SAT Math Must-Know Facts & Formulas

Size: px
Start display at page:

Download "SAT Math Must-Know Facts & Formulas"

Transcription

1 SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas pus specia numbers suc as 2, 3 and π Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses / Exponents / Mutipy / Divide / Add / Subtract) eac term is equa to te previous term pus d Sequence: t 1, t 1 + d, t 1 + 2d,... Exampe: d = 4 and t 1 = 3 gives te sequence 3, 7, 11, 15,... Geometric Sequences: eac term is equa to te previous term times r Sequence: t 1, t 1 r, t 1 r 2,... Exampe: r = 2 and t 1 = 3 gives te sequence 3, 6, 12, 24,... Factors: te factors of a number divide into tat number witout a remainder Exampe: te factors of 52 are 1, 2, 4, 13, 26, and 52 Mutipes: te mutipes of a number are divisibe by tat number witout a remainder Exampe: te positive mutipes of 20 are 20, 40, 60, 80,... Percents: use te foowing formua to find part, woe, or percent part = percent 100 woe Exampe: 75% of 300 is wat? Sove x = (75/100) 300 to get 225 Exampe: 45 is wat percent of 60? Sove 45 = (x/100) 60 to get 75% Exampe: 30 is 20% of wat? Sove 30 = (20/100) x to get 150 pg. 1

2 SAT Mat Must-Know Facts & Formuas Averages, Counting, Statistics, Probabiity average = sum of terms number of terms average speed = tota distance tota time Fundamenta Counting Principe: sum = average (number of terms) mode = vaue in te ist tat appears most often median = midde vaue in te ist (wic must be sorted) Exampe: median of {3, 10, 9, 27, 50} = 10 Exampe: median of {3, 9, 10, 27} = (9 + 10)/2 = 9.5 If an event can appen in N ways, and anoter, independent event can appen in M ways, ten bot events togeter can appen in N M ways. Probabiity: probabiity = number of desired outcomes number of tota outcomes Exampe: eac SAT mat mutipe coice question as five possibe answers, one of wic is te correct answer. If you guess te answer to a question competey at random, your probabiity of getting it rigt is 1/5 = 20%. Te probabiity of two different events A and B bot appening is P(A and B) = P(A) P(B), as ong as te events are independent (not mutuay excusive). Powers, Exponents, Roots x a x b = x a+b (x a ) b = x a b x 0 = 1 x a /x b = x a b (xy) a = x a y a xy = x y 1/x b = x b { ( 1) n +1, if n is even; = 1, if n is odd. pg. 2

3 Factoring, Soving SAT Mat Must-Know Facts & Formuas (x + a)(x + b) = x 2 + (b + a)x + ab FOIL a 2 b 2 = (a + b)(a b) Difference Of Squares a 2 + 2ab + b 2 = (a + b)(a + b) a 2 2ab + b 2 = (a b)(a b) To sove a quadratic suc as x 2 +bx+c = 0, first factor te eft side to get (x+a 1 )(x+a 2 ) = 0, ten set eac part in parenteses equa to zero. E.g., x 2 + 4x + 3 = (x + 3)(x + 1) = 0 so tat x = 3 or x = 1. To sove two inear equations in x and y: use te first equation to substitute for a variabe in te second. E.g., suppose x + y = 3 and 4x y = 2. Te first equation gives y = 3 x, so te second equation becomes 4x (3 x) = 2 5x 3 = 2 x = 1, y = 2. Functions A function is a rue to go from one number (x) to anoter number (y), usuay written y = f(x). For any given vaue of x, tere can ony be one corresponding vaue y. If y = kx for some number k (exampe: f(x) = 0.5 x), ten y is said to be directy proportiona to x. If y = k/x (exampe: f(x) = 5/x), ten y is said to be inversey proportiona to x. Absoute vaue: x = { +x, if x 0; x, if x < 0. Lines (Linear Functions) Consider te ine tat goes troug points A(x 1, y 1 ) and B(x 2, y 2 ). Distance from A to B: Mid-point of te segment AB: Sope of te ine: (x2 x 1 ) 2 + (y 2 y 1 ) 2 ( x1 + x 2 2, y ) 1 + y 2 2 y 2 y 1 = rise x 2 x 1 run pg. 3

