Shell and Tube Heat Exchanger

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Shell and Tube Heat Exchanger"

Transcription

1 Sell and Tube Heat Excanger MECH595 Introduction to Heat Transfer Professor M. Zenouzi Prepared by: Andrew Demedeiros, Ryan Ferguson, Bradford Powers November 19,

2 Abstract 2

3 Contents Discussion of Teory:... 4 Experimental Apparatus and Procedure... 7 Experimental Data... 8 Results Discussion of Results

4 Discussion of Teory: A eat excanger is a device tat is used to transfer energy in te form of eat from one fluid to anoter. Tey take two input fluids of different temperatures and as te two fluids run near eac oter te fluids transfer eat between eac oter. Te eat excanger looks like a large pipe tat consists of 37 small tubes. Tey are used in various configurations for all sorts of applications suc as space eating, refrigeration, air conditioning, power plants, cemical plants, and petrocemical plants. Heat excangers can be used in two different configurations parallel flow, Figure 1, or counter flow, Figure 2. Figure 1 ~ Cocurrent flow Figure 2 ~ Counter current flow 4

5 Eac configuration refers to ow te fluid moves troug teir respective flow passages relative to eac oter. If eac fluid is flowing in te same direction suc as in figure 1 it is termed a parallel flow. On te oter and if te fluids flow in opposite directions as in figure 2 it is termed counter flow. Parallel flow in eat excangers appens wen bot fluids enter te eat excanger at teir largest temperature difference. Te temperature difference becomes less over te lengt of te eat excanger. In te counter flow eat excanger, te fluids enter at opposite ends and terefore at different ends of te temperature scale Figure 2. As te fluids move troug te excanger, tey bot warm up or cool down at rougly te same rate. Te temperature differential between te two fluids is relatively constant over te lengt of te excanger. Te eat transfer process wic occurs in any basic eat excanger can be summarized by te following equations. Q = m c Qc = m cc F Q = R p pc T T ( LMTD) T c = F( UA)( LMTD) Were in te last equation F is te correction factor wic equals 1 for tis experiment. LMTD is te Log Mean Temperature Difference wic is described latter in tis section. Q is te eat transferred between te ot water and cold water. Te overall resistances can be calculated using: R = R + R + R T f w cf 5

6 Were R R R f w cf 1 = A 1 [ D D ] ln 2 = 2πLk 1 = A c and from te above equations can be found using te appropriate Nusselt number for ot and cold water. For te ot water (fluid inner tubes) 2 c w 1 Nu K = Nu D = 0.023Re 0.8 Pr 0.3 For Cooling For te cold water K c c = Nu c D c 0.55 Nu = 0.36 Re Pr c c 0.33 c For Heating Te log-mean temperature difference is given by te following equation were a and b represent te ends of te eat excanger. Te LMTD is used because te eat must pass troug four resistances te ot tube to te cold water. Tm = ( Ta Tb ) ln( T T ) a b 6

7 Heat excanger effectiveness is defined as te ratio of te actual eat transfer rate of te praticlar eat excanger to te maximum possible eat transfer rate for te same unit. ε = Q Q max Q max = C min ( ) T i T ci Were C min is equal to eiter C c or C, wicever is smaller and are defined as, C = m c p and C c = m c c pc. C ε = C min ( Ti To ) ( T T ) i ci Experimental Apparatus and Procedure For tis experiment a HT30X Heat excanger services unit was used along wit an HT33 sell and tube eat excanger. Tis device included four K-type termocouples at te ot and cold inlet and outlets. Te excanger consisted of seven stainless steel tubes 6.35 mm in diameter wit a 0.6 mm wall tickness. Te outer annulus was constructed from clear acrylic tubing 39.0 mm inner diameter wit a 3.0 mm wall tickness. Te lengt of te tube bundle is 144 mm giving a total eat transfer area of 20,000 m 2. Te procedure for te laboratory is listed below. 1. Set te cold water pressure regulator. Adjust te knob until a flow rate of 3.00 liters per minute is establised. Lock down tis setting. 2. Prime te ot water circuit. Switc on te ot water circulating pump and expel any air bubbles. Do not let te water level fall below te eigt of te priming vessel to prevent air from entering te system. 7

