Chapter 5: Circular Motion, the Planets, and Gravity

Size: px
Start display at page:

Download "Chapter 5: Circular Motion, the Planets, and Gravity"

Transcription

1 Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but not zero. C. billions and billions of tons. D. 120 lbs. 2. Which planets exhibit retrograde motion, that is, periodically appear to reverse their direction of motion across the sky? A. Mars, Mercury, and Venus B. Mars, Jupiter, and Venus C. Mars, Jupiter, and Saturn D. Venus, Saturn, and Jupiter E. All of the above. 3. Astronauts orbiting the Earth in the space shuttle experienced weightlessness because A. they, and all things with them, were in free fall. B. the Earth s gravity does not extend that far. C. gravity is diluted because the space shuttle is spinning. D. the shuttle shielded them from the Earth s gravity. 4. A rock that weighs 100 lb on Earth is taken to the Moon. As strange as it may seem, it is just as difficult to lift the 100 lb rock on the Moon as on the Earth. This is because A. the mass of the rock is independent of gravity. B. the weight of the rock is independent of gravity. C. Nonsense! The rock is more easily lifted on the Moon. 5. For reasons known only to them, a group of extraterrestrials offers you your choice of three gold ingots. One weighs 10 lb on Earth, the second weighs 10 lb on Jupiter, and the third weighs 10 lb on the Moon. To get the most gold, you should choose the ingot that weighs 10 lb on A. Earth. B. the Moon. C. Jupiter. D. No difference: 10 lbs is 10 lbs, wherever you go. 6. An object weighs 20 Newtons on Earth. What is its approximate mass? A. 2 kg. B. 20 g. C. 10 kg. D. 196 kg.

2 E. 640 kg. 7. An object undergoes circular motion. Which pair of quantities MUST change? A. the object s speed and acceleration. B. the object s velocity and acceleration. C. the object s mass and speed. D. all of the above. 8. Which of the following is NOT a vector? A. acceleration B. weight C. mass D. velocity E. All of the above. 9. A banked curve in a roadway is designed for a speed of 35 mph. During an ice storm cars should be able to safely negotiate this curve at 35 mph, because at this speed A. the necessary centripetal force is supplied entirely by gravity. B. at all speeds the acceleration vector of the car points down, helping maintain stability. C. the centrifugal force of the car exactly balances the centripetal force. D. the necessary centripetal force is supplied entirely by the normal force from the road. 10. The mass of an apple on the Earth is 0.2 kg. On the Moon, the mass of the same apple would be A. zero. B. greater than zero but less than 0.2 kg. C. 0.2 kg. D. greater than 0.2 kg. 11. The weight of an oxygen tank of the Moon is 10 pounds. On the Earth, the same oxygen tank would have a weight of A. less then 10 pounds. B. 10 pounds. C. more than 10 pounds.

3 12. Six identical physics books, each with mass 2.0 kg, are taken to the Moon. On the Moon, their combined mass is A. zero. B. 2.0 kg. C. 6.0 kg. D. 12 kg. 13. Two cars are moving around a circular track at the same constant speed. If car 1 is at the inner edge of the track and car 2 is at the outer edge, then A. the acceleration of car 1 is less than the acceleration of car two. B. the accelerations of both cars are equal and greater than zero. C. the acceleration of car 1 is greater than the acceleration of car 2. D. the accelerations of both cars are zero. 14. A cyclist races around a circular track at the constant speed of 20 m/s. The radius of the track is 50 m. The acceleration of the cyclist is A. zero. B. 8 m/s 2, toward the center of the track. C. 10 m/s 2, downward. D. 20 m/s 2, in the direction of travel. 15. A man weighs 600 N while on the surface of Earth. If he is transported to the planet Mythos, which has the same mass as Earth but a radius that is twice as large as Earth s, his weight would be A N. B. 600 N. C. 300 N. D. 150 N. E. 100 N. 16. The orbit of Earth about the Sun is not a circle; Earth is closer to the Sun in December than it is in June. Thus, the speed of Earth as it moves about the Sun is A. greater in December than in June. B. greater in June than it is in December. C. steadily increasing all year long. D. steadily decreasing all year long.