4 SAT Mat Must-Know Facts & Formuas Sope-intercept form: given te sope m and te y-intercept b, ten te equation of te ine is y = mx + b. Parae ines ave equa sopes: m 1 = m 2. Perpendicuar ines ave negative reciproca sopes: m 1 m 2 = 1. a a b b a b b a a b m b a Intersecting Lines Parae Lines ( m) Intersecting ines: opposite anges are equa. Aso, eac pair of anges aong te same ine add to 180. In te figure above, a + b = 180. Parae ines: eigt anges are formed wen a ine crosses two parae ines. Te four big anges (a) are equa, and te four sma anges (b) are equa. Trianges Rigt trianges: c a b 30 2x x 3 60 x x 2 45 x 45 x a 2 + b 2 = c 2 Specia Rigt Trianges Note tat te above specia triange figures are given in te test booket, so you don t ave to memorize tem, but you soud be famiiar wit wat tey mean, especiay te first one, wic is caed te Pytagorean Teorem (a 2 + b 2 = c 2 ). A good exampe of a rigt triange is one wit a = 3, b = 4, and c = 5, aso caed a rigt triange. Note tat mutipes of tese numbers are aso rigt trianges. For exampe, if you mutipy tese numbers by 2, you get a = 6, b = 8, and c = 10 (6 8 10), wic is aso a rigt triange. Te Specia Rigt Trianges are needed ess often tan te Pytagorean Teorem. Here, x is used to mean any positive number, suc as 1, 1/2, etc. A typica exampe on te test: you are given a triange wit sides 2, 1, and 3 and are asked for te ange opposite te 3. Te figure sows tat tis ange is 60. pg. 4

5 SAT Mat Must-Know Facts & Formuas A trianges: b Area = 1 2 b Te area formua above works for a trianges, not just rigt trianges. Anges on te inside of any triange add up to 180. Te engt of one side of any triange is aways ess tan te sum of te engts of te oter two sides. Oter important trianges: Equiatera: Tese trianges ave tree equa sides, and a tree anges are 60. Isoscees: Simiar: An isoscees triange as two equa sides. Te base anges (te ones opposite te two sides) are equa. A good exampe of an isoscees triange is te one on page 4 wit base anges of 45. Two or more trianges are simiar if tey ave te same sape. Te corresponding anges are equa, and te corresponding sides are in proportion. For exampe, te triange and te triange from before are simiar since teir sides are in a ratio of 2 to 1. Circes (, k) r r n Arc Sector Area = πr 2 Circumference = 2πr Fu circe = 360 (Optiona) Lengt Of Arc = (n /360 ) 2πr Area Of Sector = (n /360 ) πr 2 pg. 5

6 Rectanges And Friends SAT Mat Must-Know Facts & Formuas w Rectange Paraeogram (Optiona) (Square if = w) (Rombus if = w) Area = w Area = Te formua for te area of a rectange is given in te test booket, but it is very important to know, so you soud memorize it anyway. Soids w r w Rectanguar Soid Voume = w Rigt Cyinder Voume = πr 2 Note tat te above soids figures are given in te test booket, so you don t ave to memorize tem, but you soud be famiiar wit wat tey mean. pg. 6

SAT Math Facts & Formulas

SAT Math Facts & Formulas Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:

More information

ACT Math Facts & Formulas

ACT Math Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as

More information

SAT Subject Math Level 1 Facts & Formulas

SAT Subject Math Level 1 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

More information

Topic 1: Pythagoras Theorem

Topic 1: Pythagoras Theorem Topic 1: Pytagoras Teorem Pytagoras Teorem states tat in a rigt anged triange: Te square of te ypotenuse is equa to te sum of te squares of te oter two sides Diagrammaticay: Hypotenuse a c () Oter sides

More information

A. V = lwh where l = 11, w = 8 and h = 2 = = 88 2 = 176 cm 3. b) Find the volume of the cube. =... m 3 = = cm 3

A. V = lwh where l = 11, w = 8 and h = 2 = = 88 2 = 176 cm 3. b) Find the volume of the cube. =... m 3 = = cm 3 5. [Voume] Ski 5.1 rectanguar prism square prism cube Cacuating te voume of square and rectanguar prisms. engt widt eigt w engt widt eigt engt engt engt w MM5. 11 44 MM6.1 11 44 Q. Te parce is a rectanguar

More information

This supplement is meant to be read after Venema s Section 9.2. Throughout this section, we assume all nine axioms of Euclidean geometry.