8 3. Set te computer software to countercurrent flow and maintain a ot water temperature of 60 F. Experimental Data Te results of te experiment are displayed in te tables below. Sample Calculations: Calculating ot water eat rate: m_cw m-t T in T out Tc in Tc out RUN l/s l/s C C C C Table 1 ~ Parallel flow temperature data m_cw m-t T in T out Tc in Tc out RUN l/s l/s C C C C Table 2 ~ Counter current flow temperature data Calculating cold water eat rate: 8

9 Calculating Reynolds Number: Calculating Nusselt Number: Calculating eat transfer coefficient: Calculating overall eat transfer coefficient: Calculating Log-Mean Temperature Difference: 9

10 Calculating eat transfer rate: Calculating maximum eat transfer: Calculating Efficiency: Results Hot Water Heat Rate Cold Water Heat Rate Run Q Run Q c W W W W W W W W W W Table 3 ~ Cocurrent Heat Rates 10

11 Hot Water Heat Rate Cold Water Heat Rate Run Q Run Q c W W W W W W W W W W Table 4 ~ Counter Current Heat Rates Total Termal Resistance (K/m) Total Resistance Cold Water Flow Rate (kg/s) Figure 3 ~ Total Termal Resistance 11

12 Heat Rate (W) Hot Water Heat Rate(Cocurrent) Hot Water Heat Rate (Concurrent) Cold Water Flow Rate (kg/s) Figure 4 ~ Hot Water Heat Rate Heat Rate (W) Heat Rate Cold Water (Cocurrent) Heat Rate Cold Water (Concurrent) Cold Water Flow Rate (kg/s) Figure 5 ~ Cold Water Heat Rate 12

13 Heat Rate (W) Total Heat Rate (Cocurrent) Total Heat Rate (Concurrent) Cold Water Flow Rate (kg/s) Figure 6 ~ Total Heat Rate Efficiency Cocurrent Efficiency Concurrent Efficiency Cold Water Flow Rate (kg/s) Figure 7 ~ Excanger Efficiency 13

14 Discussion of Results Te results of tis laboratory sow tat te effectiveness of te eat excanger is related to te cold-water flow rate. Tis is due to te decrease of termal resistance decreases wit increased cold water flow. Eac trend in te Figures 4 troug 7 above increases wit flow rate. Tere was no noticeable advantage to using counter current versus concurrent flow in te data. For eac run te data collected for eat transfer rate did not vary greatly. Conclusions Te data presented in tis report sows tat eat excanger performance increase linearly wit increasing cold water flow rate. Tis follows logically since more cold water is delivered to carry away eat per unit of time. Additionally increased flow rate results in more turbulent flow. Tis also increases te eat transfer rate. Contrary to eat excanger teory owever, tere was no noticeable difference in te eat transfer rate between parallel flow and counter current flow. Te counter current flow sould sow enanced eat transfer ability. 14

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter Applied Heat Transfer Part Two Heat Excangers Dr. Amad RAMAZANI S.A. Associate Professor Sarif University of Tecnology انتقال حرارت کاربردی احمد رمضانی سعادت ا بادی Autumn, 1385 (2006) Ramazani, Heat Excangers

More information

Warm medium, T H T T H T L. s Cold medium, T L

Warm medium, T H T T H T L. s Cold medium, T L Refrigeration Cycle Heat flows in direction of decreasing temperature, i.e., from ig-temperature to low temperature regions. Te transfer of eat from a low-temperature to ig-temperature requires a refrigerator

More information

A FLOW NETWORK ANALYSIS OF A LIQUID COOLING SYSTEM THAT INCORPORATES MICROCHANNEL HEAT SINKS

A FLOW NETWORK ANALYSIS OF A LIQUID COOLING SYSTEM THAT INCORPORATES MICROCHANNEL HEAT SINKS A FLOW NETWORK ANALYSIS OF A LIQUID COOLING SYSTEM THAT INCORPORATES MICROCHANNEL HEAT SINKS Amir Radmer and Suas V. Patankar Innovative Researc, Inc. 3025 Harbor Lane Nort, Suite 300 Plymout, MN 55447