4 E. the same all year long. 17. An asteroid moving around the Sun happens to experience only negligible forces from other objects in the solar system. The path of this asteroid will be A. an ellipse. B. a parabola. C. a sinusoid. D. a straight line. 18. A car travels around a curve with constant speed. The correct statement from the following is: A. The velocity of the car is constant. B. The car has an acceleration directed inward toward the center of the curve. C. The car has an acceleration directed outward from the center of the curve. D. The car has zero acceleration. E. The car has an acceleration directed in the instantaneous direction of the velocity vector. 19. A ball is whirled on the end of a string in a horizontal circle at constant speed. Suddenly, the string breaks. Immediately after the string breaks, the ball will A move horizontally outward from the center of the circle. B. move horizontally inward toward the center of the circle. C. drop straight down. D. have a horizontal velocity that is tangential to the circle. 20. Car A travels with speed v around curve number one, which has a radius r. Car B travels with speed 2v around curve number two, which has a radius 2r. The acceleration will be A. zero for both cars. B. the same for both cars. C. greater for car A. D. greater for car B. 21. If a ball at the end of a string is whirled in a vertical circle at constant speed, the tension will be A. the same throughout the motion. B. greatest at the lowest point in the motion. C. greatest at the highest point in the motion. D. greatest at a point where the string is instantaneously parallel to the ground.

5 22. The first scientist to determine that the orbits of the planets were ellipses was A. Copernicus. B. Ptolemy. C. Kepler. D. Galileo. E. Newton. 23. The heliocentric model of the solar system gained preference over the early Greek epicycle model because A. the heliocentric model gave a more accurate description of observed planetary motions. B. only the heliocentric model could explain retrograde motion. C. the heliocentric model was simpler. 24. According to Newton s Law of Gravitation, if the distance between two bodies is doubled the attractive force between them becomes A. twice as large. B. half as large. C. four times as large. D. one quarter as large. E. unchanged. 25. The sun and Moon both have an effect on the tides. Which one has the larger effect, and why? A. The sun, because it exerts a larger force on the ocean. B. The Moon, because it exerts a larger force on the ocean. C. Both the sun and Moon equally affect the tides. D. The Moon, because its force differs more between the surface and center of the Earth. 26. Suppose a planet has a mass of 100 times that of the Earth and a radius that is 10 times that of the Earth. The acceleration of gravity on the surface of the planet, expressed in units of the Earth's acceleration of gravity, g, is A. g. B. 10 g. C. 100 g. D. g/10. E. g/100.

6 27. Suppose an artificial satellite has been put into circular orbit about the Earth, at a distance from the center of the Earth equal to 1/4 the distance from the Earth s center to the Moon's center. In terms of the Moon s period T m, what will be the period of the satellite? A. 16T m. B. 8T m. C. T m. D. T m /8. E. T m / On a two-lane highway (not divided), a car headed north experiences a centripetal acceleration directed toward the east. Simultaneously, a truck passes the car, headed south in the other lane. The direction of the centripetal acceleration on the truck is A. west. B. east. C. north. D. south. 29. What are the units for the constant G used in Newton s law of universal gravitation? A. (N m²) / kg². B. kg m /s². C. kg²/m². D. N/m². E. None of these. 30. If you are ever fortunate enough to experience a total eclipse of the sun, you can be sure that it will happen when the Moon is A. in the new Moon phase. B. full. C. in its first quarter phase. D. in its last quarter phase. E. No way to tell...it s a matter of chance. 31. In Vienna, there is a Ferris wheel designed so that the passengers ride in a standing position. If one of the passengers were standing on a bathroom scale, the scale would read lowest at A. the highest point in the ride. B. the lowest point in the ride. C. the point in the ride where they were ascending most rapidly. D. the point in the ride where they were descending most rapidly.

