Physics 100A Homework 11- Chapter 11 (part 1) The force passes through the point A, so there is no arm and the torque is zero.

Size: px
Start display at page:

Download "Physics 100A Homework 11- Chapter 11 (part 1) The force passes through the point A, so there is no arm and the torque is zero."

Transcription

1 Physics A Homework - Chapter (part ) Finding Torque A orce F o magnitude F making an ange with the x axis is appied to a partice ocated aong axis o rotation A, at Cartesian coordinates (,) in the igure. The vector F ies in the xy pane, and the our axes o rotation A, B, C, and D a ie perpendicuar to the xy pane. A) What is the torque A about axis A due to the orce F? The orce passes through the point A, so there is no arm and the torque is zero. B) What is the torque B about axis B due to the orce F? (B is the point at Cartesian coordinates (, b), ocated a distance b om the origin aong the y axis.) The magnitude o the torque is rf where F is the component o the orce perpendicuar to r. Note that the torque can aso be cacuated with the concept o the moment arm rf, where r is the component o the radia vector perpendicuar to the direction o the orce. The answer is the same. In most probems it is easier to visuaize the perpendicuar component o the orce. We wi use what is simpest in a given probem. r b F Fcos The direction o the torque oows the convention: positive i it produces a countercockwise rotation and negative i it produces a cockwise rotation. B bf cos C) What is the torque C about axis C due to the orce F? (C is the point at Cartesian coordinates (, c), ocated a distance c om the origin aong the x axis.) r c F Fsin The torque produces a cockwise rotation about C. c cf sin D) What is the torque D about axis D due to the orce F? (D is the point ocated a distance d om the origin and making an ange φ with the x axis.) The ange between F and the r vector AD is ( φ ). F Fsin( φ ) and the rotation is countercockwise Copyright Pearson Education, Inc. A rights reserved. This materia is protected under a copyright aws as they currenty exist. No portion o this materia may be reproduced, in any orm or by any means, without permission in writing om the pubisher.

2 Chapter : Rotationa Dynamics and Static Equiibrium James S. Waker, Physics, 4 th Edition D df sin( φ ) Torque Magnitude Ranking Task The wrench in the igure has six orces o equa magnitude acting on it. Rank these orces (A through F) on the basis o the magnitude o the torque they appy to the wrench, measured about an axis centered on the bot. The arger the radius, the arger the torque magnitude. The arger the perpendicuar projection onto the radia direction, the arger the torque. Then in decreasing order: D, (B,E), F, A, C Torque! The car shown in the igure has mass m (this incudes the mass o the whees). The whees have radius r, mass m W, and moment o inertia I km W r. Assume that the axes appy the same torque to a our whees. For simpicity, aso assume that the weight is distributed uniormy so that a the whees experience the same norma reaction om the ground, and so the same ictiona orce. A) I there is no sipping, a ictiona orce must exist between the whees and the ground. In what direction does the ictiona orce act? Take the positive x direction to be to the right. The ictiona orce acts in the positive x direction. B) Use Newton's aws to ind an expression or the net externa orce acting on the car. Ignore air resistance. The vertica orces baance. The net orce is in the horizonta direction: F 4 where iction orce in each whee. tota is the Copyright Pearson Education, Inc. A rights reserved. This materia is protected under a copyright aws as they currenty exist. No portion o this materia may be reproduced, in any orm or by any means, without permission in writing om the pubisher.

