Derivatives Math 120 Calculus I D Joyce, Fall 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Derivatives Math 120 Calculus I D Joyce, Fall 2013"

Transcription

1 Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te value of te it f fx + fx x. Sometimes te it doesn t exist, and ten we say tat te function is not differentiable at x, but usually te it does exist and, so, te function is differentiable. Derivatives of linear functions. Te grap of a linear function fx ax + b is a straigt line wit slope a. We expect tat te derivative f x sould be te constant slope a, and tat s wat we find it is wen we apply te definition of derivative. f x fx + fx ax + + b ax + b ax + a + b ax b a a a Derivatives of constant functions. We ve actually sown tat te derivative of a constant function fx b is 0. Tat s because a constant function is a special case of a linear function were te coefficient of x is 0. It makes sense tat te derivative of a constant is 0, since te slope of te orizontal straigt line y b is 0. Derivatives of powers of x. We ll directly compute te derivatives of a few powers of x like x 2, x 3, /x, and x. Note tat tese last two are actually powers of x even toug we usually don t write tem tat way. Te reciprocal of x is x raised to te power, tat is, /x x. Also, te square root of x is x raised to te power 2, tat is, x x /2. After computing tese, we ll see tat tey all fit te pattern tat says te derivative of x n is nx n. Tis pattern is called te power rule for derivatives.

2 First, we ll find te derivative of fx x 2. Tus, te derivative of x 2 is 2x. f x fx + fx x + 2 x 2 x 2 + 2x + 2 x 2 2x + 2 2x + 2x Next, we ll compute te derivative of fx x 3. At one point in te computation, we need to expand te cube of a binomial x + 3, and tat s someting we could do by expanding x + x + x +. Te rule tat gives te expansion of te general power x + n is called te binomial teorem, and tat s related to Pascal s triangle. f x fx + fx x + 3 x 2 x 3 + 3x 2 + 3x x 3 3x 2 + 3x x 2 + 3x + 2 3x 2 Tus, te derivative of x 3 is 3x 2. Note tat we didn t take te it until we cancelled te. Tat s always wat appens. Now, let s try to find te derivative of fx /x. We start te same way as always f x fx + fx /x + /x At tis point, put te numerator over a common denominator, ten simplify te compound 2

3 quotient before continuing. x x+ x+x x x + x + x x + x x + x x 2 Tus, te derivative of /x is /x 2. Tis result fits te power rule mentioned above since we can rewrite it to say te derivative of x is x 2. It s a bit arder to compute te derivative of x since at one point we ave to multiply te numerator and denominator of a quotient by a conjugate, but oterwise it s about te same difficulty. You migt tink tat multiplying and dividing by a conjugate is a trick, but since we do it so often, you sould tink of it as a tecnique. Let fx x. Ten Tus, te derivative of x is of x /2 is 2 x /2. f fx + fx x x + x x + x x + x x + + x x + + x x + + x 2 x x + + x x + + x 2. Again, tis fits te power rule, since it says te derivative x Here s a summary of te computations we ve done so far. fx f x ax + b a x 2 2x x 3 3x 2 /x /x 2 x 2 x 3

4 Most of tese results are special cases of te power rule wic says tat te derivative of x n is nx n. Rules of differentiation. We could go on like tis for eac time we wanted te derivative of a new function, but tere are better ways. Tere are several rules tat apply in broad cases. In fact, we ll eventually find enoug rules for differentiation tat we won t need to go back to te definition in terms of its. So, let s get started. Te sum rule. Let s begin wit te rule for sums of functions. Many functions are sums of simpler functions. For example x 3 +x 2 is te sum of two functions we ve already differentiated. If we can discover te differentiation rule for sums, we ll be able to differentiate x 3 +x 2 witout going back to te definition of derivative. Let f and g be two functions wose derivatives f and g we already know. Can we find te derivative f + g of teir sum f + g? We ll need te definition of derivative to do tat. Wen we apply te definition, we get f + g f + gx + f + gx x. Now, te expression f + gx means fx + gx, terefore, te expression f + gx + means fx + + gx +. We can continue as follows. f + g x fx + + gx + fx + gx fx + + gx + fx gx fx + fx + gx + gx fx + fx + fx + fx gx + gx + f x + g x gx + gx Tus, we ave sown tat te derivative f + g of te sum f + g equals te sum f + g of te derivatives. Tis is a very useful rule. For instance, we can use it to conclude tat te derivative of x 3 + x 2 is 3x 2 + 2x because we already know te derivative of x 3 is 3x 2 and te derivative of x 2 is 2x. Te difference rule. If you just look back troug te previous paragrap and cange some plus signs to minus signs, you ll see tat te derivative f g of te difference f g equals te difference f g of te derivatives. So, for instance, te derivative of x 3 x 2 is 3x 2 2x. Constant multiple rule. On te same level of difficulty as addition and subtraction is multiplcation by constants. If f is a function, and c is a constant, ten cf is te function 4