7 32. During a new Moon, when the Sun and the Moon are on the same side of the Earth, the people who live next to the ocean will see about how many high tides per day? A. One B. Two C. Three D. Four 33. Two artificial satellites are in circular orbits about the Earth. Which of the two will be moving faster in its orbit? A. The higher one. B. The lower one. C. The one with the smaller mass. D. The one with the larger mass. 34. A full Moon is just now rising. What time of day is it? A. Dusk. B. Dawn. C. Midnight. D. Noon. E. No way to tell. 35. A satellite is in an elliptical orbit with distance from the center of the Earth varying from a maximum of 2D to a minimum of D. If its speed is v when its distance from the center of the Earth is 2D, what is its speed when its distance is D? A. v B. It is stationary. C. ½ v. D. 2v In his model of the motions of the planets, Copernicus A. assumed that the Earth is the center of the Solar system. B. continued to use epicycles to explain planetary motion. C. found that the planets move in paths shaped like ellipses. D. was able to make predictions that were much more accurate than Ptolemy s model gave..

8 37. Strictly speaking, Newton s law of universal gravitation, F = Gm 1 m 2 /r², is valid only if the masses are either point masses or. Answer: perfect (uniform) spheres. 38. The of a body decreases as it is moved away from the surface of the Earth. Answer: weight 39. A body moving in a circle path at constant speed exhibits acceleration because its is changing. Answer: velocity 40. A car can move at constant speed on a level curve on a highway as long as the force of between the pavement and tires is sufficient to provide the necessary centripetal force. Answer: friction 41. A car could move at constant speed on an icy curve which is banked for (all, one, no) speed(s) of the car. Answer: one 42. A person weighing 500 N rides on a Ferris wheel sitting on a bathroom scale. At the highest point the scale reads zero while the person continues to move in a circular path. The centripetal force on the person at this point is N. Answer: To explain the retrograde motion of planets, Ptolemy introduced the concept of. Answer: epicycles 44. If a person sits on a bathroom scale while riding on a Ferris wheel, the reading on the scale will be highest while passing through point (indicate a point in the path). Answer: the lowest 45. Two satellites are projected into circular orbits about the Earth. The one closer to the Earth has a period of 90 minutes. The one further away will have a period which is (longer, shorter or same as) compared to 90 minutes. Answer: longer

Physics 100 prac exam2

Physics 100 prac exam2 Physics 100 prac exam2 Student: 1. Earth's gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is B. small but not zero. C. billions and billions

More information

Practice Test (Chapter 10)

Practice Test (Chapter 10) Practice Test (Chapter 10) 1) According to Kepler's laws, the paths of planets about the sun are A) parabolas. B) circles. C) straight lines. D) ellipses. Answer: D 2) Which of the following is not a vector

More information

PHY1 Review for Exam 5

PHY1 Review for Exam 5 Topics 1. Uniform circular Motion a. Centripetal acceleration b. Centripetal force c. Horizontal motion d. ertical motion e. Circular motion with an angle 2. Universal gravitation a. Gravitational force

More information

M OTION. Chapter2 OUTLINE GOALS

M OTION. Chapter2 OUTLINE GOALS Chapter2 M OTION OUTLINE Describing Motion 2.1 Speed 2.2 Vectors 2.3 Acceleration 2.4 Distance, Time, and Acceleration Acceleration of Gravity 2.5 Free Fall 2.6 Air Resistence Force and Motion 2.7 First

More information

Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

2-1. True of False: All planets undergo retrograde motion as seen from Earth.

2-1. True of False: All planets undergo retrograde motion as seen from Earth. Discovering the Essential Universe Chapter 2, quiz. 2-1. True of False: All planets undergo retrograde motion as seen from Earth. a.) True b.) False X 2-2. The occasional westward (left to right) motion

More information

Physics 130 Astronomy Exam #1 July 19, 2004

Physics 130 Astronomy Exam #1 July 19, 2004 Physics 130 Astronomy Exam #1 July 19, 2004 Name Multiple Choice: 1. A scientist observes a new phenomenon that disagrees with his explanation or hypothesis. Following the scientific methods, he should

More information

Chapter 6. Circular Motion, Orbits, and Gravity. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition

Chapter 6. Circular Motion, Orbits, and Gravity. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Chapter 6 Circular Motion, Orbits, and Gravity PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 6 Circular Motion, Orbits, and Gravity Slide 6-2 Slide 6-3 Slide 6-4 Slide 6-5

More information

Astron 100 Sample Exam 1 1. Solar eclipses occur only at (A) New moon (B) 1 st quarter moon (C) Full moon (D) 3 rd quarter moon (E) The equinoxes 2.

