M OTION. Chapter2 OUTLINE GOALS


 Virginia Ball
 1 years ago
 Views:
Transcription
1 Chapter2 M OTION OUTLINE Describing Motion 2.1 Speed 2.2 Vectors 2.3 Acceleration 2.4 Distance, Time, and Acceleration Acceleration of Gravity 2.5 Free Fall 2.6 Air Resistence Force and Motion 2.7 First Law of Motion 2.8 Mass 2.9 Second Law of Motion 2.10 Mass and Weight 2.11 Third Law of Motion Gravitation 2.12 Circular Motion 2.13 Newton s Law of Gravity 2.14 Artificial Satellites GOALS 1. Distinguish between instantaneous and average speeds. 2. Use the formula v = d/t to solve problems that involve distance, time, and speed. 3. Distinguish between scalar and vector quantities and give several examples of each. 4. Use the Pythagorean theorem to add two vector quantities of the same kind that act as right angles to each other. 5. Define acceleration and find the acceleration of an object whose speed is changing. 6. Use the formula v 1 = v 2 + at to solve problems that involve speed, acceleration, and time Use the formula d = v1t + ½ at to solve problems that involve distance, time, speed, and acceleration. 8. Explain what is meant by the acceleration of gravity. 9. Describe the effect of air resistance on falling objects. 10. Separate the velocity of an object into vertical and horizontal components in order to determine its motion. 11. Define force and indicate its relationship to the first law of motion. 12. Discuss the significance of the second law of motion, F = ma. 13. Distinguish between mass and weight and find the weight of an object of given mass. 14. Use the third law of motion to relate action and reaction forces. 15. Explain the significance of centripetal force in motion along a curved path. 16. Relate the centripetal force on an object moving in a circle to its mass, speed, and the radius of the circle. 17. State Newton's law of gravity and describe how gravitational forces vary with distance. 18. Account for the ability of a satellite to orbit the earth without either falling to the ground or flying off into space. 19. Define escape speed. 14
2 CHAPTER SUMMARY This chapter discusses the concept of motion, both straightline and circular. Motion is described in terms of speed, velocity, and acceleration. Scalar quantities are differentiated from vector quantities, and the use of vectors to represent vector quantities is presented. The downward acceleration due to gravity is shown to influence the motion of objects in free fall near the earth's surface. The behavior of moving bodies is summarized by Newton's three laws of motion. The concept of inertia is developed in the first law of motion, and the relationship between force, mass, and acceleration is operationally defined by the second law of motion. Weight is defined as a force, and the relationship between weight and mass is described operationally in terms of the second law. The concept that forces come in pairs consisting of an action force and a reaction force is developed in the third law of motion. Circular motion is shown to be the result of centripetal force acting upon a moving body. CHAPTER OUTLINE 21. Speed A. The speed of a moving object is the rate at which it covers distance: where v = speed, d = distance, and t = time. B. Average speed is the total distance traveled by an object divided by the time taken to travel that distance. C. Instantaneous speed is an object's speed at a given instant of time Vectors A. The magnitude of a quantity tells how large the quantity is. B. There are two types of quantities: 1. Scalar quantities have magnitude only. 2. Vector quantities have both magnitude and direction. C. Velocity is a vector quantity that includes both speed and direction. D. A vector can be represented by an arrowhead line whose length is proportional to the magnitude of some quantity and whose direction is that of the quantity Acceleration A. The acceleration of an object is the rate of change of its velocity and is a vector quantity. B. For straightline motion, average acceleration is the rate of change of speed: 15
3 where a = acceleration, t = time, v = final speed, and v = initial speed Distance, Time, and Acceleration f A. Speed and acceleration are defined quantities. B. Relating speed and acceleration to each other and to time (a measurable quantity) allows the formation of equations that can answer certain questions involving distance, time, and acceleration Free Fall A. The acceleration due to gravity (g) for objects in free fall at the earth's surface is m/s. 2 B. An object thrown horizontally has a vertical acceleration of 9.8 m/s and a constant horizontal velocity; its trajectory is a curved path. 2 C. An object thrown upward falls back to earth at an acceleration of 9.8 m/s and returns to its starting point with the same speed at which it was thrown. D. An object thrown downward has a final speed that is the sum of its original speed plus the increase in speed due to the acceleration of gravity. E. An object thrown upward at an angle to the ground follows a curved path called a parabola Air Resistance A. Air resistance prevents a falling object from reaching the full speed produced by the acceleration of gravity. B. Air resistance increases with the speed of a moving object. C. Terminal speed is the maximum speed a falling object obtains when the force due to downward acceleration of gravity is balanced by the upward force of air resistance. D. The terminal speed for any object depends on the object's size, shape, and mass First Law of Motion A. Isaac Newton formulated the three laws of motion. B. The first law of motion states: If no net force acts on it, an object at rest remains at rest and an object in motion remains in motion at a constant velocity. C. A force is any influence that can cause an object to be accelerated. D. Every acceleration can be traced to the action of a force. i 16