This supplement is meant to be read after Venema s Section 9.2. Throughout this section, we assume all nine axioms of Euclidean geometry. Mat 444/445 Geometry for Teacers Summer 2008 Supplement : Similar Triangles Tis supplement is meant to be read after Venema s Section 9.2. Trougout tis section, we assume all nine axioms of uclidean geometry.

More information

Trapezoid Rule. y 2. y L

Trapezoid Rule. y 2. y L Trapezoid Rule and Simpson s Rule c 2002, 2008, 200 Donald Kreider and Dwigt Lar Trapezoid Rule Many applications of calculus involve definite integrals. If we can find an antiderivative for te integrand,

More information

Area of Trapezoids. Find the area of the trapezoid. 7 m. 11 m. 2 Use the Area of a Trapezoid. Find the value of b 2

Area of Trapezoids. Find the area of the trapezoid. 7 m. 11 m. 2 Use the Area of a Trapezoid. Find the value of b 2 Page 1 of. Area of Trapezoids Goal Find te area of trapezoids. Recall tat te parallel sides of a trapezoid are called te bases of te trapezoid, wit lengts denoted by and. base, eigt Key Words trapezoid

More information

Divide and Conquer Approach

Divide and Conquer Approach Divide and Conquer Approac Deiverabes Divide and Conquer Paradigm nteger Mutipication Strassen Matrix Mutipication Cosest Pair of points nfinite Wa Probem 6/7/01 8:58 PM Copyrigt @ gdeepak.com Divide and

More information

The EOQ Inventory Formula

The EOQ Inventory Formula Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of

More information

ACTIVITY: Deriving the Area Formula of a Trapezoid

ACTIVITY: Deriving the Area Formula of a Trapezoid 4.3 Areas of Trapezoids a trapezoid? How can you derive a formula for te area of ACTIVITY: Deriving te Area Formula of a Trapezoid Work wit a partner. Use a piece of centimeter grid paper. a. Draw any

More information

Instantaneous Rate of Change:

Instantaneous Rate of Change: Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information

Tangent Lines and Rates of Change

Tangent Lines and Rates of Change Tangent Lines and Rates of Cange 9-2-2005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims

More information

7.6 Complex Fractions

7.6 Complex Fractions Section 7.6 Comple Fractions 695 7.6 Comple Fractions In tis section we learn ow to simplify wat are called comple fractions, an eample of wic follows. 2 + 3 Note tat bot te numerator and denominator are

More information

Compute the derivative by definition: The four step procedure

Compute the derivative by definition: The four step procedure Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function

More information

2 Limits and Derivatives

2 Limits and Derivatives 2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line

More information

Math: Fundamentals 100

Math: Fundamentals 100 Math: Fundamentas 100 Wecome to the Tooing University. This course is designed to be used in conjunction with the onine version of this cass. The onine version can be found at http://www.tooingu.com. We

More information

Solution Derivations for Capa #7

Solution Derivations for Capa #7 Solution Derivations for Capa #7 1) Consider te beavior of te circuit, wen various values increase or decrease. (Select I-increases, D-decreases, If te first is I and te rest D, enter IDDDD). A) If R1

More information

22.1 Finding the area of plane figures

22.1 Finding the area of plane figures . Finding te area of plane figures a cm a cm rea of a square = Lengt of a side Lengt of a side = (Lengt of a side) b cm a cm rea of a rectangle = Lengt readt b cm a cm rea of a triangle = a cm b cm = ab

More information

Derivatives Math 120 Calculus I D Joyce, Fall 2013

Derivatives Math 120 Calculus I D Joyce, Fall 2013 Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te