Astron 100 Sample Exam 1 1. Solar eclipses occur only at (A) New moon (B) 1 st quarter moon (C) Full moon (D) 3 rd quarter moon (E) The equinoxes 2. Astron 100 Sample Exam 1 1. Solar eclipses occur only at (A) New moon (B) 1 st quarter moon (C) Full moon (D) 3 rd quarter moon (E) The equinoxes 2. If the Moon is at first quarter tonight in Amherst,

More information

Gravitation. Gravitation

Gravitation. Gravitation 1 Gravitation Newton s observations A constant center seeking force is required to keep an object moving along a circular path. You know that the moon orbits the earth and hence there should be a force

More information

Clicker Question: Clicker Question: Gravitational Force. Newton's Law of Gravity. Inverse Square law Demo

Clicker Question: Clicker Question: Gravitational Force. Newton's Law of Gravity. Inverse Square law Demo Test results Last day to drop without a grade is Oct. 3 Grades posted in cabinet and online F D C B A A bullet is fired from a gun. Complete the following sentance to form a true statement. The speed of

More information

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great. Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Physics Honors: Chapter 7 Practice Test

Physics Honors: Chapter 7 Practice Test Physics Honors: Chapter 7 Practice Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When an object is moving with uniform circular motion,

More information

Announcements. Eclipses 2/1/12. HW1 is due Thursday. You have to be registered at MasteringAstronomy to do the homework!

Announcements. Eclipses 2/1/12. HW1 is due Thursday. You have to be registered at MasteringAstronomy to do the homework! Announcements HW1 is due Thursday. You have to be registered at MasteringAstronomy to do the homework! TA Qufei Gu will be in RH111 4:00-5:00PM Wednesday to help with homework. Email: zyx88@unm.edu Feb

More information

Astro 101 F15 Test 2. Name: Multiple Choice Identify the choice that best completes the statement or answers the question.

Astro 101 F15 Test 2. Name: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Astro 101 Test 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The Moon undergoes synchronous rotation, and as a consequence the: a. Moon does

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed? Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

Kepler, Newton and Gravitation

Kepler, Newton and Gravitation Kepler, Newton and Gravitation Kepler, Newton and Gravity 1 Using the unit of distance 1 AU = Earth-Sun distance PLANETS COPERNICUS MODERN Mercury 0.38 0.387 Venus 0.72 0.723 Earth 1.00 1.00 Mars 1.52

More information

Chapter 6 Circular Motion, Orbits and Gravity

Chapter 6 Circular Motion, Orbits and Gravity Chapter 6 Circular Motion, Orbits and Gravity Topics: The kinematics of uniform circular motion The dynamics of uniform circular motion Circular orbits of satellites Newton s law of gravity Sample question:

More information

1 Newton s Laws of Motion

1 Newton s Laws of Motion Exam 1 Ast 4 - Chapter 2 - Newton s Laws Exam 1 is scheduled for the week of Feb 19th Bring Pencil Scantron 882-E (available in the Bookstore) A scientific calculator (you will not be allowed to use you

More information

7.2 Calculate force of gravity at a given distance given the force of gravity at another distance (making use of the inverse square relationship).

7.2 Calculate force of gravity at a given distance given the force of gravity at another distance (making use of the inverse square relationship). Chapter 7 Circular Motion and Gravitation 7.1 Calculate force of gravity using Newton s Law of Universal Gravitation. 5. What is the gravitational force between the Earth and the Sun? (Mass of Earth: 5.98

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Chapter 3: Force and Motion

Chapter 3: Force and Motion Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter. In

More information

Chapter 13 Newton s Theory of Gravity

Chapter 13 Newton s Theory of Gravity Chapter 13 Newton s Theory of Gravity Chapter Goal: To use Newton s theory of gravity to understand the motion of satellites and planets. Slide 13-2 Chapter 13 Preview Slide 13-3 Chapter 13 Preview Slide

More information

Circular Motion and Gravitation. a R = v 2 v. Period and Frequency. T = 1 f. Centripetal Acceleration acceleration towards the center of a circle.