4 28. Mass A. Inertia is the apparent resistance an object offers to any change in its state of rest or motion. B. The mass of a body is the property of matter that manifests itself as inertia. 1. Mass may be thought of as a quantity of matter. 2. The greater an object's mass, the greater the object's inertia. C. The SI unit for mass is the kilogram (kg) Second Law of Motion A. Newton's second law of motion states: The net force on an object equals the product of the mass and the acceleration of the object. The direction of the force is the same as that of the acceleration. B. The second law of motion can be expressed in either of these ways: where a = acceleration, F = force, and m = mass, or where F = force, m = mass, and a = acceleration. C. The SI unit of force is the newton (N): 1 newton = 1 N = 1 (kg)(m/s 2 ) D. The pound (lb) is the unit of force in the British system of measurement: Mass and Weight 1 lb = 4.45 N (1 N = lb) A. The weight of an object is the force with which gravity pulls it toward the earth: w = mg where w = weight, m = mass, and g = acceleration of gravity (9.8 m/s ). 2 B. In the SI, mass rather than weight is normally specified. C. On earth, the weight of an object (but not its mass) can vary because the pull of gravity is not the same everywhere on earth. 17
5 211. Third Law of Motion A. The third law of motion states: When one object exerts a force on a second object, the second object exerts an equal force in the opposite direction on the first object. B. No force ever occurs singly; for every action force there is an equal but opposite reaction force: 1. The action force is the force the first object exerts on the second. 2. The reaction force is the force the second object exerts on the first Circular Motion A. Centripetal force is the inward force exerted on an object to keep it moving in a curved path: where F c = centripetal force, m = mass, v = speed, and r = radius of circular path. 1. The greater the object's mass, the greater the centripetal force. 2. The faster the object moves, the greater the centripetal force. 3. The smaller the circle (curved path) of the object, the greater the centripetal force. B. Highway curves are banked so that the horizontal component of the reaction force the tilted road exerts on the car provides the centripetal force needed to keep the car from skidding Newton's Law of Gravity A. Newton used Galileo's work on falling bodies and Kepler's laws of planetary motion to develop his law of gravity. B. Newton's law of gravity states: Every object in the universe attracts every other object with a force proportional to both of their masses and inversely proportional to the square of the distance between them where F = force, G = gravitational constant (6.670 x 10 N m /kg ), m 1 = mass of object 1, m 2 = mass of object 2, and R = distance between objects. C. The force of gravitation drops off rapidly as the distance between two objects increases. D. The center of mass of an object is the point where the mass of the object appears to be concentrated; for a uniform sphere, the center of mass is its geometric center. 18
6 214. Artificial Satellites A. The world's first artificial satellite was Sputnik I, launched in 1957 by the Soviet Union. B. A satellite in a geostationary orbit remains in place indefinitely over a particular location on the earth. C. To maintain a circular orbit, the centripetal force on the satellite must be equal to the gravitational force on the satellite. D. The escape speed is the speed required by an object to leave the gravitational influence of an astronomical body; for earth, this speed is about 40,000 km/h. KEY TERMS AND CONCEPTS The questions in this section will help you review the key terms and concepts from Chapter 2. Multiple Choice Circle the best answer for each of the following questions. 1. The rate at which an object travels a certain distance is known as a. velocity b. speed c. momentum d. acceleration 2. While driving between Pittsburgh and Chicago, the driver of the car looks at the car's speedometer and notes a speed of 50 miles/hour. The speedometer is indicating the car's a. average speed b. velocity c. terminal speed d. instantaneous speed 3. Which one of the following represents a vector quantity? a. 750 miles/h b. 60 cycles/second c. 220 volts d. 55 km/h toward the north 4. The acceleration due to gravity at the earth's surface is a. 32 m/s 2 b. 9.8 m/s 2 c. 1.6 m/s 2 d. 5.4 m/s 2 19