3 Chapter : Rotationa Dynamics and Static Equiibrium James S. Waker, Physics, 4 th Edition C) Use Newton's aws to ind an expression or, the norma orce on each whee. Forces in the y direction: 4 N whee take to be equa since the weight is equay distributed. N mg /4 whee mg where is the norma orce on each whee that we N whee D) Now assume that the ictiona orce is not at its maximum vaue. What is the reation between the torque appied to each whee by the axes and the acceeration a o the car? Once you have the exact expression or the acceeration, make the approximation that the whees are much ighter than the car as a whoe. The torque orce at each whee is: r. The inear acceeration is obtained om the sum o the orces 4 / r and ma / 4, then ( ma /4 / r ) and ma 4 a mr A person sowy owers a.6 kg crab trap over the side o a dock, as shown in the igure. What torque does the trap exert about the person's shouder? Picture the Probem: The arm extends out either horizontay and the weight o the crab trap is exerted straight downward on the hand. Strategy:. In this case the downward gravitationa orce is perpendicuar to the radia direction. The rotation in countercockwise. Soution: The torque: rmg ( )( )( ).7 m.6 kg 9.8 m/s 5 N m Insight: I the man bent his ebow and brought his hand up next to his shouder, the torque on the shouder woud be zero but the orce on his hand woud remain 5 N or 7.9 b..) When a ceiing an rotating with an anguar speed o.9 rad/s is turned o, a ictiona torque o. N m sows it to a stop in 9. s. Picture the Probem: The ceiing an rotates about its axis, decreasing its anguar speed at a constant rate. Strategy: Determine the anguar acceeration using equation -6 and then use equation -4 to ind the moment o inertia o the an. Soution: Sove equation -4 or I: Insight: Friction converts the an s initia kinetic energy o in more detai in section -8. (. N m)(.5 s) (.75 rad/s) Δt I.98 kg m α Δω Δt Δω Iω. J into heat. Rotationa work wi be examined Copyright Pearson Education, Inc. A rights reserved. This materia is protected under a copyright aws as they currenty exist. No portion o this materia may be reproduced, in any orm or by any means, without permission in writing om the pubisher.

4 Chapter : Rotationa Dynamics and Static Equiibrium James S. Waker, Physics, 4 th Edition.9) A ish takes the bait and pus on the ine with a orce o. N. The ishing ree, which rotates without iction, is a uniorm cyinder o radius.55 m and mass.99 kg. A) What is the anguar acceeration o the ishing ree? B) How much ine does the ish pu om the ree in.5 s? Picture the Probem: The ish exerts a torque on the ishing ree and it rotates with constant anguar acceeration. Strategy: Use Tabe - to determine the moment o inertia o the ishing ree assuming it is a uniorm cyinder ( MR ). Find the torque the ish exerts on the ree by using equation -. Then appy Newton s Second Law or rotation (equation -4) to ind the anguar acceeration and equations - and - to ind the amount o ine pued om the ree. Soution:. (a) Use Tabe - to ind I: ( )( ). Appy equation - directy to ind : I MR.99 kg.55 m.5 kg m rf ( )( ).55 m. N. N m. Sove equation -4 or α :. N m α I.5 kg m 8 rad/s 4. (b) Appy equations - and -: s r r( αt ) (.55 m) ( 8 rad/s )(.5 s).4 m Insight: This must be a sma ish because it is not puing very hard;. N is about.49 b or 7.9 ounces o orce. Or maybe the ish is tired?.) A string that passes over a puey has a. kg mass attached to one end and a.65 kg mass attached to the other end. The puey, which is a disk o radius 9.5 cm, has iction in its axe. What is the magnitude o the ictiona torque that must be exerted by the axe i the system is to be in static equiibrium?. Picture the Probem: The two masses hang on either side o a puey. Strategy: Use Newton s Second Law or rotation (equation -4) to ind the ictiona torque that woud make the anguar acceeration o the system equa to zero. In each case the torque exerted on the puey by the hanging masses is the weight o the mass times the radius o the puey. Let m.65 kg and m. kg. The torque due to m is cockwise and thereore taken to be in the negative direction. Soution: Write Newton s r( mg) + r( mg) + Second Law or rotation and sove or : rg( m m ).94 m 9.8 m/s.65. kg ( )( )( ).9 N m Insight: This ictiona torque represents a static iction orce. I a itte bit o mass were added to m, the system woud begin acceerating cockwise and the ictiona torque woud be reduced to its kinetic vaue. Copyright Pearson Education, Inc. A rights reserved. This materia is protected under a copyright aws as they currenty exist. No portion o this materia may be reproduced, in any orm or by any means, without permission in writing om the pubisher. 4