Circular Motion and Gravitation. a R = v 2 v. Period and Frequency. T = 1 f. Centripetal Acceleration acceleration towards the center of a circle. Circular Motion and Gravitation Centripetal Acceleration acceleration towards the center of a circle. a.k.a. Radial Acceleration (a R ) v v Ball rolling in a straight line (inertia) Same ball, hooked to

More information

Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1. Newton s Laws 2. Conservation Laws Energy Angular momentum 3. Gravity Review from last time Ancient Greeks: Ptolemy; the geocentric

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Introduction to Gravity and Orbits. Isaac Newton. Newton s Laws of Motion

Introduction to Gravity and Orbits. Isaac Newton. Newton s Laws of Motion Introduction to Gravity and Orbits Isaac Newton Born in England in 1642 Invented calculus in early twenties Finally published work in gravity in 1687 The Principia Newton s Laws of Motion 1: An object

More information

Gravity. in the Solar System. Beyond the Book. FOCUS Book

Gravity. in the Solar System. Beyond the Book. FOCUS Book FOCUS Book Design a test to find out whether Earth s gravity always pulls straight down. A pendulum is a weight that hangs from a string or rod that can swing back and forth. Use string and metal washers

More information

Concept Review. Physics 1

Concept Review. Physics 1 Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

More information

Chapter 13: Universal Gravitation

Chapter 13: Universal Gravitation Chapter 13: Universal Gravitation I. The Falling Apple (13.1) A. Isaac Newton (1642-1727) 1. Formulated ideas based on earlier work by Galileo (concept of inertia) 2. Concept if object undergoes change

More information

ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 1 Answers

ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 1 Answers ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 1 Answers 1. The number of degrees in a full circle is (c) 360 2. An arcsecond is a measure of (d) angle. 3. How many

More information

Motion and Gravity in Space

Motion and Gravity in Space Motion and Gravity in Space Each planet spins on its axis. The spinning of a body, such a planet, on its axis is called rotation. The orbit is the path that a body follows as it travels around another

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

From Aristotle to Newton

From Aristotle to Newton From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers

More information

Measurements of Speed. Speed. v = d t. PowerPoint Lectures to accompany Physical Science, 6e

Measurements of Speed. Speed. v = d t. PowerPoint Lectures to accompany Physical Science, 6e PowerPoint Lectures to accompany Physical Science, 6e Chapter 2 Motion Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Motion is.. A change

More information

Lecture Presentation. Chapter 6 Circular Motion, Orbits, and Gravity Pearson Education, Inc.

Lecture Presentation. Chapter 6 Circular Motion, Orbits, and Gravity Pearson Education, Inc. Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Suggested Videos for Chapter 6 Prelecture Videos Forces and Apparent Forces Solving Circular Motion Problems Orbits and Gravity Class

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

Astronomy 210 Fall 2016: Quiz 2 Flashcard Questions 1

Astronomy 210 Fall 2016: Quiz 2 Flashcard Questions 1 Astronomy 210 Fall 2016: Quiz 2 Flashcard Questions 1 1. The moon is in its phase during a lunar eclipse. solar (A) new. (B) first quarter. (C) full. (D) third quarter. (E) (Depends on the time of day.)

More information

UCM-Gravity. 2. The diagram shows two bowling balls, A and B, each having a mass of 7 kilograms, placed 2 meters apart.

UCM-Gravity. 2. The diagram shows two bowling balls, A and B, each having a mass of 7 kilograms, placed 2 meters apart. 1. A space probe is launched into space from Earth s surface. Which graph represents the relationship between the magnitude of the gravitational force exerted on Earth by the space probe and the distance

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning:! How do we describe motion?! How is mass different from weight? How do we

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

13 Universal Gravitation. Everything pulls on everything else.

13 Universal Gravitation. Everything pulls on everything else. Everything pulls on everything else. Gravity was not discovered by Isaac Newton. What Newton discovered, prompted by a falling apple, was that gravity is a universal force that it is not unique to Earth,

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Chapter 6: Energy and Oscillations. 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E.