More information

Solution Derivations for Capa #7

Solution Derivations for Capa #7 Solution Derivations for Capa #7 1) Consider te beavior of te circuit, wen various values increase or decrease. (Select I-increases, D-decreases, If te first is I and te rest D, enter IDDDD). A) If R1

More information

Chapter 10: Refrigeration Cycles

Chapter 10: Refrigeration Cycles Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators

More information

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS ME 315 - Heat Transfer Laboratory Nomenclature Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS A heat exchange area, m 2 C max maximum specific heat rate, J/(s

More information

Review: Convection and Heat Exchangers. Reminders

Review: Convection and Heat Exchangers. Reminders CH EN 3453 Heat Transfer Review: Convection and Heat Exchangers Chapters 6, 7, 8, 9 and 11 Reminders Midterm #2 Wednesday at 8:15 AM Review tomorrow 3:30 PM in WEB L104 (I think) Project Results and Discussion

More information

Module 2 : Convection. Lecture 20a : Illustrative examples

Module 2 : Convection. Lecture 20a : Illustrative examples Module 2 : Convection Lecture 20a : Illustrative examples Objectives In this class: Examples will be taken where the concepts discussed for heat transfer for tubular geometries in earlier classes will

More information

Heat Exchangers - Introduction

Heat Exchangers - Introduction Heat Exchangers - Introduction Concentric Pipe Heat Exchange T h1 T c1 T c2 T h1 Energy Balance on Cold Stream (differential) dq C = wc p C dt C = C C dt C Energy Balance on Hot Stream (differential) dq

More information

Understanding the Derivative Backward and Forward by Dave Slomer

Understanding the Derivative Backward and Forward by Dave Slomer Understanding te Derivative Backward and Forward by Dave Slomer Slopes of lines are important, giving average rates of cange. Slopes of curves are even more important, giving instantaneous rates of cange.

More information

Math 113 HW #5 Solutions

Math 113 HW #5 Solutions Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

More information

SAT Subject Math Level 1 Facts & Formulas

SAT Subject Math Level 1 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

More information

This supplement is meant to be read after Venema s Section 9.2. Throughout this section, we assume all nine axioms of Euclidean geometry.

This supplement is meant to be read after Venema s Section 9.2. Throughout this section, we assume all nine axioms of Euclidean geometry. Mat 444/445 Geometry for Teacers Summer 2008 Supplement : Similar Triangles Tis supplement is meant to be read after Venema s Section 9.2. Trougout tis section, we assume all nine axioms of uclidean geometry.

More information

Design of a Parallel Tube Heat Exchanger

Design of a Parallel Tube Heat Exchanger Design of a Parallel Tube Heat Exchanger The Exchanger Benzene 180 F 7500 lb/h 100 F Water: 70 F 5 ft/s The Design Equation for a Heat Exchanger Q H = UA T 2 T 1 ln T 2 T 1 = UA T lm Problem Find the Required

More information

Second Law Analysis of Parallel Plate Ducts with Span Wise Periodic Triangular Corrugations at one Wall

Second Law Analysis of Parallel Plate Ducts with Span Wise Periodic Triangular Corrugations at one Wall INTERNATIONAL JOURNAL OF MULTIDISCILINARY SCIENCES AND ENGINEERING, VOL., NO. 7, OCTOBER 011 Second La Analysis of arallel late Ducts it Span Wise eriodic Triangular Corrugations at one Wall Alireza Falaat

More information

PERFORMANCE EVALUATION OF THE THERMOELECTRIC GENERATOR

PERFORMANCE EVALUATION OF THE THERMOELECTRIC GENERATOR SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE-AFASES 2016 PERFORMANCE EVALUATION OF THE THERMOELECTRIC GENERATOR Petru Adrian COTFAS, Daniel Tudor COTFAS, Octavian MACHIDON, Cristina CIULAVU *Transilvania

More information

ACT Math Facts & Formulas

ACT Math Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as

More information

1. (Problem 8.23 in the Book)