5 Chapter : Rotationa Dynamics and Static Equiibrium James S. Waker, Physics, 4 th Edition.5) An 85 kg person stands on a uniorm 5. kg adder that is 4. m ong, as shown in the igure. The oor is rough; hence, it exerts both a norma orce,, and a ictiona orce,, on the adder. The wa, on the other hand, is ictioness; it exerts ony a norma orce,. Using the dimensions given in the igure, ind the magnitudes o,, and. To sove the probem using the technique emphasized in cass In which we ook or the perpendicuar component o the orce we can cacuate the ange that the adder makes with the oor. a Lsin sin ( a/ L) sin (.8 / 4) L a 7.8 (7.85) To ind the ength that the person is up the adder b cos b/ cos.7 / cos(7.8).4 m (.479) The torque about point : b sin cos L mg sin mg cos sin L For the weight o the person: m cos pg mpg For the weight o the adder ( L/) m gcos + + m g m g p mg Copyright Pearson Education, Inc. A rights reserved. This materia is protected under a copyright aws as they currenty exist. No portion o this materia may be reproduced, in any orm or by any means, without permission in writing om the pubisher. 5 mg

6 Chapter : Rotationa Dynamics and Static Equiibrium James S. Waker, Physics, 4 th Edition L sin m g cos ( L / ) m g cos p And ( mp + ( L /) m) g cos Lsin ((.4)(85) + ()(5.))(9.8)cos(7.8) (4)sin(7.8) ((.4)(85) + ()(5.))(9.8)cos(7.8) (4)sin(7.8) 6 N Forces in the x-direction F x 6 N Forces in the y-direction Fy mpg mg ( mp + m) g ( )(9.8) 885 N.6) A rigid, vertica rod o negigibe mass is connected to the oor by a bot through its ower end, as shown in the igure. The rod aso has a wire connected between its top end and the oor. 6. Picture the Probem: The horizonta orce F is appied to the rod as shown in the igure at right. Strategy: Let L the rod ength and write Newton s Second Law or torques (et the bot be the pivot point) in order to determine the wire tension T. The pivot point is convenient since the orce F b going through it produces no torque. Then write Newton s Second Law in the horizonta and vertica directions to determine the components o the bot orce F b. Soution:. (a) Set and LT ( cos 45 ) ( LF ) sove or T : F F T cos45. (b) Set F x and sove or F b,x : Fx F + Fb, x T cos 45 F F Tcos 45 F cos 45 F cos 45. (c) Set F and sove or F : Fy Fb, y Tsin 45 y Insight: The bot orce has a magnitude o F b, y b, x F F sin 45 cos 45 b, y and points 45 above the horizonta and to the et. F F Copyright Pearson Education, Inc. A rights reserved. This materia is protected under a copyright aws as they currenty exist. No portion o this materia may be reproduced, in any orm or by any means, without permission in writing om the pubisher. 6

Solved Problems Chapter 3: Mechanical Systems

Solved Problems Chapter 3: Mechanical Systems ME 43: Sytem Dynamic and Contro Probem A-3-8- Soved Probem Chapter 3: Mechanica Sytem In Figure 3-3, the impe penduum hown conit of a phere of ma m upended by a tring of negigibe ma. Negecting the eongation

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Angular acceleration α

Angular acceleration α Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

More information

CHAPTER 30 GAUSS S LAW

CHAPTER 30 GAUSS S LAW CHPTER GUSS S LW. Given : E /5 E î /5 E ĵ E. N/C The pane is parae to yz-pane. Hence ony /5 E î passes perpendicuar to the pane whereas /5 E ĵ goes parae. rea.m (given Fux E /5.. Nm /c Nm /c. Given ength

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

E X P E R I M E N T 8

E X P E R I M E N T 8 E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

The Simple Pendulum. by Dr. James E. Parks

The Simple Pendulum. by Dr. James E. Parks by Dr. James E. Parks Department of Physics and Astronomy 401 Niesen Physics Buidin The University of Tennessee Knoxvie, Tennessee 37996-100 Copyriht June, 000 by James Edar Parks* *A rihts are reserved.

