G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

Size: px
Start display at page:

Download "G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M"

Transcription

1 G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy Angular Momentum... 13

2 FOREWORD Many online sources that deal with orbital mechanics concepts go far beyond what is needed for doing calculations relevant to KSP. Wikipedia articles tend to get bogged down in pages upon pages of math, making it difficult to find exactly which equations you need to solve a given problem. This guide is focused on solving problems. Key equations from orbital mechanics are presented here as building blocks, which we ll put to practical use. If you re looking for derivations from basic physics, you ll probably be a little bit disappointed, in which case I d direct you to just about any book on classical mechanics, or a book on orbital mechanics. This guide should take you to the point where the physics are no longer an obstacle to writing tools for KSP or for carrying out orbital calculations. We ll work our way up from basic motion under acceleration to calculating phase angles for interplanetary transfers, landings, and calculating trajectories in a planet s atmosphere. This guide is aimed at those with at minimum a basic knowledge of geometry and physics. If you re familiar with the sine and cosine functions, and have a grasp of newton s laws (F=ma), you should be fine.

3 FORCES Gravity Close to the surface of a planet, the acceleration due to gravity is approximately constant, giving the familiar relation: Where F is the force of gravity and m is the mass of the object on which gravity acts. The acceleration due to gravity is: Which is a constant for each planet. Q) What s the force of gravity on a 2kg object on the surface of Kerbin? A) From the wiki: So: Far from the surface of a planet, the force of gravity gets much weaker, and we need to use Newton s law of gravitation: Where G is a constant, m is the mass of our ship, M is the mass of the planet, and r is the distance from our ship to the center of the planet. Because G and M are both constants for a given planet, we combine them into a single constant µ, called the gravitational parameter. Q) You re in a 2kg ship in orbit around Kerbin, and the altimeter reads 100,000m. What s the force of gravity on the ship? A) Since the altimeter reads your altitude from sea level, and not from the center of the planet, we can t plug 100,000m into r. First, we need to add the radius of the planet, which for Kerbin is: Also, from the wiki:.

4 So: This is smaller than the force of gravity at the surface, as expected. Drag and Terminal Velocity This is really well presented on the wiki. Take a look at: Thrust Imagine an astronaut in deep space, holding a bowling ball. If the astronaut throws the bowling ball in some direction, due to conservation of momentum, the astronaut will begin to travel in the opposite direction. The force that causes the astronaut to recoil is called thrust. If the astronaut throws the bowling ball harder, we expect the recoil to be greater. In a rocket engine, rather than launching bowling balls, we expel exhaust gasses at high velocities. As a result, the relevant quantities are the rate at which we re expelling exhaust, as well as the velocity at which it is expelled. Mathematically, thrust is expressed as follows: Where T is the thrust, dm/dt is the rate at which the exhaust is leaving the rocket (i.e. the flow rate of fuel in kg/s) and v exhaust is the velocity at which the exhaust leaves the vehicle. You might ask what dm/dt would be for the bowling ball, and hence might sense something fishy about all this. After all, how could there be a flow rate for a bowling ball anyway? The answer to this is that the equation for thrust above assumes that we are continuously expelling fuel. If we re throwing a bowling ball, it s best to use straightforward conservation of momentum to solve the problem instead. Q) A ship is stationary above Kerbin at an altitude of 100,000m (above sea level). The ship weighs 10 tons (10,000kg). The ship s single rocket engine has an exhaust gas velocity of 2000m/s. What rate of fuel flow is necessary to keep the ship stationary at that altitude (i.e. to balance the force of gravity)? A) The force of gravity is given by:

5 The ship s thrust is given by: These must be equal for the ship to remain stationary (i.e. net force = 0): Simplifying: Plugging in: Thus, the ship must expel 36kg of fuel every second in order to remain stationary at 100,000m altitude. Ideal Rocket Equation We have seen that the force of thrust is given by: This is more commonly written using a parameter known as the specific impulse in place of the exhaust velocity: Where I sp is the specific impulse, and g is the acceleration due to gravity at the Earth s (Kerbin s) surface, or 9.81m/s 2. Using F=ma, we can find the acceleration of a ship under thrust:

6 ( ) This tells us that the acceleration depends both on the mass of the ship and the rate at which the mass is changing (i.e. fuel is being expelled). As a result, finding the change in the velocity of the ship after a burn (where some of the mass has been used up) is a bit more involved than what we ve seen so far. The solution to this problem involves calculus (and isn t too difficult once you ve learned it). Rather than go through the derivation, here s the final answer: Where m initial is the mass of the ship before the burn, m final is the mass of the ship afterwards, and Δv is the change in the ship s velocity. Ln(x) is the natural logarithm, which is the power to which you must raise the number e = in order to get x as the answer. Q) You re piloting a 10 ton ship, and need to perform a maneuver that requires a change in velocity (Δv) of 500m/s. Your engine has an I sp of 390s. How much fuel will you burn? A) We have: Exponentiate both sides of the equation (you ll see why in a second, if you don t already): ( ) Simplify the right side of this equation by factoring out gi sp in the exponent: ( ( ) ) Remember, ln(x) is the power to which we must raise e in order to get x. So if we raise e to the power of ln(x), we must get x again, by definition! In our case, x is just m final / m initial, so we have: ( ) Simplifying (by taking the gi sp th root of both sides), we get: We re looking for the total amount of fuel burned, which is found by finding the total change in mass m final m initial:

7 Simplifying by factoring out m initial: This is a very useful result! Plugging in our numbers: Thus, we will burn 1225kg of fuel to make this maneuver (if we don t have at least that much fuel, the maneuver cannot be made.)

8 Circular Orbits An object travelling along a circular path does so because there s some force that s constantly pulling it towards the center of the circle. For example, if I spin around while holding a string attached to a ball, the ball is kept in a circular path by being pulled on by the string (which I myself pull). If there were no such force, the ball would travel in a straight line instead. Fundamentally, there s not much different happening in a circular orbit around a planet. Instead of being held in a circular orbit by the pull of a string, a ship is held in an orbit by the pull of a planet s gravity. A basic result in physics gives the following relationship for an object moving in a circle due to a centripedal force (a force directed towards the center of the circle): You might already have guessed what we ll do next! Substitute the equation for the force of gravity that we considered earlier: Simplifying, we get: This extremely useful relationship lets us find our orbital velocity in a circular orbit at any altitude around any planet. Q) A pilot takes off from Kerbin and reaches an apoapsis (maximum altitude) of 200km. When he reaches apoapsis, his velocity is 1200m/s. What change in velocity ( ) is required to circularize his orbit at this moment? A) Using our equation for : It s easy to find how long an circular orbit takes to complete. Since we move at a constant speed, all we need to do is divide the total length L of our orbit (i.e. the circumference of a circle of radius r) by our velocity :

9 Substituting and simplifying: Q) How long does a circular orbit 100km above Kerbin take to complete? A) Using the above equation:

10 ENERGY Energy concepts are useful because they often let us get past the nitty-gritty details of the math and quickly get to useful results. Orbital Energy A ship in orbit has a kinetic energy given by the following expression: Where m is the mass of the ship and v is the ship s velocity. The potential energy of a ship in orbit depends on its mass and its distance to the planet, and is given by: Why is this potential negative? It s a matter of convention (and an intuitive one, if you think about it in the right sense.) Simply put, we say that an object an infinite distance away has a potential energy of zero. We can immediately see that this is the case if r is very large, E p is very small. The total energy is just the sum of the kinetic and potential energies: Usually, when talking about orbits, we talk about the energy per unit mass, which we call ϵ: In the absence of forces other than gravity, ϵ is a constant, no matter where you are on your orbit! This is one of the most useful formulas for doing calculations relevant to KSP. Here s why: 1) If ϵ < 0, then we are in a circular or parabolic orbit, and will never escape the body we re orbiting. 2) If ϵ = 0, then we are in a parabolic orbit, and will (just barely) escape the influence of whatever body we re orbiting. 3) If ϵ > 0, then we re in a hyperbolic orbit, and we ll escape whatever body we re orbiting. Thus, we see immediately that we can use this formula to tell if we ll escape a body or not. As well, we can use this formula to find the escape velocity at a given altitude (i.e., the velocity that makes ϵ = 0).