7 5. Newton's first law of motion deals with a. force b. acceleration c. weight d. inertia 6. A tennis player hits a tennis ball with a tennis racquet. If the force supplied by the racquet to the ball is the action force, what would be the reaction force? a. the force transmitted from the racquet to the tennis player's arm b. the resistance of air molecules on the tennis ball c. the force exerted by the tennis ball on the racquet d. the force exerted by the tennis ball on the opposing player's racquet 7. A bowling ball and a marble are dropped at the same time in a vacuum chamber. Which one of the following statements correctly describes the results? a. The bowling ball will land first. b. The acceleration of the bowling ball is greater than that of the marble. c. Both have the same speed upon landing. d. The force of impact will be the same for both the bowling ball and the marble. Refer to the above drawing to answer questions 8 and 9. A ball is thrown upward and is shown at several positions along its trajectory. 8. The speed of the ball at point C is a. greater than at point A b. at its maximum c. zero d. 9.8 m/s 20
8 9. The time interval between each change in position of the ball is a. greatest between points F and G b. at a minimum between points B and C and points C and D c. shortest between points F and G d. approximately equal Refer to the above drawing to answer questions 10 through Given that F c = centripetal force, v = speed, m = mass, and r = radius, doubling the value of m would a. reduce the value of F c by 1/2 b. double the value of F c c. quadruple the value for F c d. have no effect on the value of F c 11. Doubling the value of v would a. reduce the value of F c by 1/2 b. quadruple the value of F c c. double the value of F c d. have no effect on the value of F c 12. Doubling the value of r would a. double the value of F c b. reduce the value of F c by 1/2 c. quadruple the value of F c d. have no effect on the value of F c 21
9 Refer to the above drawing to answer questions 13 and The string a. provides gravitational force b. represents the force of inertia c. represents the center of mass d. provides centripetal force 14. The centripetal force vector F c is always a. tangent to the circle b. directed toward the center of the circle c. directed vertically toward the earth d. directed away from the center of the circle Refer to the above drawing to answer question 15. The car was originally at rest. 15. The best explanation for the position of the passengers within the car is a. the car's sudden start throws the passengers back into their seats b. the passenger's inertia tends to keep them in their original positions as the car (and the seats) move forward c. the car's forward acceleration is balanced by the opposing force of the passengers moving backward in their seats d. the car's seats broke at the moment of acceleration 22
10 True or False Decide whether each statement is true or false. If false, briefly state why it is false or correct the statement to make it true. The first question has been completed as an example. FALSE 1. Speed is an example of a vector quantity. The speed at which an object moves reveals how fast the object is going, not its direction. 2. The SI unit of force is the newton. 3. Scalar quantities require only a number and a unit to be completely specified. 4. Assuming there is no wind or air friction, a ball thrown upward at a certain speed will return to its starting point with the same speed. 5. The speed or direction of any moving object stays unchanged unless a net force acts upon the object. 6. Inertia is the force that resists any change in an object s state of rest or motion. 7. The direction of acceleration of a moving object is always the same as the direction of the net force(s) acting on the object. 8. Your weight remains constant no matter where you are on the earth's surface. 9. The force that has to be applied to an object to make it move in a curved path is called centrifugal force. 10. If the distance between a planet and its sun were tripled, the gravitational force applied on the planet by its sun would drop to oneninth of its original amount. 23
11 Fill in the Blank Complete the following statements by filling in the missing term. 1. Speed is equal to distance divided by. 2. Distance is equal to the product of and time. 3. is equal to distance divided by speed. 4. According to Newton's second law of motion, acceleration is equal to divided by mass. 5. Force is equal to mass times. 6. is equal to mass times the acceleration of gravity. 7. The curved path that an object takes when it is thrown upward at an angle to the ground is called a(n). 8. A(n) may be represented by an arrowed line that represents the magnitude and direction of a quantity. 9. The is the British system unit of force. 10. The vector quantity that includes both speed and direction is called. 24