More information

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

More information

Discovering Area Formulas of Quadrilaterals by Using Composite Figures

Discovering Area Formulas of Quadrilaterals by Using Composite Figures Activity: Format: Ojectives: Related 009 SOL(s): Materials: Time Required: Directions: Discovering Area Formulas of Quadrilaterals y Using Composite Figures Small group or Large Group Participants will

More information

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution 1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis

More information

Math Warm-Up for Exam 1 Name: Solutions

Math Warm-Up for Exam 1 Name: Solutions Disclaimer: Tese review problems do not represent te exact questions tat will appear te exam. Tis is just a warm-up to elp you begin studying. It is your responsibility to review te omework problems, webwork

More information

Math Test Sections. The College Board: Expanding College Opportunity

Math Test Sections. The College Board: Expanding College Opportunity Taking te SAT I: Reasoning Test Mat Test Sections Te materials in tese files are intended for individual use by students getting ready to take an SAT Program test; permission for any oter use must be sougt

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

Exam 2 Review. . You need to be able to interpret what you get to answer various questions.

Exam 2 Review. . You need to be able to interpret what you get to answer various questions. Exam Review Exam covers 1.6,.1-.3, 1.5, 4.1-4., and 5.1-5.3. You sould know ow to do all te omework problems from tese sections and you sould practice your understanding on several old exams in te exam

More information

Surface Areas of Prisms and Cylinders

Surface Areas of Prisms and Cylinders 12.2 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G.10.B G.11.C Surface Areas of Prisms and Cylinders Essential Question How can you find te surface area of a prism or a cylinder? Recall tat te surface area of

More information

Computer Science and Engineering, UCSD October 7, 1999 Goldreic-Levin Teorem Autor: Bellare Te Goldreic-Levin Teorem 1 Te problem We æx a an integer n for te lengt of te strings involved. If a is an n-bit

More information

Research on the Anti-perspective Correction Algorithm of QR Barcode

Research on the Anti-perspective Correction Algorithm of QR Barcode Researc on te Anti-perspective Correction Algoritm of QR Barcode Jianua Li, Yi-Wen Wang, YiJun Wang,Yi Cen, Guoceng Wang Key Laboratory of Electronic Tin Films and Integrated Devices University of Electronic

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

Math 113 HW #5 Solutions

Math 113 HW #5 Solutions Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

More information

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade?

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade? Can a Lump-Sum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lump-sum transfer rules to redistribute te

More information

3 Ans. 1 of my $30. 3 on. 1 on ice cream and the rest on 2011 MATHCOUNTS STATE COMPETITION SPRINT ROUND

3 Ans. 1 of my $30. 3 on. 1 on ice cream and the rest on 2011 MATHCOUNTS STATE COMPETITION SPRINT ROUND 0 MATHCOUNTS STATE COMPETITION SPRINT ROUND. boy scouts are accompanied by scout leaders. Eac person needs bottles of water per day and te trip is day. + = 5 people 5 = 5 bottles Ans.. Cammie as pennies,

More information

Projective Geometry. Projective Geometry

Projective Geometry. Projective Geometry Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,

More information

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using

More information

Geometric Stratification of Accounting Data

Geometric Stratification of Accounting Data Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual

More information

Verifying Numerical Convergence Rates

Verifying Numerical Convergence Rates 1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and

More information

Mth 95 Module 2 Spring 2014

Mth 95 Module 2 Spring 2014 Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

More information

SYMMETRY AND PRACTICAL GEOMETRY NCERT

SYMMETRY AND PRACTICAL GEOMETRY NCERT MTHEMTIS UNIT 9 SYMMETRY N RTIL GEOMETRY () Main oncepts and Resuts figure is said to have ine symmetry, if by foding the figure aong a ine, the eft and right parts of it coincide exacty. The ine is caed

More information

Finite Difference Approximations

Finite Difference Approximations Capter Finite Difference Approximations Our goal is to approximate solutions to differential equations, i.e., to find a function (or some discrete approximation to tis function) tat satisfies a given relationsip

More information

1 Derivatives of Piecewise Defined Functions

1 Derivatives of Piecewise Defined Functions MATH 1010E University Matematics Lecture Notes (week 4) Martin Li 1 Derivatives of Piecewise Define Functions For piecewise efine functions, we often ave to be very careful in computing te erivatives.