1. (Problem 8.23 in the Book) 1. (Problem 8.23 in the Book) SOLUTION Schematic An experimental nuclear core simulation apparatus consists of a long thin-walled metallic tube of diameter D and length L, which is electrically heated

More information

Chapter 11. Objectives

Chapter 11. Objectives Chapter 11 Heat Exchangers Islamic Azad University Karaj Branch Objectives When you finish studying this chapter, you should be able to: Recognize numerous types of heat exchangers, and classify them,

More information

Reinforced Concrete Beam

Reinforced Concrete Beam Mecanics of Materials Reinforced Concrete Beam Concrete Beam Concrete Beam We will examine a concrete eam in ending P P A concrete eam is wat we call a composite eam It is made of two materials: concrete

More information

Instantaneous Rate of Change:

Instantaneous Rate of Change: Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

More information

Optimal Pricing Strategy for Second Degree Price Discrimination

Optimal Pricing Strategy for Second Degree Price Discrimination Optimal Pricing Strategy for Second Degree Price Discrimination Alex O Brien May 5, 2005 Abstract Second Degree price discrimination is a coupon strategy tat allows all consumers access to te coupon. Purcases

More information

Discovering Area Formulas of Quadrilaterals by Using Composite Figures

Discovering Area Formulas of Quadrilaterals by Using Composite Figures Activity: Format: Ojectives: Related 009 SOL(s): Materials: Time Required: Directions: Discovering Area Formulas of Quadrilaterals y Using Composite Figures Small group or Large Group Participants will

More information

The differential amplifier

The differential amplifier DiffAmp.doc 1 Te differential amplifier Te emitter coupled differential amplifier output is V o = A d V d + A c V C Were V d = V 1 V 2 and V C = (V 1 + V 2 ) / 2 In te ideal differential amplifier A c

More information

HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS

HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS J.Kalil basha 1,G.Karthikeyan 2, S.Karuppusamy 3 1,2 Assistant Professor, Dhanalakshmi Srinivasan

More information

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

More information

Finite Difference Approximations

Finite Difference Approximations Capter Finite Difference Approximations Our goal is to approximate solutions to differential equations, i.e., to find a function (or some discrete approximation to tis function) tat satisfies a given relationsip

More information

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY

More information

Area of a Parallelogram

Area of a Parallelogram Area of a Parallelogram Focus on After tis lesson, you will be able to... φ develop te φ formula for te area of a parallelogram calculate te area of a parallelogram One of te sapes a marcing band can make

More information

The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger

The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger Research Journal of Engineering Sciences ISSN 2278 9472 The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger Abstract Murugesan M.P. and Balasubramanian

More information

2 Limits and Derivatives

2 Limits and Derivatives 2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line

More information

cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS

cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS A double pipe heat exchanger, in essence, consists of two concentric pipes, one fluid flowing through the inner pipe and the outer fluid flowing countercurrently

More information

ME422 Mechanical Control Systems Modeling Fluid Systems

ME422 Mechanical Control Systems Modeling Fluid Systems Cal Poly San Luis Obispo Mecanical Engineering ME422 Mecanical Control Systems Modeling Fluid Systems Owen/Ridgely, last update Mar 2003 Te dynamic euations for fluid flow are very similar to te dynamic

More information

2.28 EDGE Program. Introduction

2.28 EDGE Program. Introduction Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.

More information

Trapezoid Rule. y 2. y L

Trapezoid Rule. y 2. y L Trapezoid Rule and Simpson s Rule c 2002, 2008, 200 Donald Kreider and Dwigt Lar Trapezoid Rule Many applications of calculus involve definite integrals. If we can find an antiderivative for te integrand,

More information

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

More information

underfloor heating & cooling since 1986 WTH Manifolds Your comfort, our mission!

underfloor heating & cooling since 1986 WTH Manifolds Your comfort, our mission! underfloor eating & cooling since 1986 WTH Manifolds Your comfort, our mission! www.termo-floor.co.uk WTH Manifolds: for any application Termo-Floor offers an extensive range of manifolds to suit a variety

More information

Proof of the Power Rule for Positive Integer Powers

Proof of the Power Rule for Positive Integer Powers Te Power Rule A function of te form f (x) = x r, were r is any real number, is a power function. From our previous work we know tat x x 2 x x x x 3 3 x x In te first two cases, te power r is a positive

More information

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade?