5 wose value at x is c fx. We can easily find te derivative of cf in terms of te derivative of f. cf x cfx + cfx c fx + c fx cfx + fx fx + fx c c f x Tus, te derivative of a constant times a function is tat constant times te derivative of te function, tat is, cf c f. Derivatives of polynomials. Wit te elp of te power rule, we can find te derivative of any polynomial. For example, te derivative of 0x 3 7x 2 + 5x 8 is 30x 2 4x + 5. Finding derivatives of polynomials is so easy all you ave to do is write down te answer, but ere are te details so you can see tat we re using all te rules we ave so far. We ll use te abbreviated notation 0x 3 7x 2 + 5x 8 for te derivative of 0x 3 7x 2 + 5x 8. 0x 3 7x 2 + 5x 8 equals, by te sum and difference rules, 0x 3 7x 2 + 5x 8 wic equals, by te constant multiple rule, 0x 3 7x 2 + 5x 8 wic equals, by te power rule and constant rule, 03x 2 72x + 5 0, wic simplifies to 30x 2 4x + 5, te answer. Te product, reciprocal, and quotient rules. Tese tree rules are arder to prove, so we ll put off te proofs for a little bit. First we ll state tem, ten use tem, and finally prove tem. Let f and g be two differentiable functions. Product rule: fg f g + fg Reciprocal rule: g g g 2 f Quotient rule: f g fg g g 2 For our example to illustrate te use of te product rule, let s find te derivative of x x. Here, fx x wile gx x. Ten x x f xgx + fxg x x + x 2 x and tis last expression simplifies to 3 2 x. Wat s important to see in tis example is ow to use te product rule. In words, te product rule says tat te derivative of te product fg of two functions equals te derivative f of te first times te second g plus te first f times te derivative g of te second. 5

6 Unlike sums and differences, te derivative of te product is not te product of te derivatives. Tat is to say, fg does not equal f g. Next, let s ave an example to illustrate te use of te reciprocal rule. Let s find te derivative of 5x 3 x + 2. Tis is te reciprocal of 5x3 x + 2, and we know te derivative of 5x 3 x + 2 is 5x 2. Te reciprocal rule says g g g. 2 In tis example gx 5x 3 x + 2 and g x 5x 2. Terefore, 5x2 5x 3 x + 2 5x 3 x Finally, let s ave an example to illustrate te use of te quotient rule. Let s find te 6x 3 8x 2 derivative of. Te quotient rule says x 2 + 2x + 8 f f g fg. g g 2 In tis example, fx 6x 3 8x 2 and gx x 2 + 2x + 8. We know te derivatives of f and g. Tey are f x 8x 2 6x and g x 2x + 2. Terefore, 6x 3 8x 2 f xgx fxg x x 2 + 2x + 8 gx 2 8x2 6xx 2 + 2x + 8 6x 3 8x 2 2x + 2 x 2 + 2x Of course, we can simplify our answer, but for te purposes of tis example tere is no need to do so. Te derivative of te quotient is complicated. You can remember te rule best in words. It says tat te derivative of a quotient f/g is te derivative f of te numerator times te denominator g plus te numerator f times te derivative g of te denominator, all divided by te square g 2 of te denominator. You ll ave to use te product, reciprocal, and quotient rules several times before you remember tem well. You can actually do witout te reciprocal rule, since it s a special case of te quotient rule, but it comes up often enoug so tat it s wort wile to memorize it. Mat 20 Home Page at ttp://mat.clarku.edu/~djoyce/ma20/ 6

Proof of the Power Rule for Positive Integer Powers

Proof of the Power Rule for Positive Integer Powers Te Power Rule A function of te form f (x) = x r, were r is any real number, is a power function. From our previous work we know tat x x 2 x x x x 3 3 x x In te first two cases, te power r is a positive