Chapter 6: Energy and Oscillations. 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E. Chapter 6: Energy and Oscillations 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E. kwh 2. Work is not being done on an object unless the A. net force on the object

More information

Name: Date: Period: Gravity Study Guide

Name: Date: Period: Gravity Study Guide Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law

More information

356 CHAPTER 12 Bob Daemmrich

356 CHAPTER 12 Bob Daemmrich Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Gravitation. Physics 1425 Lecture 11. Michael Fowler, UVa

Gravitation. Physics 1425 Lecture 11. Michael Fowler, UVa Gravitation Physics 1425 Lecture 11 Michael Fowler, UVa The Inverse Square Law Newton s idea: the centripetal force keeping the Moon circling the Earth is the same gravitational force that pulls us to

More information

Section Review Answers. Chapter 12

Section Review Answers. Chapter 12 Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Solar System Formation

Solar System Formation Solar System Formation Background Information System: Many pieces that make up a whole Solar System: Anything that orbits the Sun Just like in the formation of of stars.. Gravity plays a major role. Gravitational

More information

ISAAC NEWTON. Newton s laws of motion. Force. Inertia

ISAAC NEWTON. Newton s laws of motion. Force. Inertia ISAAC NEWTON Newton s laws of motion Force Inertia Now that we know how to describe motion, we are ready to learn what causes it. Newton was the person who solved this problem for us, writing three laws

More information

Lesson 5 Rotational and Projectile Motion

Lesson 5 Rotational and Projectile Motion Lesson 5 Rotational and Projectile Motion Introduction: Connecting Your Learning The previous lesson discussed momentum and energy. This lesson explores rotational and circular motion as well as the particular

More information

Section 1 Gravity: A Force of Attraction

Section 1 Gravity: A Force of Attraction Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of

More information

tps Q: If the Earth were located at 0.5 AU instead of 1 AU, how would the Sun s gravitational force on Earth change?

tps Q: If the Earth were located at 0.5 AU instead of 1 AU, how would the Sun s gravitational force on Earth change? tps Q: If the Earth were located at 0.5 AU instead of 1 AU, how would the Sun s gravitational force on Earth change? A. It would be one-fourth as strong. B. It would be one-half as strong. C. It would

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

Page 1. Name:

Page 1. Name: Name: 1) As seen from New York State, the noon Sun is never directly overhead directly overhead every day directly overhead on the first day of spring and fall directly overhead only on the first day of

More information

What s going on during a solar eclipse. Solar Eclipses. Total Solar Eclipse on March 29, 2006 (viewed from Turkey) Partial, Total, and Annular

What s going on during a solar eclipse. Solar Eclipses. Total Solar Eclipse on March 29, 2006 (viewed from Turkey) Partial, Total, and Annular Solar Eclipses The Sun disappears behind the Moon The Moon is always in the New phase during a solar eclipse Can only be seen from certain places on Earth These events are even more rare than lunar eclipses

More information

2. A grindstone spinning at the rate of 8.3 rev/s has what approximate angular speed? a. 3.2 rad/s c. 52 rad/s b. 26 rad/s d.

2. A grindstone spinning at the rate of 8.3 rev/s has what approximate angular speed? a. 3.2 rad/s c. 52 rad/s b. 26 rad/s d. Rotational Motion 1. 2 600 rev/min is equivalent to which of the following? a. 2600 rad/s c. 273 rad/s b. 43.3 rad/s d. 60 rad/s 2. A grindstone spinning at the rate of 8.3 rev/s has what approximate angular

More information

Rotational Mechanics - 1

Rotational Mechanics - 1 Rotational Mechanics - 1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity

More information

Warm up. Forces. Sir Issac Newton. Questions to think about

Warm up. Forces. Sir Issac Newton. Questions to think about Warm up Have you ever tried to pull something that just wouldn t budge? Describe a situation in which you pulled or tried to pull something. What made the job easier? Forces Sir Issac Newton Newton said

More information

physics of biomolecular chemistry and structures under stress e.g. protein conformations protein-protein bonds cell membranes

physics of biomolecular chemistry and structures under stress e.g. protein conformations protein-protein bonds cell membranes Figure 12.4 physics of biomolecular chemistry and structures under stress e.g. protein conformations protein-protein bonds cell membranes unfolding/refolding single bond kinetics pore formation strength