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade? Can a Lump-Sum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lump-sum transfer rules to redistribute te

More information

Derivatives Math 120 Calculus I D Joyce, Fall 2013

Derivatives Math 120 Calculus I D Joyce, Fall 2013 Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te

More information

2.13 Solid Waste Management. Introduction. Scope and Objectives. Conclusions

2.13 Solid Waste Management. Introduction. Scope and Objectives. Conclusions Introduction Te planning and delivery of waste management in Newfoundland and Labrador is te direct responsibility of municipalities and communities. Te Province olds overall responsibility for te development

More information

Verifying Numerical Convergence Rates

Verifying Numerical Convergence Rates 1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 Performance Analysis of Heat Transfer and Effectiveness on Laminar Flow with Effect of

More information

Fluid Statics. [Ans.(c)] (iv) How is the metacentric height, MG expressed? I I

Fluid Statics. [Ans.(c)] (iv) How is the metacentric height, MG expressed? I I Fluid Statics Q1. Coose te crect answer (i) Te nmal stress is te same in all directions at a point in a fluid (a) only wen te fluid is frictionless (b) only wen te fluid is frictionless and incompressible

More information

Theoretical calculation of the heat capacity

Theoretical calculation of the heat capacity eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals

More information

An Interest Rate Model

An Interest Rate Model An Interest Rate Model Concepts and Buzzwords Building Price Tree from Rate Tree Lognormal Interest Rate Model Nonnegativity Volatility and te Level Effect Readings Tuckman, capters 11 and 12. Lognormal

More information

HANDLY & FREQUENTLY USED FORMULAS FOR THERMAL ENGINEERS

HANDLY & FREQUENTLY USED FORMULAS FOR THERMAL ENGINEERS HANDLY & FREQUENTLY USED FORMULAS FOR THERMAL ENGINEERS GEOMETRY & MATH GEOMETRI & MATEMATIK Cylindrical (Tube) Volume V = p / 4 d 2 L [m 3 ] Cylindrical (Tube) Surface A = p d L [m 2 ] Rectangular Triangle

More information

The modelling of business rules for dashboard reporting using mutual information

The modelling of business rules for dashboard reporting using mutual information 8 t World IMACS / MODSIM Congress, Cairns, Australia 3-7 July 2009 ttp://mssanz.org.au/modsim09 Te modelling of business rules for dasboard reporting using mutual information Gregory Calbert Command, Control,

More information

A Low-Temperature Creep Experiment Using Common Solder

A Low-Temperature Creep Experiment Using Common Solder A Low-Temperature Creep Experiment Using Common Solder L. Roy Bunnell, Materials Science Teacer Soutridge Hig Scool Kennewick, WA 99338 roy.bunnell@ksd.org Copyrigt: Edmonds Community College 2009 Abstract:

More information

Internal Convection: Fully Developed Flow

Internal Convection: Fully Developed Flow Internal Convection: Fully Developed Flow Laminar Flow in Circular Tube: Analytical local Nusselt number is constant in fully develop region depends on surface thermal condition constant heat flux Nu D

More information

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution 1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis

More information

Entrance Conditions. Chapter 8. Islamic Azad University

Entrance Conditions. Chapter 8. Islamic Azad University Chapter 8 Convection: Internal Flow Islamic Azad University Karaj Branch Entrance Conditions Must distinguish between entrance and fully developed regions. Hydrodynamic Effects: Assume laminar flow with

More information

Module 2. The Science of Surface and Ground Water. Version 2 CE IIT, Kharagpur

Module 2. The Science of Surface and Ground Water. Version 2 CE IIT, Kharagpur Module Te Science of Surface and Ground Water Version CE IIT, Karagpur Lesson 6 Principles of Ground Water Flow Version CE IIT, Karagpur Instructional Objectives On completion of te lesson, te student