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

f(a + h) f(a) f (a) = lim

f(a + h) f(a) f (a) = lim Lecture 7 : Derivative AS a Function In te previous section we defined te derivative of a function f at a number a (wen te function f is defined in an open interval containing a) to be f (a) 0 f(a + )

More information

Math 113 HW #5 Solutions

Math 113 HW #5 Solutions Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12)

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

Instantaneous Rate of Change:

Instantaneous Rate of Change: Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

More information

SAT Subject Math Level 1 Facts & Formulas

SAT Subject Math Level 1 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

More information

7.6 Complex Fractions

7.6 Complex Fractions Section 7.6 Comple Fractions 695 7.6 Comple Fractions In tis section we learn ow to simplify wat are called comple fractions, an eample of wic follows. 2 + 3 Note tat bot te numerator and denominator are

More information

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

More information

1 Derivatives of Piecewise Defined Functions

1 Derivatives of Piecewise Defined Functions MATH 1010E University Matematics Lecture Notes (week 4) Martin Li 1 Derivatives of Piecewise Define Functions For piecewise efine functions, we often ave to be very careful in computing te erivatives.

More information

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

More information

Tangent Lines and Rates of Change

Tangent Lines and Rates of Change Tangent Lines and Rates of Cange 9-2-2005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims

More information

CHAPTER 8: DIFFERENTIAL CALCULUS

CHAPTER 8: DIFFERENTIAL CALCULUS CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly

More information

MAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules

MAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules MAT1A01: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 17 April 2013 Reminer Mats Learning Centre: C-Ring 512 My office: C-Ring 533A (Stats Dept corrior)

More information

ACT Math Facts & Formulas

ACT Math Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as

More information

Math 229 Lecture Notes: Product and Quotient Rules Professor Richard Blecksmith richard@math.niu.edu

Math 229 Lecture Notes: Product and Quotient Rules Professor Richard Blecksmith richard@math.niu.edu Mat 229 Lecture Notes: Prouct an Quotient Rules Professor Ricar Blecksmit ricar@mat.niu.eu 1. Time Out for Notation Upate It is awkwar to say te erivative of x n is nx n 1 Using te prime notation for erivatives,

More information

New Vocabulary volume

New Vocabulary volume -. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding

More information

6. Differentiating the exponential and logarithm functions

6. Differentiating the exponential and logarithm functions 1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose

More information

Lecture 10. Limits (cont d) One-sided limits. (Relevant section from Stewart, Seventh Edition: Section 2.4, pp. 113.)

Lecture 10. Limits (cont d) One-sided limits. (Relevant section from Stewart, Seventh Edition: Section 2.4, pp. 113.) Lecture 10 Limits (cont d) One-sided its (Relevant section from Stewart, Sevent Edition: Section 2.4, pp. 113.) As you may recall from your earlier course in Calculus, we may define one-sided its, were

More information

ACTIVITY: Deriving the Area Formula of a Trapezoid

ACTIVITY: Deriving the Area Formula of a Trapezoid 4.3 Areas of Trapezoids a trapezoid? How can you derive a formula for te area of ACTIVITY: Deriving te Area Formula of a Trapezoid Work wit a partner. Use a piece of centimeter grid paper. a. Draw any

More information

The EOQ Inventory Formula

The EOQ Inventory Formula Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of

More information

Writing Mathematics Papers

Writing Mathematics Papers Writing Matematics Papers Tis essay is intended to elp your senior conference paper. It is a somewat astily produced amalgam of advice I ave given to students in my PDCs (Mat 4 and Mat 9), so it s not

More information

This supplement is meant to be read after Venema s Section 9.2. Throughout this section, we assume all nine axioms of Euclidean geometry.

This supplement is meant to be read after Venema s Section 9.2. Throughout this section, we assume all nine axioms of Euclidean geometry. Mat 444/445 Geometry for Teacers Summer 2008 Supplement : Similar Triangles Tis supplement is meant to be read after Venema s Section 9.2. Trougout tis section, we assume all nine axioms of uclidean geometry.

