Binomial Distribution SOLUTIONS. Poisson Distribution Problems 1 Binomial Distribution Problems (1) A company owns 400 laptops. Each laptop has an 8% probability of not working. You randomly select 20 laptops for your salespeople. (a) What is the likelihood that 5

More information

2 Binomial, Poisson, Normal Distribution

2 Binomial, Poisson, Normal Distribution 2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Chapter 9 Monté Carlo Simulation

Chapter 9 Monté Carlo Simulation MGS 3100 Business Analysis Chapter 9 Monté Carlo What Is? A model/process used to duplicate or mimic the real system Types of Models Physical simulation Computer simulation When to Use (Computer) Models?

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

Chapter 4. Probability Distributions

Chapter 4. Probability Distributions Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

More information

39.2. The Normal Approximation to the Binomial Distribution. Introduction. Prerequisites. Learning Outcomes

39.2. The Normal Approximation to the Binomial Distribution. Introduction. Prerequisites. Learning Outcomes The Normal Approximation to the Binomial Distribution 39.2 Introduction We have already seen that the Poisson distribution can be used to approximate the binomial distribution for large values of n and

More information

STAT 3502. x 0 < x < 1

STAT 3502. x 0 < x < 1 Solution - Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics Probability and Probability Distributions 1. Introduction 2. Probability 3. Basic rules of probability 4. Complementary events 5. Addition Law for

More information

6 PROBABILITY GENERATING FUNCTIONS

6 PROBABILITY GENERATING FUNCTIONS 6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned

More information

Chapter 4. Probability and Probability Distributions

Chapter 4. Probability and Probability Distributions Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

Binomial random variables

Binomial random variables Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance

More information

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

More information

Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

More information

2. Discrete random variables

2. Discrete random variables 2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

More information

THE BINOMIAL DISTRIBUTION & PROBABILITY

THE BINOMIAL DISTRIBUTION & PROBABILITY REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution

More information

Practice Problems #4

Practice Problems #4 Practice Problems #4 PRACTICE PROBLEMS FOR HOMEWORK 4 (1) Read section 2.5 of the text. (2) Solve the practice problems below. (3) Open Homework Assignment #4, solve the problems, and submit multiple-choice

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION 6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

More information

Normal Distribution as an Approximation to the Binomial Distribution

Normal Distribution as an Approximation to the Binomial Distribution Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

More information

Some special discrete probability distributions

Some special discrete probability distributions University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that

More information

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

More information

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives. The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

More information

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables 1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

More information

Binomial random variables (Review)

Binomial random variables (Review) Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die

More information

M 1313 Review Test 4 1

M 1313 Review Test 4 1 M 1313 Review Test 4 1 Review for test 4: 1. Let E and F be two events of an experiment, P (E) =. 3 and P (F) =. 2, and P (E F) =.35. Find the following probabilities: a. P(E F) b. P(E c F) c. P (E F)

More information

Normal Approximation. Contents. 1 Normal Approximation. 1.1 Introduction. Anthony Tanbakuchi Department of Mathematics Pima Community College

Normal Approximation. Contents. 1 Normal Approximation. 1.1 Introduction. Anthony Tanbakuchi Department of Mathematics Pima Community College Introductory Statistics Lectures Normal Approimation To the binomial distribution Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission

More information

WHERE DOES THE 10% CONDITION COME FROM?

WHERE DOES THE 10% CONDITION COME FROM? 1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

More information

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

12.5: CHI-SQUARE GOODNESS OF FIT TESTS 125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

International Examinations. Advanced Level Mathematics Statistics 2 Steve Dobbs and Jane Miller

International Examinations. Advanced Level Mathematics Statistics 2 Steve Dobbs and Jane Miller International Examinations Advanced Level Mathematics Statistics 2 Steve Dobbs and Jane Miller The publishers would like to acknowledge the contributions of the following people to this series of books:

More information

Pr(X = x) = f(x) = λe λx

Pr(X = x) = f(x) = λe λx Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error

More information

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved. 3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing

More information

Review for Test 2. Chapters 4, 5 and 6

Review for Test 2. Chapters 4, 5 and 6 Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair six-sided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than

More information

Probability Distributions

Probability Distributions Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

More information

AP Statistics 7!3! 6!

AP Statistics 7!3! 6! Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0. Ch. 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 1 Find Areas Under the Standard Normal Curve 1) Find the area under the standard normal

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Practice Problems for Homework #6. Normal distribution and Central Limit Theorem.