More information

Sizing of triple concentric pipe heat exchanger

Sizing of triple concentric pipe heat exchanger Sizing of triple concentric pipe heat exchanger 1 Tejas M. Ghiwala, 2 Dr. V.K. Matawala 1 Post Graduate Student, 2 Head of Department 1 Thermal Engineering, SVMIT, Bharuch-392001, Gujarat, INDIA, 2 Department

More information

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 DOUBLE PIPE HEAT EXCHANGER

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 DOUBLE PIPE HEAT EXCHANGER UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 DOUBLE PIPE HEAT EXCHANGER OBJECTIVE Determine the Reynolds number for each flow. Determine the individual heat transfer

More information

SAT Math Facts & Formulas

SAT Math Facts & Formulas Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:

More information

A-5-2.3 PE Series (Miniature wide type)

A-5-2.3 PE Series (Miniature wide type) A-5-2.3 (Miniature wide ) 2. all slide sape Molded resin ball recirculation component abyrint structure all slide body all slide Model AR R UR R Sape/installation metod ype (Upper row, Rating: ower row,

More information

Simulation and Optimization of Full Scale Reverse Osmosis Desalination Plant

Simulation and Optimization of Full Scale Reverse Osmosis Desalination Plant t Euroean Symosium on Comuter Aided Process Engineering ESCAPE S. Pierucci and G. Buzzi Ferraris (Editors) Elsevier B.V. All rigts reserved. Simulation and Otimization of Full Scale Reverse Osmosis Desalination

More information

7.6 Complex Fractions

7.6 Complex Fractions Section 7.6 Comple Fractions 695 7.6 Comple Fractions In tis section we learn ow to simplify wat are called comple fractions, an eample of wic follows. 2 + 3 Note tat bot te numerator and denominator are

More information

Overall Heat Transfer Coefficient for Double-Pipe Heat Exchanger

Overall Heat Transfer Coefficient for Double-Pipe Heat Exchanger Heat Exchanger CM35 Lecture Morrison /5/04 CM35 Fundamentals of Chemical Engineering Laboratory Overall Heat Transfer Coefficient for Double-Pipe Heat Exchanger Professor Faith Morrison Department of Chemical

More information

The EOQ Inventory Formula

The EOQ Inventory Formula Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of

More information

Projective Geometry. Projective Geometry

Projective Geometry. Projective Geometry Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,

More information

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1) Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut

More information

ACTIVITY: Deriving the Area Formula of a Trapezoid

ACTIVITY: Deriving the Area Formula of a Trapezoid 4.3 Areas of Trapezoids a trapezoid? How can you derive a formula for te area of ACTIVITY: Deriving te Area Formula of a Trapezoid Work wit a partner. Use a piece of centimeter grid paper. a. Draw any

More information

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY Vol.33 (2015), No.3, pp.158-162 http://dx.doi.org/10.18280/ijht.330324 EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT

More information

Surface Areas of Prisms and Cylinders

Surface Areas of Prisms and Cylinders 12.2 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G.10.B G.11.C Surface Areas of Prisms and Cylinders Essential Question How can you find te surface area of a prism or a cylinder? Recall tat te surface area of

More information

22.1 Finding the area of plane figures

22.1 Finding the area of plane figures . Finding te area of plane figures a cm a cm rea of a square = Lengt of a side Lengt of a side = (Lengt of a side) b cm a cm rea of a rectangle = Lengt readt b cm a cm rea of a triangle = a cm b cm = ab

More information

Finite Volume Discretization of the Heat Equation

Finite Volume Discretization of the Heat Equation Lecture Notes 3 Finite Volume Discretization of te Heat Equation We consider finite volume discretizations of te one-dimensional variable coefficient eat equation, wit Neumann boundary conditions u t x

More information

Pipe Flow Analysis. Pipes in Series. Pipes in Parallel

Pipe Flow Analysis. Pipes in Series. Pipes in Parallel Pipe Flow Analysis Pipeline system used in water distribution, industrial application and in many engineering systems may range from simple arrangement to extremely complex one. Problems regarding pipelines

More information

Design of heat exchangers

Design of heat exchangers Design of heat exchangers Exchanger Design Methodology The problem of heat exchanger design is complex and multidisciplinary. The major design considerations for a new heat exchanger include: process/design

