Compute the derivative by definition: The four step procedure

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Compute the derivative by definition: The four step procedure"

Transcription

1 Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function f (x) is sometimes also called a slopepredictor function Te following is a four-step process to compute f (x) by definition Input: a function f(x) Step Write f(x + ) and f(x) Step Compute f(x + ) f(x) Combine like terms If is a common factor of te terms, factor te expression by removing te common factor f(x + ) f(x) Step 3 Simply As 0 in te last step, we must cancel te zero factor in te denominator in Step 3 f(x + ) f(x) Step 4 Compute lim by letting 0 in te simplified expression 0 Example Let f(x) ax + bx + c Compute f (x) by te definition (tat is, use te four step process) Solution: Step, write f(x+) a(x+) +b(x+)+c a(x +x+ )+bx+b+c ax +ax+a +bx+b+c Step : Use algebra to single out te factor f(x+) f(x) (ax +ax+a +bx+b+c) (ax +bx+c) ax+a +b (ax+a+b) Step 3: Cancel te zero factor is te most important ting in tis step f(x + ) f(x) (ax + a + b) Step 4: Let 0 in te resulted expression in Step 3 ax + a + b f f(x + ) f(x) (x) lim lim ax + a + b ax b a + b 0 0 Example Let f(x) x + Compute f (x) by te definition (tat is, use te four step process)

2 Solution: Step, write f(x + ) Step : Use algebra to single out te factor f(x + ) f(x) (x + ) + x + + x + + (x + ) (x + + ) x + (x + + )(x + ) Step 3: Cancel te zero factor is te most important in tis step f(x + ) f(x) [ x + + [ x + (x + + )(x + ) Step 4: Let 0 in te resulted expression in Step 3 (x + + )(x + ) (x + + )(x + ) f f(x + ) f(x) (x) lim lim 0 0 (x + + )(x + ) (x )(x + ) (x + ) Example 3 Let f(x) x + 5 Compute f (x) by te definition (tat is, use te four step process) Solution: Step, write f(x + ) (x + ) + 5 x Step : Use algebra to single out te factor Here we need te identity (A + B)(A B) A B to get rid of te square root so tat can be factored out f(x+) f(x) x x + 5 (x + + 5) (x + 5) x x + 5 Step 3: Cancel te zero factor is te most important ting in tis step f(x + ) f(x) [ x x + 5 Step 4: Let 0 in te resulted expression in Step 3 f f(x + ) f(x) (x) lim lim 0 0 x x + 5 x x + 5 x x + 5 x x + 5 x + 5

3 Find an equation of te tangent line (using te 4-step procedure to find slopes) Given a curve y f(x) and a point (x 0, y 0 ) on it, an equation of te line tangent to te curve y f(x) at te point (x 0, y 0 ) is y y 0 f (x 0 )(x x 0 ), provided te f (x 0 ) exists (Terefore, f (x 0 ) is te slope of te tangent line at (x 0, y 0 )) Example Let f(x) 4x + 5x + 6 Find an equation of te line tangent to te curve y f(x) at (, 5) Compute f () by te definition (tat is, use te four step process) Solution: Step, write f( + ) 4( + ) + 5( + ) + 6 4( + + ) Step : Use algebra to single out te factor f( + ) f() ( ) (3 + 4) Step 3: Cancel te zero factor is te most important ting in tis step f(x + ) f(x) (3 + 4) Step 4: Let 0 in te resulted expression in Step 3 Terefore, te answer is f f(x + ) f(x) (x) lim lim y 5 3(x ) Example Let f(x) Find an equation of te line tangent to te curve y f(x) x + at te point were x Compute f () by te definition (tat is, use te four step process) Solution: Step, write f( + ) ( + )

4 Step : Use algebra to single out te factor f( + ) f() + + ( + ) ( + + ) + ( + + )( + ) (3 + )(3) Step 3: Cancel te zero factor is te most important in tis step f( + ) f() [ 3 + [ 3 (3 + )(3) (3 + )(3) Step 4: Let 0 in te resulted expression in Step 3 f f(x + ) f(x) (x) lim lim 0 0 (3 + )(3) (3 + 0)(3) 9 Terefore, te slope m 9 As y 0 f() 3, te answer is y 3 (x ) 9 Example 3 Let f(x) x + 5 Find an equation of te line tangent to te curve y f(x) at te point were x Compute f () by te definition (tat is, use te four step process) Solution: Step, write f( + ) ( + ) Step : Use algebra to single out te factor Here we need te identity (A + B)(A B) A B to get rid of te square root so tat can be factored out f(x + ) f(x) (9 + ) Step 3: Cancel te zero factor is te most important ting in tis step f(x + ) f(x) [ Step 4: Let 0 in te resulted expression in Step 3 f f(x + ) f(x) (x) lim lim Terefore, te slope m 3 As y 0 f() 3, te answer is y 3 (x )