Practice Problems for Homework #6. Normal distribution and Central Limit Theorem. Practice Problems for Homework #6. Normal distribution and Central Limit Theorem. 1. Read Section 3.4.6 about the Normal distribution and Section 4.7 about the Central Limit Theorem. 2. Solve the practice

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If two events are mutually exclusive, what is the probability that one or the other occurs? A)

More information

AP STATISTICS 2010 SCORING GUIDELINES

AP STATISTICS 2010 SCORING GUIDELINES 2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability

More information

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k. REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

Binomial Distribution n = 20, p = 0.3

Binomial Distribution n = 20, p = 0.3 This document will describe how to use R to calculate probabilities associated with common distributions as well as to graph probability distributions. R has a number of built in functions for calculations

More information

Construct and Interpret Binomial Distributions

Construct and Interpret Binomial Distributions CH 6.2 Distribution.notebook A random variable is a variable whose values are determined by the outcome of the experiment. 1 CH 6.2 Distribution.notebook A probability distribution is a function which

More information

Normal and Binomial. Distributions

Normal and Binomial. Distributions Normal and Binomial Distributions Library, Teaching and Learning 14 By now, you know about averages means in particular and are familiar with words like data, standard deviation, variance, probability,

More information

Statistics 100A Homework 8 Solutions

Statistics 100A Homework 8 Solutions Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

More information

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Pre-lecture iclicker Question 4.4 Pre-lecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing

More information

Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Applied Reliability ------------------------------------------------------------------------------------------------------------ Applied Reliability

Applied Reliability ------------------------------------------------------------------------------------------------------------ Applied Reliability Applied Reliability Techniques for Reliability Analysis with Applied Reliability Tools (ART) (an EXCEL Add-In) and JMP Software AM216 Class 6 Notes Santa Clara University Copyright David C. Trindade, Ph.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups

More information

The Normal Distribution

The Normal Distribution The Normal Distribution Continuous Distributions A continuous random variable is a variable whose possible values form some interval of numbers. Typically, a continuous variable involves a measurement

More information

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

More information

4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables 4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

More information

6 POISSON DISTRIBUTIONS

6 POISSON DISTRIBUTIONS 6 POISSON DISTRIBUTIONS Chapter 6 Poisson Distributions Objectives After studying this chapter you should be able to recognise when to use the Poisson distribution; be able to apply the Poisson distribution

More information

EMPIRICAL FREQUENCY DISTRIBUTION

EMPIRICAL FREQUENCY DISTRIBUTION INTRODUCTION TO MEDICAL STATISTICS: Mirjana Kujundžić Tiljak EMPIRICAL FREQUENCY DISTRIBUTION observed data DISTRIBUTION - described by mathematical models 2 1 when some empirical distribution approximates

More information

Lecture 8: More Continuous Random Variables

Lecture 8: More Continuous Random Variables Lecture 8: More Continuous Random Variables 26 September 2005 Last time: the eponential. Going from saying the density e λ, to f() λe λ, to the CDF F () e λ. Pictures of the pdf and CDF. Today: the Gaussian

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Chapter 5: Normal Probability Distributions - Solutions

Chapter 5: Normal Probability Distributions - Solutions Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that

More information

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION. School of Mathematical Sciences. Monash University, Clayton, Victoria, Australia 3168

SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION. School of Mathematical Sciences. Monash University, Clayton, Victoria, Australia 3168 SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION Ravi PHATARFOD School of Mathematical Sciences Monash University, Clayton, Victoria, Australia 3168 In this paper we consider the problem of gambling with

More information

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

More information

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS TRUE/FALSE 235. The Poisson probability distribution is a continuous probability distribution. F 236. In a Poisson distribution,

More information

STAT 35A HW2 Solutions

STAT 35A HW2 Solutions STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

More information

Lecture 10: Depicting Sampling Distributions of a Sample Proportion

Lecture 10: Depicting Sampling Distributions of a Sample Proportion Lecture 10: Depicting Sampling Distributions of a Sample Proportion Chapter 5: Probability and Sampling Distributions 2/10/12 Lecture 10 1 Sample Proportion 1 is assigned to population members having a

More information

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large

More information

Binomial Random Variables

Binomial Random Variables Binomial Random Variables Dr Tom Ilvento Department of Food and Resource Economics Overview A special case of a Discrete Random Variable is the Binomial This happens when the result of the eperiment is

More information

Practice Problems for Homework #8. Markov Chains. Read Sections 7.1-7.3. Solve the practice problems below.

Practice Problems for Homework #8. Markov Chains. Read Sections 7.1-7.3. Solve the practice problems below. Practice Problems for Homework #8. Markov Chains. Read Sections 7.1-7.3 Solve the practice problems below. Open Homework Assignment #8 and solve the problems. 1. (10 marks) A computer system can operate

More information

Without data, all you are is just another person with an opinion.

Without data, all you are is just another person with an opinion. OCR Statistics Module Revision Sheet The S exam is hour 30 minutes long. You are allowed a graphics calculator. Before you go into the exam make sureyou are fully aware of the contents of theformula booklet

More information

Math/Stats 342: Solutions to Homework

Math/Stats 342: Solutions to Homework Math/Stats 342: Solutions to Homework Steven Miller (sjm1@williams.edu) November 17, 2011 Abstract Below are solutions / sketches of solutions to the homework problems from Math/Stats 342: Probability

More information