11 Q) A ship is travelling at 3000m/s at an altitude of 100,000m above Kerbin. Is it captured into an orbit, or will it escape? What is escape velocity at this altitude? A) Using the specific orbital energy equation: Plugging in: Since ϵ < 0, we expect to be in a closed orbit, i.e. we won t escape Kerbin. Escape velocity occurs when ϵ = 0, giving: Plugging in: Thus we need an additional 176.5m/s to escape Kerbin. If we know more about our ship, we could use the ideal rocket equation to determine from here exactly how much fuel we d need to burn to escape! Remember when I said that ϵ was a constant? This is very useful, as it lets us find our velocity at any point along our orbit if we know our altitude. Q) You re at an altitude of 100,000m and travelling at a velocity of 2600m/s. What will your velocity be at an altitude of 1,000,000m? A) First we ll calculate ϵ for the first case, then use the fact that ϵ is constant to solve for the second case.

12

13 ANGULAR MOMENTUM Like the specific orbital energy ϵ, the angular momentum L is another quantity which is constant everywhere along an orbit (and hence very useful)! From high school physics, you re likely familiar with linear momentum, which is equal to mv, or mass times velocity. This quantity is a constant of a given system, as stated by the law of conservation of momentum. Angular momentum is another quantity, like linear momentum, which is conserved in a system. However, it s related to rotational motion rather than linear motion. A spaceship, relative to a planet, is well approximated as a single point, i.e. its size is so small in comparison to the planet that we don t need to take it into account. Thus, we can use the following equation for its angular momentum: Where r is a vector pointing from the center of the planet to the ship, and v is the velocity vector of the ship. The used in the above equation is the vector cross-product. For our purposes, we can put most of the vector math aside and deal only with the magnitude of the angular momentum: Where and are the distance from the center of the planet and the magnitude of the velocity, respectively, and is the angle between the direction of the ship s velocity and a line from the center of the planet to our ship (see the figure below). Just as in the case of orbital energy, we can divide by the ship s mass to get the specific angular momentum of the ship, denoted h. The quantity h is a constant for a given orbit. You might be thinking why bother with h, as we already have an energy formula that relates r and v! The key here is the dependence of h on, which includes information about direction the energy equations had no notion of direction. Using h, we can figure out not only how fast our ship is going, but also where it s going! Q) A ship is in a parabolic orbit above Kerbin, with a periapsis of 100,000m. After periapsis, once it has risen to an altitude of 200,000m, what will be its vertical (radial) velocity (i.e. the rate of change of altitude)? A) Since the ship is on a parabolic trajectory, we automatically know that ϵ=0. Let s use this fact to find the magnitude of the velocity at periapsis and at 200,000m:

14 This gives: At periapsis, we have: ( ) At 200,000m, we have: ( ) Now, let s consider h. At periapsis, since the velocity is perpendicular to r,, and. (Can you see why they are perpendicular?) Of course, h is constant, so h at 200,000m = h at periapsis: (at 200,000m altitude) Plugging in our numbers: Now, with a bit of geometry, we can find the vertical (radial) velocity.

15 v θ r v pe v v θ r pe v θ r From the diagram, we see that the horizontal (tangential) component of the velocity is simply: And the vertical (radial) velocity is simply: Thus, the ship is ascending at 1065m/s while travelling with a tangential velocity of 2774m/s. I hope you can see how h can be put to good use in determining the direction of orbital motion at a given altitude.

Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4. problems: 5.61, 5.67, 6.63, 13.21 Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

Lecture L14 - Variable Mass Systems: The Rocket Equation

Lecture L14 - Variable Mass Systems: The Rocket Equation J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L14 - Variable Mass Systems: The Rocket Equation In this lecture, we consider the problem in which the mass of the body changes during

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Gravitational Potential Energy

Gravitational Potential Energy Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

UCM-Gravity. 2. The diagram shows two bowling balls, A and B, each having a mass of 7 kilograms, placed 2 meters apart.

UCM-Gravity. 2. The diagram shows two bowling balls, A and B, each having a mass of 7 kilograms, placed 2 meters apart. 1. A space probe is launched into space from Earth s surface. Which graph represents the relationship between the magnitude of the gravitational force exerted on Earth by the space probe and the distance

More information

Penn State University Physics 211 ORBITAL MECHANICS 1

Penn State University Physics 211 ORBITAL MECHANICS 1 ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there

More information

AP1 Gravity. at an altitude equal to twice the radius (R) of the planet. What is the satellite s speed assuming a perfectly circular orbit?

AP1 Gravity. at an altitude equal to twice the radius (R) of the planet. What is the satellite s speed assuming a perfectly circular orbit? 1. A satellite of mass m S orbits a planet of mass m P at an altitude equal to twice the radius (R) of the planet. What is the satellite s speed assuming a perfectly circular orbit? (A) v = Gm P R (C)

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7 Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

More information

356 CHAPTER 12 Bob Daemmrich

356 CHAPTER 12 Bob Daemmrich Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008 Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

More information

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6 Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Astromechanics Two-Body Problem (Cont)

Astromechanics Two-Body Problem (Cont) 5. Orbit Characteristics Astromechanics Two-Body Problem (Cont) We have shown that the in the two-body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12 2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

Chapter 13 - Gravity. David J. Starling Penn State Hazleton Fall Chapter 13 - Gravity. Objectives (Ch 13) Newton s Law of Gravitation

Chapter 13 - Gravity. David J. Starling Penn State Hazleton Fall Chapter 13 - Gravity. Objectives (Ch 13) Newton s Law of Gravitation The moon is essentially gray, no color. It looks like plaster of Paris, like dirty beach sand with lots of footprints in it. -James A. Lovell (from the Apollo 13 mission) David J. Starling Penn State Hazleton

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation 13.2 Newton s Law of Gravitation In vector notation: Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G = 6.67

More information

Force. Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law. Outline

Force. Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law. Outline Force Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law Outline Force as a Vector Forces are vectors (magnitude and direction) Drawn so the vector s tail originates at

More information

QUESTIONS : CHAPTER-5: LAWS OF MOTION

QUESTIONS : CHAPTER-5: LAWS OF MOTION QUESTIONS : CHAPTER-5: LAWS OF MOTION 1. What is Aristotle s fallacy? 2. State Aristotlean law of motion 3. Why uniformly moving body comes to rest? 4. What is uniform motion? 5. Who discovered Aristotlean

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Notes: Mechanics. The Nature of Force, Motion & Energy

Notes: Mechanics. The Nature of Force, Motion & Energy Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force- The sum (addition) of all the forces acting on an

More information

Rocketry for Kids. Science Level 4. Newton s Laws

Rocketry for Kids. Science Level 4. Newton s Laws Rocketry for Kids Science Level 4 Newton s Laws Victorian Space Science Education Centre 400 Pascoe Vale Road Strathmore, Vic 3041 www.vssec.vic.edu.au Some material for this program has been derived from

More information

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s Laws: Explaining Motion Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Exemplar Problems Physics

Exemplar Problems Physics Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight

Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.

