Exam 4 -- PHYS 101. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Save this PDF as:

Size: px
Start display at page:

Download "Exam 4 -- PHYS 101. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question."

Transcription

1 Name: Class: Date: Exam 4 -- PHYS 101 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A steel tape measure is marked such that it gives accurate measurements at room temperature. You place the tape measure in a very cold place and measure the length of a bar which you know to be 1 meter in length. What length will the cold tape measure show? a. length = 1 meter c. length > 1 meter b. length < 1 meter d. Not enough information 2. You want to take apart a couple of steel parts held together by brass screws, but the parts are stuck. What should you do to remove the screws? (The coefficient of linear expansion for steel is C -1. The coefficient for brass is C -1.) a. heat the parts c. Not enough information given b. cool the parts 3. Which of these is the Kelvin temperature scale not based upon? a. freezing point of water d. temperature of the cosmic background b. heat of vaporization of water e. all of the above c. boiling point of water 4. Which is the smallest unit of temperature: one degree Kelvin, Celsius, or Fahrenheit? a. Celsius c. Kelvin & Celsius b. Kelvin d. Fahrenheit 5. You heat a bimetallic strip that is made of brass on one side and steel on the other side. As you heat it, the strip will bend towards which side? (The coefficient of linear expansion for steel is C -1. The coefficient for brass is C -1.) a. the brass side c. the strip will not bend b. the steel side d. don t know 6. An atomic ideal gas occupies a volume of 0.01 m 3 at 30 C and a pressure of Pa. How many atoms are present in the gas? (universal gas constant=8.314 J/(mol K); Boltzmann s constant = J/K; Avogadro s number is ) a. 4.0 moles c. 0.4 atoms b atoms d atoms 7. A containter of atomic gas is present in a volume of 0.02 m 3, with a temperature of 20 C, and at a pressure of 1 atmosphere. If the pressure drops to atmosphere, what is the temperature? (ideal gas constant = J/mol K; 1 atm = Pa) a. 0 C c. 2.7 K b K d. 3 mk 1

2 Name: 8. Two identical cylinders at the same temperature contain the same gas. If container A has 4 times as much gas as container B, which has the highest pressure? a. A c. they have the same pressure b. B d. not enough information given 9. Neon has a molar mass of kg/mol. Helium has a molar mass of kg/mol. In one mole, which has the greater number of atoms? a. Neon c. both the same b. Helium 10. A steel bar is 10 meters long. It is heated from 100 C to 1000 C. What is the new length of the steel bar? (The coefficient of linear expansion for steel is C -1.) For this problem, ignore the proper use of significant figures. a m c. 10 cm b m d. 0.1 m 11. The specific heat of aluminum is 900 J/kg C. The specific heat of glass is 837 J/kg C. If two pieces of glass and aluminum, each with the same mass, are placed in an oven. For which of these will the temperature rise more quickly? a. aluminum c. temperature of both will increase at same rate b. glass d. not enough information given 12. Water falls from 50 meters. Assume all gravitational potential energy is converted to thermal energy. What is the change in temperature of the water? The specific heat of water is 4186 J/kg C. a. 0.1 C c. 1 C b C d. not enough information given 13. You place a mass of copper at -10 C into a container with 100 g of steam at 100 C. The system reaches an equilibrium temperature of 45 C. What is the mass of the copper? (for water: latent heat of vaporization= J/kg, latent heat of fusion= J/kg, and specific heat=4186 J/kg C. For copper, the specific heat is 387 J/kg C.) a. 10 kg c. 1 kg b. 3 kg d. 10,000 kg 14. Does one transer heat into a substance (Q>0) or take heat away from a substance (Q<0) in order to convert it from a vapor to a liquid? a. Q<0 c. not enough information b. Q>0 d. neither, Q=0 2