12 Matching Match the terms on the left with their definitions on the right. 1. force 2. mass 3. Newton s law of gravity 4. inertia 5. vector quantity 6. Newton s first law of motion 7. newton 8. centripetal force 9. scalar quantity 10. Newton s third law of motion a. inward force on an object moving in a curved path b. resistance an object offers to any change in its state of rest or motion c. states that, if no net force acts on it, every object continues in its state of rest or uniform motion in a straight line. d. states that when one object exerts a force on a second object, the second object exerts an equal but opposite force on the first. e. has both magnitude and direction f. states that every object in the universe attracts every other object with a force directly proportional to both their masses and inversely proportional to the square of the distance between them. g. any influence that can cause an object to be accelerated. h. has magnitude only i. SI unit for power j. quantity of matter in an object SOLVED PROBLEMS Study the following solved example problems as they will provide insight into solving the problems listed at the end of Chapter 2 in The Physical Universe. Review the mathematics refresher in the text if you are unfamiliar with the basic mathematical operations presented in these examples. Example 21 Oh no! An enraged bull 48 m due north has spotted you in an open field and has decided to charge you. Your only chance of escape is to climb up a tree 24 m due south of you. The bull makes its charge at the exact moment you run toward the tree. If the bull is running toward you at 12 m/s and you run at 6 m/s, will you reach the safety of the tree before the bull gores you? Solution Both you and the pursuing bull are moving toward the tree. Because the bull was 48 m north of you, it has to cover a distance of 72 m to reach the tree. 25
13 To determine how long it will take the bull to reach the tree, use the formula for time. Substituting for d and v and dividing, we get Note that the m units cancel, leaving the answer expressed in units of time (s). Now let s find out how long it takes you to reach the tree and safety. Assuming you are good at climbing trees, you are safe. Example 22 A 1240kg car goes from 16 m/s to 26 m/s in 20 s. What is the average force acting upon it? Solution To determine the average force acting on the car, we use Newton's second law of motion expressed as: F = ma We are given the car's mass (1240 kg), but not its acceleration. To determine the car's acceleration, we can use the formula for acceleration: Substituting for v, v, and t, we get: f i 26
14 We can now substitute the quantities for mass and acceleration into the formula for force and solve the problem. Example F = ma = (1240 kg)(0.5 m/s ) = 620 kg m/s = 620 N A traditional Scottish highland game is the hammer throw in which the athlete spins the hammer in a circular motion building momentum prior to releasing the hammer. If the head of the hammer weighs 6.7 kg and is moving at 6 m/s in a circular arc of 1.2 m radius, how much force must the athlete exert on the handle of the hammer to prevent it from flying out of his hands? Ignore the mass of the hammer s light wood handle. This is a centripetal force problem, and to solve it, we use the formula for centripetal force. Substituting the quantities given to us in the problem, we get WEB LINKS This interactive web site illustrates the concept of velocity composition by showing the velocity vectors relevant to the motion of a boat on a river: Investigate the relationship between force and motion by guiding a race car around an oval track in the least number of moves: Control the trajectories of a cannonball at this interactive web site: Study projectile orbits and satellite orbits at this interactive web site: 27
15 ANSWER KEY Multiple Choice 1. b 2. d 3. d 4. b 5. d 6. c 7. c 8. c 9. d 10. b 11. b 12. b 13. d 14. b 15. b True or False 1. False. See explanatory notes given in the example. 2. True 3. True 4. True 5. True 6. False. Inertia is not an actual force. A force is any influence that can change the speed or direction of motion of an object. Inertia is the resistance offered by an object to any change in its state of rest or motion. 7. True 8. False. The pull of gravity is not exactly the same everywhere on earth; therefore, a person's weight will vary depending upon the person's location. 9. False. The force that has to be applied to make an object move in a curved path is called centripetal force. 10. True Fill in the Blank 1. time 6. Weight 2. speed 7. parabola 3. Time 8. vector 4. force 9. pound 5. acceleration 10. velocity Matching 1. g 2. j 3. f 4. b 5. e 6. c 7. i 8. a 9. h 10. d 28
Measurements of Speed. Speed. v = d t. PowerPoint Lectures to accompany Physical Science, 6e
PowerPoint Lectures to accompany Physical Science, 6e Chapter 2 Motion Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Motion is.. A change
More informationConcept Review. Physics 1
Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or
More informationLesson 5 Rotational and Projectile Motion
Lesson 5 Rotational and Projectile Motion Introduction: Connecting Your Learning The previous lesson discussed momentum and energy. This lesson explores rotational and circular motion as well as the particular
More informationJames T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning
James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position
More informationPS5.1 Explain the relationship among distance, time, direction, and the velocity of an object.