More information

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution 1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)

More information

1 Density functions, cummulative density functions, measures of central tendency, and measures of dispersion

1 Density functions, cummulative density functions, measures of central tendency, and measures of dispersion Density functions, cummulative density functions, measures of central tendency, and measures of dispersion densityfunctions-intro.tex October, 9 Note tat tis section of notes is limitied to te consideration

More information

Areas and Centroids. Nothing. Straight Horizontal line. Straight Sloping Line. Parabola. Cubic

Areas and Centroids. Nothing. Straight Horizontal line. Straight Sloping Line. Parabola. Cubic Constructing Sear and Moment Diagrams Areas and Centroids Curve Equation Sape Centroid (From Fat End of Figure) Area Noting Noting a x 0 Straigt Horizontal line /2 Straigt Sloping Line /3 /2 Paraola /4

More information

FINITE DIFFERENCE METHODS

FINITE DIFFERENCE METHODS FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to

More information

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q = Lecture 6 : Derivatives and Rates of Cange In tis section we return to te problem of finding te equation of a tangent line to a curve, y f(x) If P (a, f(a)) is a point on te curve y f(x) and Q(x, f(x))

More information

Math Test Sections. The College Board: Expanding College Opportunity

Math Test Sections. The College Board: Expanding College Opportunity Taking te SAT I: Reasoning Test Mat Test Sections Te materials in tese files are intended for individual use by students getting ready to take an SAT Program test; permission for any oter use must be sougt

More information

EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution

EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution EC201 Intermediate Macroeconomics EC201 Intermediate Macroeconomics Prolem set 8 Solution 1) Suppose tat te stock of mone in a given econom is given te sum of currenc and demand for current accounts tat

More information

An Interest Rate Model

An Interest Rate Model An Interest Rate Model Concepts and Buzzwords Building Price Tree from Rate Tree Lognormal Interest Rate Model Nonnegativity Volatility and te Level Effect Readings Tuckman, capters 11 and 12. Lognormal

More information

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using

More information

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of

More information

2.1: The Derivative and the Tangent Line Problem

2.1: The Derivative and the Tangent Line Problem .1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position

More information

In other words the graph of the polynomial should pass through the points

In other words the graph of the polynomial should pass through the points Capter 3 Interpolation Interpolation is te problem of fitting a smoot curve troug a given set of points, generally as te grap of a function. It is useful at least in data analysis (interpolation is a form

More information

2 Limits and Derivatives

2 Limits and Derivatives 2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line

More information

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1) Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area: Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force

More information

3. Power of a Product: Separate letters, distribute to the exponents and the bases

3. Power of a Product: Separate letters, distribute to the exponents and the bases Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

More information

Compute the derivative by definition: The four step procedure

Compute the derivative by definition: The four step procedure Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function

More information

Geometric Stratification of Accounting Data

Geometric Stratification of Accounting Data Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual

More information

CHAPTER 7. Di erentiation

CHAPTER 7. Di erentiation CHAPTER 7 Di erentiation 1. Te Derivative at a Point Definition 7.1. Let f be a function defined on a neigborood of x 0. f is di erentiable at x 0, if te following it exists: f 0 fx 0 + ) fx 0 ) x 0 )=.

More information

The modelling of business rules for dashboard reporting using mutual information

The modelling of business rules for dashboard reporting using mutual information 8 t World IMACS / MODSIM Congress, Cairns, Australia 3-7 July 2009 ttp://mssanz.org.au/modsim09 Te modelling of business rules for dasboard reporting using mutual information Gregory Calbert Command, Control,

More information

Chapter 7 Numerical Differentiation and Integration

Chapter 7 Numerical Differentiation and Integration 45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea

More information

Computer Science and Engineering, UCSD October 7, 1999 Goldreic-Levin Teorem Autor: Bellare Te Goldreic-Levin Teorem 1 Te problem We æx a an integer n for te lengt of te strings involved. If a is an n-bit

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1

Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1 Copyrigt c Sanjoy Dasgupta Figure. (a) Te feasible region for a linear program wit two variables (see tet for details). (b) Contour lines of te objective function: for different values of (profit). Te

More information

Lesson Two. Pre Calculus Math 40S: Explained! 152

Lesson Two. Pre Calculus Math 40S: Explained!  152 Lesson Two Pre Calculus Math 40S: Eplained! www.math40s.com 5 PART I MULTIPLICATION & DIVISION IDENTITLES Algebraic proofs of trigonometric identities In this lesson, we will look at various strategies

More information

Advice for Undergraduates on Special Aspects of Writing Mathematics

Advice for Undergraduates on Special Aspects of Writing Mathematics Advice for Undergraduates on Special Aspects of Writing Matematics Abstract Tere are several guides to good matematical writing for professionals, but few for undergraduates. Yet undergraduates wo write