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6 Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Rotational Inertia Demonstrator

Rotational Inertia Demonstrator WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended

More information

Chapter 7 Homework solutions

Chapter 7 Homework solutions Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x

More information

Objective: Equilibrium Applications of Newton s Laws of Motion I

Objective: Equilibrium Applications of Newton s Laws of Motion I Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

CONDENSATION. Prabal Talukdar. Associate Professor Department of Mechanical Engineering IIT Delhi E-mail: prabal@mech.iitd.ac.in

CONDENSATION. Prabal Talukdar. Associate Professor Department of Mechanical Engineering IIT Delhi E-mail: prabal@mech.iitd.ac.in CONDENSATION Praba Taukdar Associate Professor Department of Mechanica Engineering IIT Dehi E-mai: praba@mech.iitd.ac.in Condensation When a vapor is exposed to a surface at a temperature beow T sat, condensation

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Recitation Week 4 Chapter 5

Recitation Week 4 Chapter 5 Recitation Week 4 Chapter 5 Problem 5.5. A bag of cement whose weight is hangs in equilibrium from three wires shown in igure P5.4. wo of the wires make angles θ = 60.0 and θ = 40.0 with the horizontal.

More information

EXPERIMENT: MOMENT OF INERTIA

EXPERIMENT: MOMENT OF INERTIA OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in

More information

SAT Math Facts & Formulas

SAT Math Facts & Formulas Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information

Problem Set 5 Work and Kinetic Energy Solutions

Problem Set 5 Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Chapter 1 Structural Mechanics

Chapter 1 Structural Mechanics Chapter Structura echanics Introduction There are many different types of structures a around us. Each structure has a specific purpose or function. Some structures are simpe, whie others are compex; however

More information

Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

SAT Math Must-Know Facts & Formulas

SAT Math Must-Know Facts & Formulas SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas

More information

Rotational Motion: Moment of Inertia

Rotational Motion: Moment of Inertia Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

More information

Chapter 4. Moment - the tendency of a force to rotate an object

Chapter 4. Moment - the tendency of a force to rotate an object Chapter 4 Moment - the tendency of a force to rotate an object Finding the moment - 2D Scalar Formulation Magnitude of force Mo = F d Rotation is clockwise or counter clockwise Moment about 0 Perpendicular

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013 PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7 February 13, 2013 0.1 A 2.00-kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

5. Introduction to Robot Geometry and Kinematics

5. Introduction to Robot Geometry and Kinematics V. Kumar 5. Introduction to Robot Geometry and Kinematics The goa of this chapter is to introduce the basic terminoogy and notation used in robot geometry and kinematics, and to discuss the methods used

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 15 FORCE, MASS AND ACCELERATION CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

7. Dry Lab III: Molecular Symmetry

7. Dry Lab III: Molecular Symmetry 0 7. Dry Lab III: Moecuar Symmetry Topics: 1. Motivation. Symmetry Eements and Operations. Symmetry Groups 4. Physica Impications of Symmetry 1. Motivation Finite symmetries are usefu in the study of moecues.

