# Lecture 5 : The Poisson Distribution

Save this PDF as:

Size: px
Start display at page:

Download "Lecture 5 : The Poisson Distribution"

## Transcription

1 Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume, length etc. For example, The number of cases of a disease in different towns The number of mutations in set sized regions of a chromosome The number of dolphin pod sightings along a flight path through a region The number of particles emitted by a radioactive source in a given time The number of births per hour during a given day In such situations we are often interested in whether the events occur randomly in time or space. Consider the Babyboom dataset we saw in Lecture 2. The birth times of the babies throughout the day are shown in Figure 1. If we divide up the day into 24 hour intervals and count the number of births in each hour we can plot the counts as a histogram in Figure 2. How does this compare to the histogram of counts for a process that isn t random? Suppose the 44 birth times were distributed in time as shown in Figure 3. The histogram of these birth times per hour is shown in Figure 4. We see that the non-random clustering of events in time causes there to be more hours with zero births and more hours with large numbers of births than the real birth times histogram. This example illustrates that the distribution of counts is useful in uncovering whether the events might occur randomly or non-randomly in time (or space). Simply looking at the histogram isn t sufficient if we want to ask the question whether the events occur randomly or not. To answer this question we need a probability model for the distribution of counts of random events that dictates the type of distributions we should expect to see. 1

2 Figure 1: The birth times of the babies in the Babyboom dataset Figure 2: Histogram of birth times per hour of the babies in the Babyboom dataset 2

3 Figure 3: The birth times of the babies in the Babyboom dataset Figure 4: Histogram of birth times per hour of the non-random data. 3

4 2 The Poisson Distribution The Poisson distribution is a discrete probability distribution for the counts of events that occur randomly in a given interval of time (or space). If we let X = The number of events in a given interval, Then, if the mean number of events per interval is λ The probability of observing x events in a given interval is given by λ λx P(X = x) = e x! x = 0, 1, 2, 3, 4,... Note e is a mathematical constant. e There should be a button on your calculator e x that calculates powers of e. If the probabilities of X are distributed in this way, we write X Po(λ) λ is the parameter of the distribution. We say X follows a Poisson distribution with parameter λ Note A Poisson random variable can take on any positive integer value. In contrast, the Binomial distribution always has a finite upper limit. 2.1 Examples Births in a hospital occur randomly at an average rate of 1.8 births per hour. What is the probability of observing 4 births in a given hour at the hospital? Let X = No. of births in a given hour (i) Events occur randomly (ii) Mean rate λ = 1.8 X Po(1.8) We can now use the formula to calculate the probability of observing exactly 4 births in a given hour P (X = 4) = e = ! What about the probability of observing more than or equal to 2 births in a given hour at the hospital? We want P (X 2) = P (X = 2) + P (X = 3)

5 i.e. an infinite number of probabilities to calculate but P (X 2) = P (X = 2) + P (X = 3) +... = 1 P (X < 2) = 1 (P (X = 0) + P (X = 1)) = 1 (e 0! e 1! ) = 1 ( ) = The shape of the Poisson distribution par(mfrow = c(1, 3)) plot(0:20, dpois(0:20, 3), type = h, ylim = c(0, 0.25), xlab = X, main = Po(3), ylab = P(X), lwd = 3, cex.lab = 1.5, cex.axis = 2, cex.main = 2) plot(0:20, dpois(0:20, 5), type = h, ylim = c(0, 0.25), xlab = X, main = Po(5), ylab = P(X), lwd = 3, cex.lab = 1.5, cex.axis = 2, cex.main = 2) plot(0:20, dpois(0:20, 10),type = h, ylim = c(0, 0.25), xlab = X, main = Po(10), ylab = P(X), lwd = 3, cex.lab = 1.5, cex.axis = 2, cex.main = 2) Using the formula we can calculate the probabilities for a specific Poisson distribution and plot the probabilities to observe the shape of the distribution. For example, Figure 5 shows 3 different Poisson distributions. We observe that the distributions are (i) unimodal (ii) exhibit positive skew (that decreases a λ increases) (iii) centered roughly on λ (iii) the variance (spread) increases as λ increases 4 Mean and Variance of the Poisson distribution In general, there is a formula for the mean of a Poisson distribution. There is also a formula for the standard deviation, σ, and variance, σ 2. If X Po(λ) then µ = λ σ = λ σ 2 = λ 5