More information

College Planning Using Cash Value Life Insurance

College Planning Using Cash Value Life Insurance College Planning Using Cas Value Life Insurance CAUTION: Te advisor is urged to be extremely cautious of anoter college funding veicle wic provides a guaranteed return of premium immediately if funded

More information

Functions and Equations

Functions and Equations Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

More information

Understanding the Derivative Backward and Forward by Dave Slomer

Understanding the Derivative Backward and Forward by Dave Slomer Understanding te Derivative Backward and Forward by Dave Slomer Slopes of lines are important, giving average rates of cange. Slopes of curves are even more important, giving instantaneous rates of cange.

More information

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q = Lecture 6 : Derivatives and Rates of Cange In tis section we return to te problem of finding te equation of a tangent line to a curve, y f(x) If P (a, f(a)) is a point on te curve y f(x) and Q(x, f(x))

More information

Distances in random graphs with infinite mean degrees

Distances in random graphs with infinite mean degrees Distances in random graps wit infinite mean degrees Henri van den Esker, Remco van der Hofstad, Gerard Hoogiemstra and Dmitri Znamenski April 26, 2005 Abstract We study random graps wit an i.i.d. degree

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12)

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

An inquiry into the multiplier process in IS-LM model

An inquiry into the multiplier process in IS-LM model An inquiry into te multiplier process in IS-LM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 00-62763074 Internet Address: jefferson@water.pu.edu.cn

More information

ACT Math Flash Cards. PowerScore. Order of Operations. SAT Preparation. Live Online ACT Course. Full Length ACT Course. How to Study Math Flash Cards

ACT Math Flash Cards. PowerScore. Order of Operations. SAT Preparation. Live Online ACT Course. Full Length ACT Course. How to Study Math Flash Cards PowerScore ACT Math Flash Cards Formulas, definitions, and concepts for success on the ACT Mathematics Test How to Study Math Flash Cards Review each card, and remove any formulas that you already know.

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

SOLVING RIGHT TRIANGLES

SOLVING RIGHT TRIANGLES PYTHAGOREAN THEOREM SOLVING RIGHT TRIANGLES An triangle tat as a rigt angle is called a RIGHT c TRIANGLE. Te two sides tat form te rigt angle, a and b, a are called LEGS, and te side opposite (tat is,

More information

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area: Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force

More information

CHAPTER 7. Di erentiation

CHAPTER 7. Di erentiation CHAPTER 7 Di erentiation 1. Te Derivative at a Point Definition 7.1. Let f be a function defined on a neigborood of x 0. f is di erentiable at x 0, if te following it exists: f 0 fx 0 + ) fx 0 ) x 0 )=.

More information

A.4 RATIONAL EXPRESSIONS

A.4 RATIONAL EXPRESSIONS Appendi A.4 Rational Epressions A9 A.4 RATIONAL EXPRESSIONS Wat you sould learn Find domains of algebraic epressions. Simplify rational epressions. Add, subtract, multiply, and divide rational epressions.

More information

Volumes of Pyramids and Cones. Use the Pythagorean Theorem to find the value of the variable. h 2 m. 1.5 m 12 in. 8 in. 2.5 m

Volumes of Pyramids and Cones. Use the Pythagorean Theorem to find the value of the variable. h 2 m. 1.5 m 12 in. 8 in. 2.5 m -5 Wat You ll Learn To find te volume of a pramid To find te volume of a cone... And W To find te volume of a structure in te sape of a pramid, as in Eample Volumes of Pramids and Cones Ceck Skills You

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

SAT Math Facts & Formulas Review Quiz

SAT Math Facts & Formulas Review Quiz Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions

More information

Chapter 7 Numerical Differentiation and Integration

Chapter 7 Numerical Differentiation and Integration 45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea

More information

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of

More information

New Vocabulary volume

New Vocabulary volume -. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding

More information

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1) Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut

More information

Differentiable Functions

Differentiable Functions Capter 8 Differentiable Functions A differentiable function is a function tat can be approximated locally by a linear function. 8.. Te derivative Definition 8.. Suppose tat f : (a, b) R and a < c < b.