5 Example 4: Let f(x) be given x (a) Use definition of te derivative to find f (x) (b) Find an equation of te line tangent to te curve y f(x) at te point were x 3 Solution: (a) Step : Compute f(x + ) (x + ) x + Step : Compute te difference f(x + ) f(x) (We must ave as a common factor in te result) f(x + ) f(x) x + x x (x )(x + ) x + (x )(x + ) (x ) (x + ) (x )(x + ) (x )(x + ) Step 3: Use te result in Step to form and simplify te ratio (te denomination must be cancelled wit te numerator ) f(x + ) f(x) (x )(x + ) (x )(x + ) Step 4: Find te answer by letting 0: f f(x + ) f(x) (x) lim lim 0 0 (x )(x + ) (x )(x + 0 ) (x ) (b) First compute f(3) /(3 ) At te point (3, ), te slope of tangent line is f (3) ( )/(3 ) / Terefore an equation of te tangent line is Example 5: Let f(x) x + be given y (x 3) (a) Use definition of te derivative to find f (x) (b) Find an equation of te line tangent to te curve y f(x) at te point were x Solution: (a) Step : Compute f(x + ) (x + ) + x + + 5

6 Step : Compute te difference f(x + ) f(x) (We must ave as a common factor in te result) We sall utilizes te formula (A + B)(A B) A B (wic, as we ave seen, is a useful tool to deal wit square roots) f(x + ) f(x) x + + x + x + x + + x + x + + x + + x + x + x + + x + x + + x + + x + + x + + x + x + + x + x + + x + + (x + ) (x + + ) x + + x + ( x + + x + + ) x + + x + ( x + + x + + ) Step 3: Use te result in Step to form and simplify te ratio (te denomination must be cancelled wit te numerator ) f(x + ) f(x) x + + x + ( x + + x + + ) x + + x + ( x + + x + + ) Step 4: Find te answer by letting 0: f (x) lim 0 f(x + ) f(x) lim 0 (b) First compute f( ) x + + x + ( x + + x + + ) x x + ( x + + x ) (x + ) x + ( ) + At te point (, ), te slope of tangent line is f ( ) ( + ) + Terefore an equation of te tangent line is y (x ( )) 6

Step 1: Set the equation equal to zero if the function lacks. Step 2: Subtract the constant term from both sides:

Step 1: Set the equation equal to zero if the function lacks. Step 2: Subtract the constant term from both sides: In most situations the quadratic equations such as: x 2 + 8x + 5, can be solved (factored) through the quadratic formula if factoring it out seems too hard. However, some of these problems may be solved

More information

Instantaneous Rate of Change:

Instantaneous Rate of Change: Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

More information

2 Limits and Derivatives

2 Limits and Derivatives 2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Tangent Lines and Rates of Change

Tangent Lines and Rates of Change Tangent Lines and Rates of Cange 9-2-2005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims

More information

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q = Lecture 6 : Derivatives and Rates of Cange In tis section we return to te problem of finding te equation of a tangent line to a curve, y f(x) If P (a, f(a)) is a point on te curve y f(x) and Q(x, f(x))

More information

Definition of derivative

Definition of derivative Definition of derivative Contents 1. Slope-The Concept 2. Slope of a curve 3. Derivative-The Concept 4. Illustration of Example 5. Definition of Derivative 6. Example 7. Extension of the idea 8. Example

More information

Derivatives Math 120 Calculus I D Joyce, Fall 2013

Derivatives Math 120 Calculus I D Joyce, Fall 2013 Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te

More information

6 Rational Inequalities, (In)equalities with Absolute value; Exponents and Logarithms

6 Rational Inequalities, (In)equalities with Absolute value; Exponents and Logarithms AAU - Business Mathematics I Lecture #6, March 16, 2009 6 Rational Inequalities, (In)equalities with Absolute value; Exponents and Logarithms 6.1 Rational Inequalities: x + 1 x 3 > 1, x + 1 x 2 3x + 5

More information

Calculus Card Matching

Calculus Card Matching Card Matching Card Matching A Game of Matching Functions Description Give each group of students a packet of cards. Students work as a group to match the cards, by thinking about their card and what information