More information

TAKE-HOME EXP. # 2 A Calculation of the Circumference and Radius of the Earth

TAKE-HOME EXP. # 2 A Calculation of the Circumference and Radius of the Earth TAKE-HOME EXP. # 2 A Calculation of te Circumference and Radius of te Eart On two dates during te year, te geometric relationsip of Eart to te Sun produces "equinox", a word literally meaning, "equal nigt"

More information

New Vocabulary volume

New Vocabulary volume -. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding

More information

A Selection Guide for DTL Series Heat Exchangers

A Selection Guide for DTL Series Heat Exchangers A Selection Guide for DTL Series Heat Exchangers This is your guide to sizing and selecting DTL series heat exchangers. We recommend that you read this page completely before continuing to the step-by-step

More information

Differentiable Functions

Differentiable Functions Capter 8 Differentiable Functions A differentiable function is a function tat can be approximated locally by a linear function. 8.. Te derivative Definition 8.. Suppose tat f : (a, b) R and a < c < b.

More information

4.1 Right-angled Triangles 2. 4.2 Trigonometric Functions 19. 4.3 Trigonometric Identities 36. 4.4 Applications of Trigonometry to Triangles 53

4.1 Right-angled Triangles 2. 4.2 Trigonometric Functions 19. 4.3 Trigonometric Identities 36. 4.4 Applications of Trigonometry to Triangles 53 ontents 4 Trigonometry 4.1 Rigt-angled Triangles 4. Trigonometric Functions 19 4.3 Trigonometric Identities 36 4.4 pplications of Trigonometry to Triangles 53 4.5 pplications of Trigonometry to Waves 65

More information

Perimeter, Area and Volume of Regular Shapes

Perimeter, Area and Volume of Regular Shapes Perimeter, Area and Volume of Regular Sapes Perimeter of Regular Polygons Perimeter means te total lengt of all sides, or distance around te edge of a polygon. For a polygon wit straigt sides tis is te

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

Analysis of Algorithms - Recurrences (cont.) -

Analysis of Algorithms - Recurrences (cont.) - Analysis of Algoritms - Recurrences (cont.) - Andreas Ermedal MRTC (Mälardalens Real Time Researc Center) andreas.ermedal@md.se Autumn 004 Recurrences: Reersal Recurrences appear frequently in running

More information

SAT Math Must-Know Facts & Formulas

SAT Math Must-Know Facts & Formulas SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas

More information

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line. Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,

More information

1 Derivatives of Piecewise Defined Functions

1 Derivatives of Piecewise Defined Functions MATH 1010E University Matematics Lecture Notes (week 4) Martin Li 1 Derivatives of Piecewise Define Functions For piecewise efine functions, we often ave to be very careful in computing te erivatives.

More information

Turbulent Heat Transfer in a Horizontal Helically Coiled Tube

Turbulent Heat Transfer in a Horizontal Helically Coiled Tube Heat Transfer Asian Research, 28 (5), 1999 Turbulent Heat Transfer in a Horizontal Helically Coiled Tube Bofeng Bai, Liejin Guo, Ziping Feng, and Xuejun Chen State Key Laboratory of Multiphase Flow in

More information

EVALUATE TxDOT CHIP SEAL BINDER PERFORMANCE USING PAVEMENT MANAGEMENT INFORMATION SYSTEM AND FIELD MEASUREMENT DATA SAN ANTONIO DISTRICT

EVALUATE TxDOT CHIP SEAL BINDER PERFORMANCE USING PAVEMENT MANAGEMENT INFORMATION SYSTEM AND FIELD MEASUREMENT DATA SAN ANTONIO DISTRICT EVALUATE TxDOT CHIP SEAL BINDER PERFORMANCE USING PAVEMENT MANAGEMENT INFORMATION SYSTEM AND FIELD MEASUREMENT DATA SAN ANTONIO DISTRICT Interim Researc Report #3 Prepared by: Douglas D. Gransberg, P.D.,

More information

Is Gravity an Entropic Force?