6 5 Changing the size of the interval Suppose we know that births in a hospital occur randomly at an average rate of 1.8 births per hour. What is the probability that we observe 5 births in a given 2 hour interval? Well, if births occur randomly at a rate of 1.8 births per 1 hour interval Then births occur randomly at a rate of 3.6 births per 2 hour interval Let Y = No. of births in a 2 hour period Then Y Po(3.6) P (Y = 5) = e = ! This example illustrates the following rule If X Po(λ) on 1 unit interval, then Y Po(kλ) on k unit intervals. 6 Sum of two Poisson variables Now suppose we know that in hospital A births occur randomly at an average rate of 2.3 births per hour and in hospital B births occur randomly at an average rate of 3.1 births per hour. What is the probability that we observe 7 births in total from the two hospitals Figure 5: Three different Poisson distributions. 6

7 in a given 1 hour period? To answer this question we can use the following rule If X Po(λ 1 ) on 1 unit interval, and Y Po(λ 2 ) on 1 unit interval, then X + Y Po(λ 1 + λ 2 ) on 1 unit interval. So if we let X = No. of births in a given hour at hospital A and Y = No. of births in a given hour at hospital B Then X Po(2.3), Y Po(3.1) and X + Y Po(5.4) P (X + Y = 7) = e = ! 7 Using the Poisson to approximate the Binomial The Binomial and Poisson distributions are both discrete probability distributions. In some circumstances the distributions are very similar. For example, consider the Bin(100, 0.02) and Po(2) distributions shown in Figure 6. Visually these distributions are identical. In general, If n is large (say > 50) and p is small (say < 0.1) then a Bin(n, p) can be approximated with a Po(λ) where λ = np The idea of using one distribution to approximate another is widespread throughout statistics and one we will meet again. In many situations it is extremely difficult to use the exact distribution and so approximations are very useful. Example Given that 5% of a population are left-handed, use the Poisson distribution to estimate the probability that a random sample of 100 people contains 2 or more left-handed people. X = No. of left handed people in a sample of 100 X Bin(100, 0.05) Poisson approximation X Po(λ) with λ = = 5 We want P (X 2)? P (X 2) = 1 P (X < 2) ( ) = 1 P (X = 0) + P (X = 1) ) (e + e 5 0! 1!

8 Figure 6: A Binomial and Poisson distribution that are very similar. If we use the exact Binomial distribution we get the answer Fitting a Poisson distribution Consider the two sequences of birth times we saw in Section 1. Both of these examples consisted of a total of 44 births in 24 hour intervals. Therefore the mean birth rate for both sequences is = What would be the expected counts if birth times were really random i.e. what is the expected histogram for a Poisson random variable with mean rate λ = Using the Poisson formula we can calculate the probabilities of obtaining each possible value 1 x P (X = x) Then if we observe 24 hour intervals we can calculate the expected frequencies as 24 P (X = x) for each value of x. x Expected frequency P (X = x) We say we have fitted a Poisson distribution to the data. 1 in practice we group values with low probability into one category. 8

9 This consisted of 3 steps (i) Estimating the parameters of the distribution from the data (ii) Calculating the probability distribution (iii) Multiplying the probability distribution by the number of observations Once we have fitted a distribution to the data we can compare the expected frequencies to those we actually observed from the real Babyboom dataset. We see that the agreement is quite good. x Expected Observed When we compare the expected frequencies to those observed from the nonrandom clustered sequence in Section 1 we see that there is much less agreement. x Expected Observed In Lecture 7 we will see how we can formally test for a difference between the expected and observed counts. For now it is enough just to know how to fit a distribution. 9

### The normal approximation to the binomial

The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

### DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables

1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random

### SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

### APPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING

APPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING Sulaimon Mutiu O. Department of Statistics & Mathematics Moshood Abiola Polytechnic, Abeokuta, Ogun State, Nigeria. Abstract

### MAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions

MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard

### Normal distribution. ) 2 /2σ. 2π σ

Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

### Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

### 12.5: CHI-SQUARE GOODNESS OF FIT TESTS

125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

### Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.

Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the

### Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

### The normal approximation to the binomial

The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

### Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

### 2. Discrete random variables

2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

### Probability Distributions

CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,

### Chapter 4. Probability Distributions

Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

### Notes on the Negative Binomial Distribution

Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between

### Probability Distributions

CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution

### 2 Binomial, Poisson, Normal Distribution

2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability

### 1 Sufficient statistics

1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

### You flip a fair coin four times, what is the probability that you obtain three heads.

Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

### Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

### EMPIRICAL FREQUENCY DISTRIBUTION

INTRODUCTION TO MEDICAL STATISTICS: Mirjana Kujundžić Tiljak EMPIRICAL FREQUENCY DISTRIBUTION observed data DISTRIBUTION - described by mathematical models 2 1 when some empirical distribution approximates

### 16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

### Characteristics of Binomial Distributions

Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

### Descriptive Statistics

Descriptive Statistics Suppose following data have been collected (heights of 99 five-year-old boys) 117.9 11.2 112.9 115.9 18. 14.6 17.1 117.9 111.8 16.3 111. 1.4 112.1 19.2 11. 15.4 99.4 11.1 13.3 16.9

### CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS TRUE/FALSE 235. The Poisson probability distribution is a continuous probability distribution. F 236. In a Poisson distribution,

### Practice Problems #4

Practice Problems #4 PRACTICE PROBLEMS FOR HOMEWORK 4 (1) Read section 2.5 of the text. (2) Solve the practice problems below. (3) Open Homework Assignment #4, solve the problems, and submit multiple-choice

### Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

### Statistics 104: Section 6!

Page 1 Statistics 104: Section 6! TF: Deirdre (say: Dear-dra) Bloome Email: dbloome@fas.harvard.edu Section Times Thursday 2pm-3pm in SC 109, Thursday 5pm-6pm in SC 705 Office Hours: Thursday 6pm-7pm SC

### CHI-SQUARE: TESTING FOR GOODNESS OF FIT

CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity

### Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

### Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

### STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

### Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

### 1 The Brownian bridge construction

The Brownian bridge construction The Brownian bridge construction is a way to build a Brownian motion path by successively adding finer scale detail. This construction leads to a relatively easy proof

### Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

### Sampling Distributions

Sampling Distributions You have seen probability distributions of various types. The normal distribution is an example of a continuous distribution that is often used for quantitative measures such as

### Standard Deviation Estimator

CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

### Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

### STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

### Some special discrete probability distributions

University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that

### The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

### 39.2. The Normal Approximation to the Binomial Distribution. Introduction. Prerequisites. Learning Outcomes

The Normal Approximation to the Binomial Distribution 39.2 Introduction We have already seen that the Poisson distribution can be used to approximate the binomial distribution for large values of n and

### MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

### Northumberland Knowledge

Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

### Chapter 5 - Practice Problems 1

Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level

### Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller

Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller Getting to know the data An important first step before performing any kind of statistical analysis is to familiarize

### REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

### WEEK #23: Statistics for Spread; Binomial Distribution

WEEK #23: Statistics for Spread; Binomial Distribution Goals: Study measures of central spread, such interquartile range, variance, and standard deviation. Introduce standard distributions, including the

### STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

### Pr(X = x) = f(x) = λe λx

Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### THE BINOMIAL DISTRIBUTION & PROBABILITY

REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution

### e.g. arrival of a customer to a service station or breakdown of a component in some system.

Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

### Binomial random variables

Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance

### 6 PROBABILITY GENERATING FUNCTIONS

6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned

### Binomial Random Variables

Binomial Random Variables Dr Tom Ilvento Department of Food and Resource Economics Overview A special case of a Discrete Random Variable is the Binomial This happens when the result of the eperiment is

### SKEWNESS. Measure of Dispersion tells us about the variation of the data set. Skewness tells us about the direction of variation of the data set.

SKEWNESS All about Skewness: Aim Definition Types of Skewness Measure of Skewness Example A fundamental task in many statistical analyses is to characterize the location and variability of a data set.