More information

5.4 The Quadratic Formula

5.4 The Quadratic Formula Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12)

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

4.1. COMPLEX NUMBERS

4.1. COMPLEX NUMBERS 4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers

More information

ACT Math Facts & Formulas

ACT Math Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as

More information

SAT Subject Math Level 1 Facts & Formulas

SAT Subject Math Level 1 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

More information

f(a + h) f(a) f (a) = lim

f(a + h) f(a) f (a) = lim Lecture 7 : Derivative AS a Function In te previous section we defined te derivative of a function f at a number a (wen te function f is defined in an open interval containing a) to be f (a) 0 f(a + )

More information

5. Factoring by the QF method

5. Factoring by the QF method 5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

More information

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

More information

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

More information

Similar interpretations can be made for total revenue and total profit functions.

Similar interpretations can be made for total revenue and total profit functions. EXERCISE 3-7 Tings to remember: 1. MARGINAL COST, REVENUE, AND PROFIT If is te number of units of a product produced in some time interval, ten: Total Cost C() Marginal Cost C'() Total Revenue R() Marginal

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

Quadratics - Graphs of Quadratics

Quadratics - Graphs of Quadratics 9.11 Quadratics - Graphs of Quadratics Objective: Graph quadratic equations using the vertex, x-intercepts, and y-intercept. Just as we drew pictures of the solutions for lines or linear equations, we

More information

Math 113 HW #5 Solutions

Math 113 HW #5 Solutions Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

More information

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen A. GENERALITIES. When a given quadratic equation can be factored, there are 2 best methods

More information

2013 MBA Jump Start Program

2013 MBA Jump Start Program 2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

More information

SAT Math Must-Know Facts & Formulas

SAT Math Must-Know Facts & Formulas SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Section 3.1 Quadratic Functions and Models

Section 3.1 Quadratic Functions and Models Section 3.1 Quadratic Functions and Models DEFINITION: A quadratic function is a function f of the form fx) = ax 2 +bx+c where a,b, and c are real numbers and a 0. Graphing Quadratic Functions Using the

More information

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

More information

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x). .7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Verifying Numerical Convergence Rates

Verifying Numerical Convergence Rates 1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

More information

Partial Fractions Examples

Partial Fractions Examples Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

More information

Functions and Equations

Functions and Equations Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

More information

Springfield Technical Community College School of Mathematics, Sciences & Engineering Transfer

Springfield Technical Community College School of Mathematics, Sciences & Engineering Transfer Springfield Technical Community College School of Mathematics, Sciences & Engineering Transfer Department: Mathematics Course Title: Algebra 2 Course Number: MAT-097 Semester: Fall 2015 Credits: 3 Non-Graduation

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

Mathematics Higher Tier, Algebraic Fractions

Mathematics Higher Tier, Algebraic Fractions These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are a school or an organisation and would like to purchase these solutions please contact Chatterton

More information

The EOQ Inventory Formula

The EOQ Inventory Formula Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

x 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x

x 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

More information

CHAPTER 8: DIFFERENTIAL CALCULUS

CHAPTER 8: DIFFERENTIAL CALCULUS CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.

Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule. Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,

More information

Algebra II Semester Exam Review Sheet

Algebra II Semester Exam Review Sheet Name: Class: Date: ID: A Algebra II Semester Exam Review Sheet 1. Translate the point (2, 3) left 2 units and up 3 units. Give the coordinates of the translated point. 2. Use a table to translate the graph

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

ModuMath Algebra Lessons

ModuMath Algebra Lessons ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

More information

Answers to Basic Algebra Review

Answers to Basic Algebra Review Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

More information

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

More information

1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N.

1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N. CHAPTER 3: EXPONENTS AND POWER FUNCTIONS 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N. For example: In general, if

More information

Equations and Inequalities

Equations and Inequalities Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

More information

Newton s Method. f(x) = x 3 + 2x 2 3x 6. Figure 1: Graph of f(x) = x 3 + 2x 2 3x 6

Newton s Method. f(x) = x 3 + 2x 2 3x 6. Figure 1: Graph of f(x) = x 3 + 2x 2 3x 6 Math 151 Fall 2009 Newton s Method Task: Find the x-intercept of a function, that is, solve f(x) = 0 for a given function. Newton s method is a numerical method. The result will be an approximate solution.