More information

Finite Volume Discretization of the Heat Equation

Finite Volume Discretization of the Heat Equation Lecture Notes 3 Finite Volume Discretization of te Heat Equation We consider finite volume discretizations of te one-dimensional variable coefficient eat equation, wit Neumann boundary conditions u t x

More information

Generating Functions

Generating Functions Generating Functions If you take f(x =/( x x 2 and expand it as a power series by long division, say, then you get f(x =/( x x 2 =+x+2x 2 +x +5x 4 +8x 5 +x 6 +. It certainly seems as though the coefficient

More information

- 1 - Handout #22 May 23, 2012 Huffman Encoding and Data Compression. CS106B Spring 2012. Handout by Julie Zelenski with minor edits by Keith Schwarz

- 1 - Handout #22 May 23, 2012 Huffman Encoding and Data Compression. CS106B Spring 2012. Handout by Julie Zelenski with minor edits by Keith Schwarz CS106B Spring 01 Handout # May 3, 01 Huffman Encoding and Data Compression Handout by Julie Zelenski wit minor edits by Keit Scwarz In te early 1980s, personal computers ad ard disks tat were no larger

More information

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line. Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,

More information

The differential amplifier

The differential amplifier DiffAmp.doc 1 Te differential amplifier Te emitter coupled differential amplifier output is V o = A d V d + A c V C Were V d = V 1 V 2 and V C = (V 1 + V 2 ) / 2 In te ideal differential amplifier A c

More information

Similar interpretations can be made for total revenue and total profit functions.

Similar interpretations can be made for total revenue and total profit functions. EXERCISE 3-7 Tings to remember: 1. MARGINAL COST, REVENUE, AND PROFIT If is te number of units of a product produced in some time interval, ten: Total Cost C() Marginal Cost C'() Total Revenue R() Marginal

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

Projective Geometry. Projective Geometry

Projective Geometry. Projective Geometry Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

Guide to SRW Section 1.7: Solving inequalities

Guide to SRW Section 1.7: Solving inequalities Guide to SRW Section 1.7: Solving inequalities When you solve the equation x 2 = 9, the answer is written as two very simple equations: x = 3 (or) x = 3 The diagram of the solution is -6-5 -4-3 -2-1 0

More information

Area of a Parallelogram

Area of a Parallelogram Area of a Parallelogram Focus on After tis lesson, you will be able to... φ develop te φ formula for te area of a parallelogram calculate te area of a parallelogram One of te sapes a marcing band can make

More information

ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

More information

2.28 EDGE Program. Introduction

2.28 EDGE Program. Introduction Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.

More information

College Planning Using Cash Value Life Insurance

College Planning Using Cash Value Life Insurance College Planning Using Cas Value Life Insurance CAUTION: Te advisor is urged to be extremely cautious of anoter college funding veicle wic provides a guaranteed return of premium immediately if funded

More information

Area Formulas with Applications

Area Formulas with Applications Formulas wit Applications Ojective To review and use formulas for perimeter, circumference, and area. www.everydaymatonline.com epresentations etoolkit Algoritms Practice EM Facts Worksop Game Family Letters

More information

Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write

Sometimes it is easier to leave a number written as an exponent. For example, it is much easier to write 4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall

More information

5.4 The Quadratic Formula

5.4 The Quadratic Formula Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

13 PERIMETER AND AREA OF 2D SHAPES

13 PERIMETER AND AREA OF 2D SHAPES 13 PERIMETER AND AREA OF D SHAPES 13.1 You can find te perimeter of sapes Key Points Te perimeter of a two-dimensional (D) sape is te total distance around te edge of te sape. l To work out te perimeter

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Verifying Numerical Convergence Rates

Verifying Numerical Convergence Rates 1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and

More information

Chapter 11. Limits and an Introduction to Calculus. Selected Applications

Chapter 11. Limits and an Introduction to Calculus. Selected Applications Capter Limits and an Introduction to Calculus. Introduction to Limits. Tecniques for Evaluating Limits. Te Tangent Line Problem. Limits at Infinit and Limits of Sequences.5 Te Area Problem Selected Applications

More information

3 Ans. 1 of my $30. 3 on. 1 on ice cream and the rest on 2011 MATHCOUNTS STATE COMPETITION SPRINT ROUND

3 Ans. 1 of my $30. 3 on. 1 on ice cream and the rest on 2011 MATHCOUNTS STATE COMPETITION SPRINT ROUND 0 MATHCOUNTS STATE COMPETITION SPRINT ROUND. boy scouts are accompanied by scout leaders. Eac person needs bottles of water per day and te trip is day. + = 5 people 5 = 5 bottles Ans.. Cammie as pennies,

More information

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade?