### Unbeknownst to us, the entire population consists of 5 cloned sheep with ages 10, 11, 12, 13, 14 months.

Activity #14: Sampling distributions and the Central Limit Theorem So far, this unit has focused on distributions of discrete and continuous random variables. In this activity, we ll investigate sampling

### Negative Binomial. Paul Johnson and Andrea Vieux. June 10, 2013

Negative Binomial Paul Johnson and Andrea Vieux June, 23 Introduction The Negative Binomial is discrete probability distribution, one that can be used for counts or other integervalued variables. It gives

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

### Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS

BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-110 012 seema@iasri.res.in Genomics A genome is an organism s

### 8. THE NORMAL DISTRIBUTION

8. THE NORMAL DISTRIBUTION The normal distribution with mean μ and variance σ 2 has the following density function: The normal distribution is sometimes called a Gaussian Distribution, after its inventor,

### Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals

### Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

### Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2

Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2 Due Date: Friday, March 11 at 5:00 PM This homework has 170 points plus 20 bonus points available but, as always, homeworks are graded

### MAS108 Probability I

1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

### MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Binomial Distribution n = 20, p = 0.3

This document will describe how to use R to calculate probabilities associated with common distributions as well as to graph probability distributions. R has a number of built in functions for calculations

### Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution l Consider a situation where there are only two possible outcomes (a Bernoulli trial) H Example: u flipping a

### BINOMIAL DISTRIBUTION

MODULE IV BINOMIAL DISTRIBUTION A random variable X is said to follow binomial distribution with parameters n & p if P ( X ) = nc x p x q n x where x = 0, 1,2,3..n, p is the probability of success & q

### The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

### VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

### Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

### Normal and Binomial. Distributions

Normal and Binomial Distributions Library, Teaching and Learning 14 By now, you know about averages means in particular and are familiar with words like data, standard deviation, variance, probability,

### E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

### Exponential Distribution

Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1

### Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

### 15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

### Binomial Distribution Problems. Binomial Distribution SOLUTIONS. Poisson Distribution Problems

1 Binomial Distribution Problems (1) A company owns 400 laptops. Each laptop has an 8% probability of not working. You randomly select 20 laptops for your salespeople. (a) What is the likelihood that 5

### ECE302 Spring 2006 HW4 Solutions February 6, 2006 1

ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 Solutions to HW4 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

### Unit 4 The Bernoulli and Binomial Distributions

PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

### Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers

Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers 5.18 Attitudes toward drinking and behavior studies. Some of the methods in this section are approximations

### 1 The EOQ and Extensions

IEOR4000: Production Management Lecture 2 Professor Guillermo Gallego September 9, 2004 Lecture Plan 1. The EOQ and Extensions 2. Multi-Item EOQ Model 1 The EOQ and Extensions This section is devoted to

### Name: Date: Use the following to answer questions 2-4:

Name: Date: 1. A phenomenon is observed many, many times under identical conditions. The proportion of times a particular event A occurs is recorded. What does this proportion represent? A) The probability

### Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

### Review #2. Statistics

Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of

### Binomial random variables (Review)

Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die

### Defending Against Traffic Analysis Attacks with Link Padding for Bursty Traffics

Proceedings of the 4 IEEE United States Military Academy, West Point, NY - June Defending Against Traffic Analysis Attacks with Link Padding for Bursty Traffics Wei Yan, Student Member, IEEE, and Edwin

### Confidence Intervals for One Standard Deviation Using Standard Deviation

Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

### Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

### Queuing Theory. Long Term Averages. Assumptions. Interesting Values. Queuing Model

Queuing Theory Queuing Theory Queuing theory is the mathematics of waiting lines. It is extremely useful in predicting and evaluating system performance. Queuing theory has been used for operations research.

### Dongfeng Li. Autumn 2010

Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis

### Betting on Volatility: A Delta Hedging Approach. Liang Zhong

Betting on Volatility: A Delta Hedging Approach Liang Zhong Department of Mathematics, KTH, Stockholm, Sweden April, 211 Abstract In the financial market, investors prefer to estimate the stock price

### ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME

ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME Alexey Chuprunov Kazan State University, Russia István Fazekas University of Debrecen, Hungary 2012 Kolchin s generalized allocation scheme A law of

### Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in