PS5.1 Explain the relationship among distance, time, direction, and the velocity of an object. It is essential for students to Understand Distance and Displacement: Distance is a measure of how far an
More informationNEWTON S LAWS OF MOTION
NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied
More information2.2 NEWTON S LAWS OF MOTION
2.2 NEWTON S LAWS OF MOTION Sir Isaac Newton (16421727) made a systematic study of motion and extended the ideas of Galileo (15641642). He summed up Galileo s observation in his three laws of motion
More informationChapter 3: Force and Motion
Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple Choice and the oddnumbered questions on Exercises sections at the end of the chapter. In
More information2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?
Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140
More informationCOURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion
CHAPTER 13  FORCES COURSE CONTENT Introduction Newton s Laws of Motion Definition of a Force Effect of Forces Measurement of forces Examples of Forces A force is just a push or pull. Examples: an object
More informationPHY1 Review for Exam 5
Topics 1. Uniform circular Motion a. Centripetal acceleration b. Centripetal force c. Horizontal motion d. ertical motion e. Circular motion with an angle 2. Universal gravitation a. Gravitational force
More informationMOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion
MOTION (Chapter 2) https://www.youtube.com/watch?v=oxchhqldbe Student Learning Objectives Compare and contrast terms used to describe motion Analyze circular and parabolic motion PHYSICS:THE MOST FUNDAMENTAL
More informationChapter 4 Newton s Laws: Explaining Motion
Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!
More informationGravitation. Gravitation
1 Gravitation Newton s observations A constant center seeking force is required to keep an object moving along a circular path. You know that the moon orbits the earth and hence there should be a force
More informationPractice Test (Chapter 10)
Practice Test (Chapter 10) 1) According to Kepler's laws, the paths of planets about the sun are A) parabolas. B) circles. C) straight lines. D) ellipses. Answer: D 2) Which of the following is not a vector
More informationUnderstanding the motion of the Universe. Motion, Force, and Gravity
Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.
More information356 CHAPTER 12 Bob Daemmrich
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationPHYSICS MIDTERM REVIEW
1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If
More informationTHE NATURE OF FORCES Forces can be divided into two categories: contact forces and noncontact forces.
SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems Xplanation
More informationFirst Semester Learning Targets
First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes
More information5. Universal Laws of Motion
5. Universal Laws of Motion If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (1642 1727) Physicist 5.1 Describing Motion: Examples from Daily
More informationChapter 5: Circular Motion, the Planets, and Gravity
Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but
More informationNewton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009
Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined
More informationCh.4 Forces. Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66
Ch.4 Forces Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66 Forces Forces  vector quantity that changes the velocity
More information5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.
Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straightline motion linear motion. Now we extend these ideas to
More informationDescribed by Isaac Newton
Described by Isaac Newton States observed relationships between motion and forces 3 statements cover aspects of motion for single objects and for objects interacting with another object An object at rest
More informationLecture 5: Newton s Laws. Astronomy 111
Lecture 5: Newton s Laws Astronomy 111 Isaac Newton (16431727): English Discovered: three laws of motion, one law of universal gravitation. Newton s great book: Newton s laws are universal in scope,
More informationName Period Chapter 10 Study Guide
Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces
More information4 Linear Motion. You can describe the motion of an object by its position, speed, direction, and acceleration.
You can describe the motion of an object by its position, speed, direction, and acceleration. 4.1 Motion Is Relative An object is moving if its position relative to a fixed point is changing. 4.1 Motion
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More information4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing.
4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion
More informationNotes: Mechanics. The Nature of Force, Motion & Energy
Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force The sum (addition) of all the forces acting on an
More informationIII. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument
III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug
More informationIs velocity constant? A = πr 2
Physics R Date: Circular Motion & Gravity Uniform Circular Motion What does uniform mean? Equations: (on reference table) Uniform circular motion means circular motion with C = 2πr = Is velocity constant?