More information

Physics 211 Lecture 4

Physics 211 Lecture 4 Physics 211 Lecture 4 Today's Concepts: Newton s Laws a) Acceleration is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference frames Mechanics Lecture 4, Slide 1

More information

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

1. Mass, Force and Gravity

1. Mass, Force and Gravity STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

How Rockets Work Newton s Laws of Motion

How Rockets Work Newton s Laws of Motion How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

More information

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

More information

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

More information

Lecture L17 - Orbit Transfers and Interplanetary Trajectories

Lecture L17 - Orbit Transfers and Interplanetary Trajectories S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Problem Set #8 Solutions

Problem Set #8 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

More information

Problem Set V Solutions

Problem Set V Solutions Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com

Copyright 2011 Casa Software Ltd. www.casaxps.com Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

More information

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION 1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

More information

Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Chapter 13 Newton s Theory of Gravity

Chapter 13 Newton s Theory of Gravity Chapter 13 Newton s Theory of Gravity The textbook gives a good brief account of the period leading up to Newton s Theory of Gravity. I am not going to spend much time reviewing the history but will show

More information

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude. Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to

More information

Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

More information

Physical Science Chapter 2. Forces

Physical Science Chapter 2. Forces Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

More information

F ij = Gm im j r i r j 3 ( r j r i ).

F ij = Gm im j r i r j 3 ( r j r i ). Physics 3550, Fall 2012 Newton s Third Law. Multi-particle systems. Relevant Sections in Text: 1.5, 3.1, 3.2, 3.3 Newton s Third Law. You ve all heard this one. Actioni contrariam semper et qualem esse

More information

Force & Motion. Force & Mass. Friction

Force & Motion. Force & Mass. Friction 1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the

More information

Name Period Chapter 10 Study Guide

Name Period Chapter 10 Study Guide Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

More information

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

More information

7.2 Calculate force of gravity at a given distance given the force of gravity at another distance (making use of the inverse square relationship).

7.2 Calculate force of gravity at a given distance given the force of gravity at another distance (making use of the inverse square relationship). Chapter 7 Circular Motion and Gravitation 7.1 Calculate force of gravity using Newton s Law of Universal Gravitation. 5. What is the gravitational force between the Earth and the Sun? (Mass of Earth: 5.98

More information

Units DEMO spring scales masses

Units DEMO spring scales masses Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Chapter 13 Newton s Theory of Gravity

Chapter 13 Newton s Theory of Gravity Chapter 13 Newton s Theory of Gravity Chapter Goal: To use Newton s theory of gravity to understand the motion of satellites and planets. Slide 13-2 Chapter 13 Preview Slide 13-3 Chapter 13 Preview Slide

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

More information

Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

More information

Newton s Laws of Motion

Newton s Laws of Motion Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

More information

More of Newton s Laws

More of Newton s Laws More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 19-21, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so

More information

Laws of Motion and Conservation Laws

Laws of Motion and Conservation Laws Laws of Motion and Conservation Laws The first astrophysics we ll consider will be gravity, which we ll address in the next class. First, though, we need to set the stage by talking about some of the basic

More information

Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

Our Dynamic Universe

Our Dynamic Universe North Berwick High School Department of Physics Higher Physics Unit 1 Section 3 Our Dynamic Universe Collisions and Explosions Section 3 Collisions and Explosions Note Making Make a dictionary with the

More information

Newton's Laws of Motion in Motion

Newton's Laws of Motion in Motion Newton's Laws of Motion in Motion Objectives: Students will use simple techniques to demonstrate Newton's 1 st and 3 rd Laws of Motion. Students will demonstrate their understanding of thrust, drag, lift,

More information

Q1. (a) State the difference between vector and scalar quantities (1)

Q1. (a) State the difference between vector and scalar quantities (1) Q1. (a) State the difference between vector and scalar quantities....... (1) (b) State one example of a vector quantity (other than force) and one example of a scalar quantity. vector quantity... scalar

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

More information

Angular Velocity vs. Linear Velocity

Angular Velocity vs. Linear Velocity MATH 7 Angular Velocity vs. Linear Velocity Dr. Neal, WKU Given an object with a fixed speed that is moving in a circle with a fixed ius, we can define the angular velocity of the object. That is, we can

More information