More information

Area of a Parallelogram

Area of a Parallelogram Area of a Parallelogram Focus on After tis lesson, you will be able to... φ develop te φ formula for te area of a parallelogram calculate te area of a parallelogram One of te sapes a marcing band can make

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

( ) FACTORING. x In this polynomial the only variable in common to all is x.

( ) FACTORING. x In this polynomial the only variable in common to all is x. FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

More information

Strategic trading in a dynamic noisy market. Dimitri Vayanos

Strategic trading in a dynamic noisy market. Dimitri Vayanos LSE Researc Online Article (refereed) Strategic trading in a dynamic noisy market Dimitri Vayanos LSE as developed LSE Researc Online so tat users may access researc output of te Scool. Copyrigt and Moral

More information

3. Power of a Product: Separate letters, distribute to the exponents and the bases

3. Power of a Product: Separate letters, distribute to the exponents and the bases Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

More information

Practical Geometry. construction of a Line ParaLLeL to a given Line through a Point not on it

Practical Geometry. construction of a Line ParaLLeL to a given Line through a Point not on it 12 ractica Geometry introduction In the previous cass, you have earnt to construct a circe of given radius, a ine segment of given ength, a copy of a ine segment, a perpendicuar ine to a given ine at a

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

Perimeter, Area and Volume of Regular Shapes

Perimeter, Area and Volume of Regular Shapes Perimeter, Area and Volume of Regular Sapes Perimeter of Regular Polygons Perimeter means te total lengt of all sides, or distance around te edge of a polygon. For a polygon wit straigt sides tis is te

More information

2.28 EDGE Program. Introduction

2.28 EDGE Program. Introduction Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.

More information

Areas and Centroids. Nothing. Straight Horizontal line. Straight Sloping Line. Parabola. Cubic

Areas and Centroids. Nothing. Straight Horizontal line. Straight Sloping Line. Parabola. Cubic Constructing Sear and Moment Diagrams Areas and Centroids Curve Equation Sape Centroid (From Fat End of Figure) Area Noting Noting a x 0 Straigt Horizontal line /2 Straigt Sloping Line /3 /2 Paraola /4

More information

What is Advanced Corporate Finance? What is finance? What is Corporate Finance? Deciding how to optimally manage a firm s assets and liabilities.

What is Advanced Corporate Finance? What is finance? What is Corporate Finance? Deciding how to optimally manage a firm s assets and liabilities. Wat is? Spring 2008 Note: Slides are on te web Wat is finance? Deciding ow to optimally manage a firm s assets and liabilities. Managing te costs and benefits associated wit te timing of cas in- and outflows

More information

Optimal Pricing Strategy for Second Degree Price Discrimination

Optimal Pricing Strategy for Second Degree Price Discrimination Optimal Pricing Strategy for Second Degree Price Discrimination Alex O Brien May 5, 2005 Abstract Second Degree price discrimination is a coupon strategy tat allows all consumers access to te coupon. Purcases

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Proof of the Power Rule for Positive Integer Powers

Proof of the Power Rule for Positive Integer Powers Te Power Rule A function of te form f (x) = x r, were r is any real number, is a power function. From our previous work we know tat x x 2 x x x x 3 3 x x In te first two cases, te power r is a positive

More information

Characterization and Uniqueness of Equilibrium in Competitive Insurance

Characterization and Uniqueness of Equilibrium in Competitive Insurance Caracterization and Uniqueness of Equiibrium in Competitive Insurance Vitor Farina Luz June 16, 2015 First draft: September 14t, 2012 Tis paper provides a compete caracterization of equiibria in a game-teoretic

More information

Comparing Alternative Reimbursement Methods in a Model of Public Health Insurance

Comparing Alternative Reimbursement Methods in a Model of Public Health Insurance Comparing Aternative Reimbursement Metods in a Mode of Pubic Heat Insurance Francesca Barigozzi y First version: October 1998 Tis version: June 2000 Abstract I compare in-kind reimbursement and reimbursement

More information

HEXAGON FLOWERS CUTTING OUT 1 COVERING THE FLOWERS 2

HEXAGON FLOWERS CUTTING OUT 1 COVERING THE FLOWERS 2 YOU WILL NEED Small scraps of fabric to cover fourteen exagons (includes enoug for front and back) Ribbon 6½in lengt Fourteen paper exagon templates (I used a size, but any would be fine, as long as you