More information

Today: Chapter 9 (Gravity)

Today: Chapter 9 (Gravity) Today: Chapter 9 (Gravity) Chapter 9: Gravity Newton: made revolutionary connection between the circular motion of celestial bodies and the downward falling of objects on the earth: It is the one and the

More information

1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

More information

Chapter 5. Determining Masses of Astronomical Objects

Chapter 5. Determining Masses of Astronomical Objects Chapter 5. Determining Masses of Astronomical Objects One of the most fundamental and important properties of an object is its mass. On Earth we can easily weigh objects, essentially measuring how much

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Lecture Outlines. Chapter 2. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 2. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 2 Astronomy Today 7th Edition Chaisson/McMillan Chapter 2 The Copernican Revolution Units of Chapter 2 2.1 Ancient Astronomy 2.2 The Geocentric Universe 2.3 The Heliocentric Model

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Is velocity constant? A = πr 2

Is velocity constant? A = πr 2 Physics R Date: Circular Motion & Gravity Uniform Circular Motion What does uniform mean? Equations: (on reference table) Uniform circular motion means circular motion with C = 2πr = Is velocity constant?

More information

Universal Law of Gravitation Honors Physics

Universal Law of Gravitation Honors Physics Universal Law of Gravitation Honors Physics Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just

More information

5. Universal Laws of Motion

5. Universal Laws of Motion 5. Universal Laws of Motion If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (1642 1727) Physicist 5.1 Describing Motion: Examples from Daily

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass

More information

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following: Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

More information

Milky Way Galaxy. Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years

Milky Way Galaxy. Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years Circular Motion Milky Way Galaxy Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years Mercury: 48 km/s Venus: 35 km/s Earth: 30 km/s Mars: 24 km/s Jupiter: 13 km/s Neptune: 5 km/s

More information

Physics Midterm Review. Multiple-Choice Questions

Physics Midterm Review. Multiple-Choice Questions Physics Midterm Review Multiple-Choice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves

More information

2. A car s engine spins at 1500 RPM. What is the frequency of the rotating engine?

2. A car s engine spins at 1500 RPM. What is the frequency of the rotating engine? Answer all questions in standard SI units. FREQUENCY AND PERIOD PROBLEMS 1. A turntable rotates an album at 33 revolution per minute, RPM. What frequency is this? 2. A car s engine spins at 1500 RPM. What

More information

6. What is the approximate angular diameter of the Sun in arcseconds? (d) 1860

6. What is the approximate angular diameter of the Sun in arcseconds? (d) 1860 ASTR 1020 Stellar and Galactic Astronomy Professor Caillault Fall 2009 Semester Exam 1 Multiple Choice Answers (Each multiple choice question is worth 1.5 points) 1. The number of degrees in a full circle

More information

Exemplar Problems Physics

Exemplar Problems Physics Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Student Exploration: Gravitational Force

Student Exploration: Gravitational Force 5. Drag STUDENT PACKET # 7 Name: Date: Student Exploration: Gravitational Force Big Idea 13: Forces and Changes in Motion Benchmark: SC.6.P.13.1 Investigate and describe types of forces including contact

More information

Physics 211 Lecture 4

Physics 211 Lecture 4 Physics 211 Lecture 4 Today's Concepts: Newton s Laws a) Acceleration is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference frames Mechanics Lecture 4, Slide 1

More information

Question on Class IX» Science» Gravitation» The Universal Law Of Gravitation.

Question on Class IX» Science» Gravitation» The Universal Law Of Gravitation. Question on Class IX» Science» Gravitation» The Universal Law Of Gravitation. Q.1. When we move from the poles to the equator. Hence, the value of g decreases. Why Ans: The shape of earth is an ellipse

More information

Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4. problems: 5.61, 5.67, 6.63, 13.21 Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

More information

Motion in Two Dimensions

Motion in Two Dimensions Motion in Two Dimensions 1. The position vector at t i is r i and the position vector at t f is r f. The average velocity of the particle during the time interval is a.!!! ri + rf v = 2 b.!!! ri rf v =

More information