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade? Can a Lump-Sum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lump-sum transfer rules to redistribute te

More information

Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions. (x 1)(x 2 + 1) Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

More information

Surface Areas of Prisms and Cylinders

Surface Areas of Prisms and Cylinders 12.2 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G.10.B G.11.C Surface Areas of Prisms and Cylinders Essential Question How can you find te surface area of a prism or a cylinder? Recall tat te surface area of

More information

Calculation of Exponential Numbers

Calculation of Exponential Numbers Calculation of Exponential Numbers Written by: Communication Skills Corporation Edited by: The Science Learning Center Staff Calculation of Exponential Numbers is a written learning module which includes

More information

Catalogue no. 12-001-XIE. Survey Methodology. December 2004

Catalogue no. 12-001-XIE. Survey Methodology. December 2004 Catalogue no. 1-001-XIE Survey Metodology December 004 How to obtain more information Specific inquiries about tis product and related statistics or services sould be directed to: Business Survey Metods

More information

Mth 95 Module 2 Spring 2014

Mth 95 Module 2 Spring 2014 Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

Average and Instantaneous Rates of Change: The Derivative

Average and Instantaneous Rates of Change: The Derivative 9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to

More information

3.4 Complex Zeros and the Fundamental Theorem of Algebra

3.4 Complex Zeros and the Fundamental Theorem of Algebra 86 Polynomial Functions.4 Complex Zeros and the Fundamental Theorem of Algebra In Section., we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons and

More information

Reinforced Concrete Beam

Reinforced Concrete Beam Mecanics of Materials Reinforced Concrete Beam Concrete Beam Concrete Beam We will examine a concrete eam in ending P P A concrete eam is wat we call a composite eam It is made of two materials: concrete

More information

FRACTION REVIEW. 3 and. Any fraction can be changed into an equivalent fraction by multiplying both the numerator and denominator by the same number

FRACTION REVIEW. 3 and. Any fraction can be changed into an equivalent fraction by multiplying both the numerator and denominator by the same number FRACTION REVIEW A. INTRODUCTION. What is a fraction? A fraction consists of a numerator (part) on top of a denominator (total) separated by a horizontal line. For example, the fraction of the circle which

More information

Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

More information

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , ) Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x):

Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x): Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x): f f(x + h) f(x) (x) = lim h 0 h (for all x for which f is differentiable/ the limit exists) Property:if

More information

What is Advanced Corporate Finance? What is finance? What is Corporate Finance? Deciding how to optimally manage a firm s assets and liabilities.

What is Advanced Corporate Finance? What is finance? What is Corporate Finance? Deciding how to optimally manage a firm s assets and liabilities. Wat is? Spring 2008 Note: Slides are on te web Wat is finance? Deciding ow to optimally manage a firm s assets and liabilities. Managing te costs and benefits associated wit te timing of cas in- and outflows

More information

SAT Math Must-Know Facts & Formulas

SAT Math Must-Know Facts & Formulas SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

1.6 The Order of Operations

1.6 The Order of Operations 1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

More information

Step 1: Set the equation equal to zero if the function lacks. Step 2: Subtract the constant term from both sides:

Step 1: Set the equation equal to zero if the function lacks. Step 2: Subtract the constant term from both sides: In most situations the quadratic equations such as: x 2 + 8x + 5, can be solved (factored) through the quadratic formula if factoring it out seems too hard. However, some of these problems may be solved

More information

Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

More information

SAT Math Facts & Formulas

SAT Math Facts & Formulas Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:

More information

{ f (x)e sx if s = r. f(x)e sx if s r. (D r) n y = e rx f(x),

{ f (x)e sx if s = r. f(x)e sx if s r. (D r) n y = e rx f(x), 1 Recipes for Solving Constant-Coefficient Linear Nonhomogeneous Ordinary Differential Equations Whose Right Hand Sides are Sums of Products of Polynomials times Exponentials Let D = d dx. We begin by

More information