More information

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS The following is a list of terms and properties which are necessary for success in Math Concepts and College Prep math. You will

More information

ME422 Mechanical Control Systems Modeling Fluid Systems

ME422 Mechanical Control Systems Modeling Fluid Systems Cal Poly San Luis Obispo Mecanical Engineering ME422 Mecanical Control Systems Modeling Fluid Systems Owen/Ridgely, last update Mar 2003 Te dynamic euations for fluid flow are very similar to te dynamic

More information

1. Use calculus to derive the formula for the area of a parallelogram of base b and height. y f(x)=mx+b

1. Use calculus to derive the formula for the area of a parallelogram of base b and height. y f(x)=mx+b Area and Volume Problems. Use calculus to derive te formula for te area of a parallelogram of base b and eigt. y f(x)=mxb b g(x)=mx Te area of te parallelogram is given by te integral of te dierence of

More information

Linear Equations Review

Linear Equations Review Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The y-intercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the y-intercept

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)

More information

Average and Instantaneous Rates of Change: The Derivative

Average and Instantaneous Rates of Change: The Derivative 9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to

More information

For Sale By Owner Program. We can help with our for sale by owner kit that includes:

For Sale By Owner Program. We can help with our for sale by owner kit that includes: Dawn Coen Broker/Owner For Sale By Owner Program If you want to sell your ome By Owner wy not:: For Sale Dawn Coen Broker/Owner YOUR NAME YOUR PHONE # Look as professional as possible Be totally prepared

More information

Shell and Tube Heat Exchanger

Shell and Tube Heat Exchanger Sell and Tube Heat Excanger MECH595 Introduction to Heat Transfer Professor M. Zenouzi Prepared by: Andrew Demedeiros, Ryan Ferguson, Bradford Powers November 19, 2009 1 Abstract 2 Contents Discussion

More information

Recall from last time: Events are recorded by local observers with synchronized clocks. Event 1 (firecracker explodes) occurs at x=x =0 and t=t =0

Recall from last time: Events are recorded by local observers with synchronized clocks. Event 1 (firecracker explodes) occurs at x=x =0 and t=t =0 1/27 Day 5: Questions? Time Dilation engt Contraction PH3 Modern Pysics P11 I sometimes ask myself ow it came about tat I was te one to deelop te teory of relatiity. Te reason, I tink, is tat a normal

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

Name: Period: 9/28 10/7

Name: Period: 9/28 10/7 Nae: Period: 9/ 0/ LINES & TRANSVERSALS ) I can define, identify and iustrate te foowing ters Transversa Corresponding anges Aternate exterior anges. Aternate interior anges Sae side interior anges Dates,

More information

ModuMath Algebra Lessons

ModuMath Algebra Lessons ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

More information

TRADING AWAY WIDE BRANDS FOR CHEAP BRANDS. Swati Dhingra London School of Economics and CEP. Online Appendix

TRADING AWAY WIDE BRANDS FOR CHEAP BRANDS. Swati Dhingra London School of Economics and CEP. Online Appendix TRADING AWAY WIDE BRANDS FOR CHEAP BRANDS Swati Dingra London Scool of Economics and CEP Online Appendix APPENDIX A. THEORETICAL & EMPIRICAL RESULTS A.1. CES and Logit Preferences: Invariance of Innovation

More information

Factoring Trinomials: The ac Method

Factoring Trinomials: The ac Method 6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

More information

Remember that the information below is always provided on the formula sheet at the start of your exam paper

Remember that the information below is always provided on the formula sheet at the start of your exam paper Maths GCSE Linear HIGHER Things to Remember Remember that the information below is always provided on the formula sheet at the start of your exam paper In addition to these formulae, you also need to learn

More information

Area Formulas with Applications

Area Formulas with Applications Formulas wit Applications Ojective To review and use formulas for perimeter, circumference, and area. www.everydaymatonline.com epresentations etoolkit Algoritms Practice EM Facts Worksop Game Family Letters

More information

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

More information