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa

Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,

More information

Solutions for 2015 Algebra II with Trigonometry Exam Written by Ashley Johnson and Miranda Bowie, University of North Alabama

Solutions for 2015 Algebra II with Trigonometry Exam Written by Ashley Johnson and Miranda Bowie, University of North Alabama Solutions for 0 Algebra II with Trigonometry Exam Written by Ashley Johnson and Miranda Bowie, University of North Alabama. For f(x = 6x 4(x +, find f(. Solution: The notation f( tells us to evaluate the

More information

Multiplicity. Chapter 6

Multiplicity. Chapter 6 Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

More information

FOIL FACTORING. Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4.

FOIL FACTORING. Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4. FOIL FACTORING Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4. First we take the 3 rd term (in this case 4) and find the factors of it. 4=1x4 4=2x2 Now

More information

ALGEBRA I / ALGEBRA I SUPPORT

ALGEBRA I / ALGEBRA I SUPPORT Suggested Sequence: CONCEPT MAP ALGEBRA I / ALGEBRA I SUPPORT August 2011 1. Foundations for Algebra 2. Solving Equations 3. Solving Inequalities 4. An Introduction to Functions 5. Linear Functions 6.

More information

SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD

SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD A quadratic equation in one variable has as standard form: ax^2 + bx + c = 0. Solving it means finding the values of x that make the equation true.

More information

MEI STRUCTURED MATHEMATICS INTRODUCTION TO ADVANCED MATHEMATICS, C1. Practice Paper C1-C

MEI STRUCTURED MATHEMATICS INTRODUCTION TO ADVANCED MATHEMATICS, C1. Practice Paper C1-C MEI Mathematics in Education and Industry MEI STRUCTURED MATHEMATICS INTRODUCTION TO ADVANCED MATHEMATICS, C Practice Paper C-C Additional materials: Answer booklet/paper Graph paper MEI Examination formulae

More information

LOCUS Definition: The set of all points (and only those points) which satisfy the given geometrical condition(s) (or properties) is called a locus. Eg. The set of points in a plane which are at a constant

More information

The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result.

The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, do the function f to x, then do g to the result. 30 5.6 The chain rule The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result." Example. g(x) = x 2 and f(x) = (3x+1).

More information

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved. 1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

More information

MATH 21. College Algebra 1 Lecture Notes

MATH 21. College Algebra 1 Lecture Notes MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

More information

2.1: The Derivative and the Tangent Line Problem

2.1: The Derivative and the Tangent Line Problem .1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position

More information

SAT Math Facts & Formulas

SAT Math Facts & Formulas Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:

More information

Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework

Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

More information

Lyman Memorial High School. Pre-Calculus Prerequisite Packet. Name:

Lyman Memorial High School. Pre-Calculus Prerequisite Packet. Name: Lyman Memorial High School Pre-Calculus Prerequisite Packet Name: Dear Pre-Calculus Students, Within this packet you will find mathematical concepts and skills covered in Algebra I, II and Geometry. These

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by

More information

Lecture 7 : Inequalities 2.5

Lecture 7 : Inequalities 2.5 3 Lecture 7 : Inequalities.5 Sometimes a problem may require us to find all numbers which satisfy an inequality. An inequality is written like an equation, except the equals sign is replaced by one of

More information

6. Differentiating the exponential and logarithm functions

6. Differentiating the exponential and logarithm functions 1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose

More information

Projective Geometry. Projective Geometry

Projective Geometry. Projective Geometry Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,

More information

Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula

Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula An equation is a mathematical statement that two mathematical expressions are equal For example the statement 1 + 2 = 3 is read as

More information

Variance and Standard Deviation. Variance = ( X X mean ) 2. Symbols. Created 2007 By Michael Worthington Elizabeth City State University

Variance and Standard Deviation. Variance = ( X X mean ) 2. Symbols. Created 2007 By Michael Worthington Elizabeth City State University Variance and Standard Deviation Created 2 By Michael Worthington Elizabeth City State University Variance = ( mean ) 2 The mean ( average) is between the largest and the least observations Subtracting

More information

Introduction to Calculus

Introduction to Calculus Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative

More information

Items related to expected use of graphing technology appear in bold italics.

Items related to expected use of graphing technology appear in bold italics. - 1 - Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing

More information

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

More information

x n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.

x n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent. Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense

More information

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

More information

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

More information

Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

4-6 The Quadratic Formula and the Discriminant. Solve each equation by using the Quadratic Formula.

4-6 The Quadratic Formula and the Discriminant. Solve each equation by using the Quadratic Formula. 2. Solve each equation by using the Quadratic Formula. Write the equation in the form ax 2 + bx + c = 0 and identify a, b, and c. Substitute these values into the Quadratic Formula and simplify. esolutions

More information