Is Gravity an Entropic Force? Is Gravity an Entropic Force? San Gao Unit for HPS & Centre for Time, SOPHI, University of Sydney, Sydney, NSW 006, Australia; E-Mail: sgao7319@uni.sydney.edu.au Abstract: Te remarkable connections between

More information

CHAPTER FOUR HEAT TRANSFER

CHAPTER FOUR HEAT TRANSFER CHAPTER FOUR HEAT TRANSFER 4.1. Determination of Overall Heat Transfer Coefficient in a Tubular Heat Exchanger 4.2. Determination of Overall Heat Transfer Coefficient in a Plate Type Heat Exchanger 4.3.

More information

In other words the graph of the polynomial should pass through the points

In other words the graph of the polynomial should pass through the points Capter 3 Interpolation Interpolation is te problem of fitting a smoot curve troug a given set of points, generally as te grap of a function. It is useful at least in data analysis (interpolation is a form

More information

Faraday s Law of Induction Motional emf

Faraday s Law of Induction Motional emf Faraday s Law of Induction Motional emf Motors and Generators Lenz s Law Eddy Currents Te needle deflects momentarily wen te switc is closed A current flows troug te loop wen a magnet is moved near it,

More information

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer

More information

2.12 Student Transportation. Introduction

2.12 Student Transportation. Introduction Introduction Figure 1 At 31 Marc 2003, tere were approximately 84,000 students enrolled in scools in te Province of Newfoundland and Labrador, of wic an estimated 57,000 were transported by scool buses.

More information

College Planning Using Cash Value Life Insurance

College Planning Using Cash Value Life Insurance College Planning Using Cas Value Life Insurance CAUTION: Te advisor is urged to be extremely cautious of anoter college funding veicle wic provides a guaranteed return of premium immediately if funded

More information

Properties of New Low GWP Refrigerants

Properties of New Low GWP Refrigerants Kungl. enisa Högsolan Institutionen för Energiteni 00 44 Stocolm ttp://www.energy.t.se Properties of New Low GWP Refrigerants Slutrapport till projet nr. P4 inom energimyndigetens program Effsys Contents.

More information

Schedulability Analysis under Graph Routing in WirelessHART Networks

Schedulability Analysis under Graph Routing in WirelessHART Networks Scedulability Analysis under Grap Routing in WirelessHART Networks Abusayeed Saifulla, Dolvara Gunatilaka, Paras Tiwari, Mo Sa, Cenyang Lu, Bo Li Cengjie Wu, and Yixin Cen Department of Computer Science,

More information

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using

More information

Geometric Stratification of Accounting Data

Geometric Stratification of Accounting Data Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual

More information

pro-balcony pro-balcony G Technical sheet Features Substrates/uses Instructions for use Finishing profile for balconies and terraces

pro-balcony pro-balcony G Technical sheet Features Substrates/uses Instructions for use Finishing profile for balconies and terraces Tecnical seet pro-balcony pro-balcony G Finising profile for balconies and terraces Te pro-balcony G finising profile is a balcony profile for capping tiles. It protects te free areas in te edges from

More information

Effects of Pipe Network Diameter and Flow Rate on Unused Energy Source System Performances in Large-scale Horticulture Facilities

Effects of Pipe Network Diameter and Flow Rate on Unused Energy Source System Performances in Large-scale Horticulture Facilities Effects of Pipe Network Diameter and Flow Rate on Unused Energy Source System Performances in Large-scale Horticulture Facilities J. H. Lee 1, Y. B. Yoon 1, I. T. Hyun 1, and K. H. Lee 1* 1 Department

More information

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations A.Satyanarayana.Reddy 1, Suresh Akella 2, AMK. Prasad 3 1 Associate professor, Mechanical Engineering

More information

Average and Instantaneous Rates of Change: The Derivative

Average and Instantaneous Rates of Change: The Derivative 9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to

More information

Design,Development and Comparison of Double Pipe Heat Exchanger with Conventional and Annular Baffles

Design,Development and Comparison of Double Pipe Heat Exchanger with Conventional and Annular Baffles Design,Development and Comparison of Double Pipe Heat Exchanger with and Annular Baffles Mukund B Pandya Asst. Professor, Department of Mechanical Engineering, Babaria Institute of Technology, Varnama-

More information