More informationMaking Sense of the Universe: Understanding Motion, Energy, and Gravity
Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1. Newton s Laws 2. Conservation Laws Energy Angular momentum 3. Gravity Review from last time Ancient Greeks: Ptolemy; the geocentric
More informationNewton s Laws of Motion
Newton s Laws of Motion FIZ101E Kazım Yavuz Ekşi My contact details: Name: Kazım Yavuz Ekşi Email: eksi@itu.edu.tr Notice: Only emails from your ITU account are responded. Office hour: Wednesday 10.0012.00
More informationConceptual Physics Fundamentals
Conceptual Physics Fundamentals Chapter 4: NEWTON S LAWS OF MOTION Newton s Laws of Motion I was only a scalar until you came along and gave me direction. Barbara Wolfe This lecture will help you understand:
More informationSTAAR Science Tutorial 25 TEK 8.6C: Newton s Laws
Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of actionreaction
More informationBHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.
BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (15641642): 1 st true scientist and 1 st person to use
More informationNewton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.
Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:
More informationMore of Newton s Laws
More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 1921, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so
More informationb. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.
I. What is Motion? a. Motion  is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far
More informationChapter 06 Multiformat Test
Name: Class: Date: Chapter 06 Multiformat Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. The inertia
More informationSection Review Answers. Chapter 12
Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences
More informationKey for Physics first semester final (questions , save honorable ones)
Key for Physics first semester final (questions 20512, save honorable ones) 20. Reaction time only appears in the equation for reaction distance and therefore braking distance., which means it only affects
More informationChapter 12  Forces and Motion
Chapter 12  Forces and Motion A. What is a force? 1. It is a push or pull. 2. Force can cause resting objects to move. 3. Force can cause acceleration by changing the object s speed or direction. 4. Newtons
More informationNewton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationPhysics 100 prac exam2
Physics 100 prac exam2 Student: 1. Earth's gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is B. small but not zero. C. billions and billions
More informationPhysics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
More information13 Universal Gravitation. Everything pulls on everything else.
Everything pulls on everything else. Gravity was not discovered by Isaac Newton. What Newton discovered, prompted by a falling apple, was that gravity is a universal force that it is not unique to Earth,
More informationChapter 6. Circular Motion, Orbits, and Gravity. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition
Chapter 6 Circular Motion, Orbits, and Gravity PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 6 Circular Motion, Orbits, and Gravity Slide 62 Slide 63 Slide 64 Slide 65
More informationCatapult Engineering Pilot Workshop. LA Tech STEP 20072008
Catapult Engineering Pilot Workshop LA Tech STEP 20072008 Some Background Info Galileo Galilei (15641642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling
More informationKEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full FirstYear Course
Introductory Physics, High School Learning Standards for a Full FirstYear Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationThe Gravitational Field
The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec
More informationChapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.
Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More information4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity
Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning:! How do we describe motion?! How is mass different from weight? How do we
More informationDynamics Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate?
Dynamics Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate? What makes an object move in a circle? Force A Force is simply a push
More informationSummary Notes. to avoid confusion it is better to write this formula in words. time
National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)
More informationUnderstanding the motion of the Universe. Motion, Force, and Gravity
Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.
More informationUnification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky?
October 19, 2015 Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? Key Words Newton s Laws of motion, and Newton s law of universal gravitation:
More informationPhysics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)
Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions
More informationRotational Mechanics  1
Rotational Mechanics  1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360
More informationQUESTIONS : CHAPTER5: LAWS OF MOTION
QUESTIONS : CHAPTER5: LAWS OF MOTION 1. What is Aristotle s fallacy? 2. State Aristotlean law of motion 3. Why uniformly moving body comes to rest? 4. What is uniform motion? 5. Who discovered Aristotlean
More informationName Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is
CHAPTER 4 MOTION AND FORCES SECTION 4 1 The Nature of Force and Motion (pages 116121) This section explains how balanced and unbalanced forces are related to the motion of an object. It also explains
More informationIntroduction to Gravity and Orbits. Isaac Newton. Newton s Laws of Motion
Introduction to Gravity and Orbits Isaac Newton Born in England in 1642 Invented calculus in early twenties Finally published work in gravity in 1687 The Principia Newton s Laws of Motion 1: An object
More informationPhysics Midterm Review. MultipleChoice Questions
Physics Midterm Review MultipleChoice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves
More informationThe Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture
Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity
More informationDescribe the relationship between gravitational force and distance as shown in the diagram.
Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read
More informationName: Date: 7. A child is riding a bike and skids to a stop. What happens to their kinetic energy? Page 1
Name: Date: 1. Driving down the road, you hit an insect. How does the force your car exerts on the insect compare to the force the insect exerts on the car? A) The insect exerts no force on the car B)
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationLesson 04: Newton s laws of motion
www.scimsacademy.com Lesson 04: Newton s laws of motion If you are not familiar with the basics of calculus and vectors, please read our freely available lessons on these topics, before reading this lesson.
More informationMotion in Two Dimensions
Motion in Two Dimensions 1. The position vector at t i is r i and the position vector at t f is r f. The average velocity of the particle during the time interval is a.!!! ri + rf v = 2 b.!!! ri rf v =
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationPSI AP Physics B Kinematics MultipleChoice Questions
PSI AP Physics B Kinematics MultipleChoice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationBROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Midterm test 26 October 2013 Instructor: S. D Agostino
BROCK UNIVERSITY PHYS 1P21/1P91 Solutions to Midterm test 26 October 2013 Instructor: S. D Agostino 1. [10 marks] Clearly indicate whether each statement is TRUE or FALSE. Then provide a clear, brief,
More informationISAAC NEWTON. Newton s laws of motion. Force. Inertia
ISAAC NEWTON Newton s laws of motion Force Inertia Now that we know how to describe motion, we are ready to learn what causes it. Newton was the person who solved this problem for us, writing three laws
More informationChapter 4. Motion in two & three dimensions
Chapter 4 Motion in two & three dimensions 4.2 Position and Displacement Position The position of a particle can be described by a position vector, with respect to a reference origin. Displacement The
More information1206EL  Concepts in Physics. Friday, September 18th
1206EL  Concepts in Physics Friday, September 18th Notes There is a WebCT course for students on September 21st More information on library webpage Newton s second law Newton's first law of motion predicts
More informationChapter 13. Gravitation
Chapter 13 Gravitation 13.2 Newton s Law of Gravitation In vector notation: Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G = 6.67
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationtps Q: If the Earth were located at 0.5 AU instead of 1 AU, how would the Sun s gravitational force on Earth change?
tps Q: If the Earth were located at 0.5 AU instead of 1 AU, how would the Sun s gravitational force on Earth change? A. It would be onefourth as strong. B. It would be onehalf as strong. C. It would
More informationPHYS 117 Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
PHYS 117 Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels
More informationPhysics 101. Chapter 5: Newton s Third Law
Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. You can
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationPrinciples and Laws of Motion
2009 19 minutes Teacher Notes: Ian Walter DipAppChem; TTTC; GDipEdAdmin; MEdAdmin (part) Program Synopsis This program begins by looking at the different types of motion all around us. Forces that cause
More informationForces. Lecturer: Professor Stephen T. Thornton
Forces Lecturer: Professor Stephen T. Thornton Reading Quiz: Which of Newton s laws refers to an action and a reaction acceleration? A) First law. B) Second law. C) Third law. D) This is a trick question.
More informationChapter 4. Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact. Actionatadistance forces do not require contact and
More informationChapter 13  Gravity. David J. Starling Penn State Hazleton Fall Chapter 13  Gravity. Objectives (Ch 13) Newton s Law of Gravitation
The moon is essentially gray, no color. It looks like plaster of Paris, like dirty beach sand with lots of footprints in it. James A. Lovell (from the Apollo 13 mission) David J. Starling Penn State Hazleton
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationSection 3 Newton s Laws of Motion
Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity
More informationPhysics Exam Q1 Exam, Part A Samples
Physics Exam Q1 Exam, Part A Samples 1. An object starts from rest and accelerates uniformly down an incline. If the object reaches a speed of 40 meters per second in 5 seconds, its average speed is (A)
More informationAST 101 Lecture 7. Newton s Laws and the Nature of Matter
AST 101 Lecture 7 Newton s Laws and the Nature of Matter The Nature of Matter Democritus (c. 470380 BCE) posited that matter was composed of atoms Atoms: particles that can not be further subdivided 4
More informationChapter 4. Forces and Newton s Laws of Motion
Chapter 4 Forces and Newton s Laws of Motion 4.1 The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact. Actionatadistance forces do not require contact
More information4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
More informationConceptual Physics 11 th Edition
Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces
More information