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Two-Body System: Two Hanging Masses

Two-Body System: Two Hanging Masses Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

Energy Density / Energy Flux / Total Energy in 3D

Energy Density / Energy Flux / Total Energy in 3D Lecture 5 Phys 75 Energy Density / Energy Fux / Tota Energy in D Overview and Motivation: In this ecture we extend the discussion of the energy associated with wave otion to waves described by the D wave

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Solving Newton s Second Law Problems

Solving Newton s Second Law Problems Solving ewton s Second Law Problems Michael Fowler, Phys 142E Lec 8 Feb 5, 2009 Zero Acceleration Problems: Forces Add to Zero he Law is F ma : the acceleration o a given body is given by the net orce

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Gravitational Potential Energy

Gravitational Potential Energy Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

3.5 Pendulum period. 2009-02-10 19:40:05 UTC / rev 4d4a39156f1e. g = 4π2 l T 2. g = 4π2 x1 m 4 s 2 = π 2 m s 2. 3.5 Pendulum period 68

3.5 Pendulum period. 2009-02-10 19:40:05 UTC / rev 4d4a39156f1e. g = 4π2 l T 2. g = 4π2 x1 m 4 s 2 = π 2 m s 2. 3.5 Pendulum period 68 68 68 3.5 Penduum period 68 3.5 Penduum period Is it coincidence that g, in units of meters per second squared, is 9.8, very cose to 2 9.87? Their proximity suggests a connection. Indeed, they are connected

More information

Answer, Key { Homework 6 { Rubin H Landau 1 This print-out should have 24 questions. Check that it is complete before leaving the printer. Also, multiple-choice questions may continue on the next column

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

11 - KINETIC THEORY OF GASES Page 1

11 - KINETIC THEORY OF GASES Page 1 - KIETIC THEORY OF GASES Page Introduction The constituent partices of the atter ike atos, oecues or ions are in continuous otion. In soids, the partices are very cose and osciate about their ean positions.

More information

D Alembert s principle and applications

D Alembert s principle and applications Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

More information

Fundamental Mechanics: Supplementary Exercises

Fundamental Mechanics: Supplementary Exercises Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction 2.3 RICTION The property by virtue of which a resisting force is created between two rough bodies that resists the sliding of one body over the other is known as friction. The force that always opposes

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Torque and Rotation. Physics

Torque and Rotation. Physics Torque and Rotation Physics Torque Force is the action that creates changes in linear motion. For rotational motion, the same force can cause very different results. A torque is an action that causes objects

More information

Awell-known lecture demonstration1

Awell-known lecture demonstration1 Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end

More information

TORQUE AND FIRST-CLASS LEVERS

TORQUE AND FIRST-CLASS LEVERS TORQUE AND FIRST-CLASS LEVERS LAB MECH 28.COMP From Physics, Eugene Hecht and Physical Science with Computers, Vernier Software & Technology INTRODUCTION In Figure 1, note force F acting on a wrench along

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

3 Work, Power and Energy

3 Work, Power and Energy 3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

More information

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7 Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

More information

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

More information

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

More information

Universal Law of Gravitation

Universal Law of Gravitation Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies

More information

P211 Midterm 2 Spring 2004 Form D

P211 Midterm 2 Spring 2004 Form D 1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

More information

Finance 360 Problem Set #6 Solutions

Finance 360 Problem Set #6 Solutions Finance 360 Probem Set #6 Soutions 1) Suppose that you are the manager of an opera house. You have a constant margina cost of production equa to $50 (i.e. each additiona person in the theatre raises your

More information

B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B.

B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B. CTA-1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass

More information

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1

More information

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

4.2 Free Body Diagrams

4.2 Free Body Diagrams CE297-FA09-Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 5_31_2012 Goals for Chapter

More information

An Idiot s guide to Support vector machines (SVMs)

An Idiot s guide to Support vector machines (SVMs) An Idiot s guide to Support vector machines (SVMs) R. Berwick, Viage Idiot SVMs: A New Generation of Learning Agorithms Pre 1980: Amost a earning methods earned inear decision surfaces. Linear earning

More information

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5 Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Newton s Law of Motion

Newton s Law of Motion chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

More information