3 Name: 15. Convection is the transfer of heat caused by a. contact between two objects c. the conversion of work to heat b. the transfer of radiation d. the motion of a substance 16. Water has a higher specific heat than sand. Therefore, in the afternoon, breezes blow a. from the beach to the ocean c. either way, makes no difference b. from the ocean to the beach 17. You put 1 kg of ice at 0 C with 1 kg of water at 50 C. What is the final temperature of the water? (For water: latent heat of vaporization= J/kg, latent heat of fusion= J/kg, and specific heat=4186 J/kg C.) a. 25 C c. 0 C b. 75 C d. 50 C 18. A special type of star has a temperature of 100,000 K and a radius of 10 3 m. The star is a perfect blackbody absorber. What power is radiated by the star in the form of radiation? (The Stefan-Boltzmann constant is W/m 2 K 4 ) a W c. 0 W b. 6 W d. 70,000 W 19. How much heat is required to raise the temperature of 100 g of ice from -20 C to 50 C? (For water: latent heat of vaporization= J/kg, latent heat of fusion= J/kg, and specific heat=4186 J/kg C.) a J c J b J d J 20. Zero degrees Celsius is equivalent to which of these temperatures: a. 273 K c K b. 20 F d. -32 F 21. In which of these processes is the internal energy of the gas equal to the work done on the gas? a. adiabatic d. isovolumetric b. isothermal e. isochroic c. isobaric 3

4 Name: 22. In this figure, what is the work done on the gas when it follows the path ab (beginning at a and ending at b)? a c. -12,000 J b. 12,000 J d. -10,000 J 23. In the figure for problem 22, what is the heat transferred to the gas for the cyclic path ABCA? a. 6,000 J c. -6,000 J b. 12,000 J d. 6 J 24. In a heat engine, 10,000 J of heat is absorbed by the steam from the coal boiler. This steam powers a turbine with 8,000 J of work. Then, 2,000 J of heat is dispersed in a cooling tower. What is the efficiency of this heat engine? a. 20% c. 80% b. 160% d. 25% 25. Which of these is not a step in the 4-stroke internal combustion engine? a. power c. exhaust b. ignition d. intake 26. The second law of thermodynamics says which of these can never be zero? a. entropy c. work b. heat from the hot reservoir d. heat to the cold reservoir 4

5 Name: 27. A movable piston has a mass of 8.00 kg and an area of 9.50 cm 2. Inside the piston, 0.1 moles of an ideal gas experience a temperature change from 30 C to 100 C while the piston moves (without friction). How much work is done on the gas? (universal gas constant=8.314 J/(mol K); Boltzmann s constant = J/K; Stefan-Boltzmann constant= W/(m 2 K 4 )) a J c J b. 60 J d. -60 J 28. Gas in a container is at a pressure of 1000 Pa and a volume of 4 m 3. How much work is done on the gas if it expands at constant pressure to three times its original volume? a. 8,000 J c. -8,000 J b. -12,000 J d. 4,000 J 29. An ideal, monatomic gas undergoes a thermal process where no heat is transferred to the gas. The inital pressure is 1000 Pa, and the initial volume is 0.1 m 3. The final volume is 0.2 m 3. What is the final pressure? (For a monatomic gas, Cp= 5 2 R and Cv= 3 2 R.) a. 300 Pa c. 700 Pa b. 100 Pa d. 500 Pa 30. You are using version A of this test. Please bubble A and write Version A on your scantron. a. A c. C b. B d. D 5

6 Exam 4 -- PHYS 101 Answer Section MULTIPLE CHOICE 1. ANS: C PTS: 1 2. ANS: B PTS: 1 3. ANS: E PTS: 1 4. ANS: D PTS: 1 5. ANS: B PTS: 1 6. ANS: D PTS: 1 7. ANS: D PTS: 1 8. ANS: A PTS: 1 9. ANS: C PTS: ANS: B PTS: ANS: B PTS: ANS: A PTS: ANS: A PTS: ANS: A PTS: ANS: D PTS: ANS: B PTS: ANS: C PTS: ANS: C PTS: ANS: D PTS: ANS: A PTS: ANS: A PTS: ANS: D PTS: ANS: A PTS: ANS: C PTS: ANS: B PTS: ANS: D PTS: ANS: D PTS: ANS: C PTS: ANS: A PTS: ANS: A PTS: 1 1

Physics Final Exam Chapter 13 Review

Physics 1401 - Final Exam Chapter 13 Review 11. The coefficient of linear expansion of steel is 12 10 6 /C. A railroad track is made of individual rails of steel 1.0 km in length. By what length would

Final Exam Review Questions PHY Final Chapters

Final Exam Review Questions PHY 2425 - Final Chapters Section: 17 1 Topic: Thermal Equilibrium and Temperature Type: Numerical 12 A temperature of 14ºF is equivalent to A) 10ºC B) 7.77ºC C) 25.5ºC D) 26.7ºC

Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

Thermodynamics is the study of heat. It s what comes into play when you drop an ice cube

Chapter 12 You re Getting Warm: Thermodynamics In This Chapter Converting between temperature scales Working with linear expansion Calculating volume expansion Using heat capacities Understanding latent

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

AP Physics Problems Kinetic Theory, Heat, and Thermodynamics

AP Physics Problems Kinetic Theory, Heat, and Thermodynamics 1. 1974-6 (KT & TD) One-tenth of a mole of an ideal monatomic gas undergoes a process described by the straight-line path AB shown in the p-v

Physics Assignment No 2 Chapter 20 The First Law of Thermodynamics Note: Answers are provided only to numerical problems.

Serway/Jewett: PSE 8e Problems Set Ch. 20-1 Physics 2326 - Assignment No 2 Chapter 20 The First Law of Thermodynamics Note: Answers are provided only to numerical problems. 1. How long would it take a

Problems of Chapter 2

Section 2.1 Heat and Internal Energy Problems of Chapter 2 1- On his honeymoon James Joule traveled from England to Switzerland. He attempted to verify his idea of the interconvertibility of mechanical

The final numerical answer given is correct but the math shown does not give that answer.

Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but

Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

Heat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature

Unit of heat: calorie (cal) Heat as Energy Transfer Heat is energy transferred from one object to another because of a difference in temperature 1 cal is the amount of heat necessary to raise the temperature

Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law. Copyright 2009 Pearson Education, Inc.

Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law Units of Chapter 17 Atomic Theory of Matter Temperature and Thermometers Thermal Equilibrium and the Zeroth Law of Thermodynamics Thermal

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam 3 General Physics 202 Name 1) 550 g of water at 75eC are poured into an 855 g aluminum container with an initial temperature of 11eC. The specific heat of aluminum is 900 J/(kgœK). How much heat flows

1. A 4 kg aluminum rod has a temperature of 100 C. It is placed into an insulated bucket containing 50 kg of water at 0 C. (T 0 C) = (4 kg) 900 J

Physics 101 Quiz #8 Solution November 20, 2002 Name 20 Minutes. Box your answers. density specific heat thermal coefficient of capacity conductivity thermal expansion (kg/m 3 ) (J/kg C) (J/m s C) (1/ C)

Energy in Thermal Processes: The First Law of Thermodynamics

Energy in Thermal Processes: The First Law of Thermodynamics 1. An insulated container half full of room temperature water is shaken vigorously for two minutes. What happens to the temperature of the water?

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

Physics Honors Page 1

1. An ideal standard of measurement should be. variable, but not accessible variable and accessible accessible, but not variable neither variable nor accessible 2. The approximate height of a 12-ounce

Kinetic Molecular Theory. A theory is a collection of ideas that attempts to explain certain phenomena.

Kinetic Molecular Theory A theory is a collection of ideas that attempts to explain certain phenomena. A law is a statement of specific relationships or conditions in nature. After centuries of questioning

Phys222 W11 Quiz 1: Chapters 19-21 Keys. Name:

Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.

Expansion and Compression of a Gas

Physics 6B - Winter 2011 Homework 4 Solutions Expansion and Compression of a Gas In an adiabatic process, there is no heat transferred to or from the system i.e. dq = 0. The first law of thermodynamics

Heat is transferred in or out of system, but temperature may NOT change: Change of phase. sublimation

Heat is transferred in or out of system, but temperature may NOT change: Change of phase sublimation Heat of Fusion Heat of Vaporization Q = ± L m ΔT = 0 L F Heat of fusion Solid to liquid (heat is adsorbed

THERMODYNAMICS. ENGR 103 Lecture 11 Chapter 6 Introduction Pressure Temperature Energy

THERMODYNAMICS ENGR 103 Lecture 11 Chapter 6 Introduction Pressure Temperature Energy Day 11 Student Outcomes Students should be able to: Identify the 1 st and 2 nd laws of Thermodynamics Pressure pick

state and explain how the internal energy and the absolute (kelvin) temperature are related....

6 N08/4/PHYSI/SP2/ENG/TZ0/XX+ A2. This question is about ideal gases. (a) State what is meant by an ideal gas....... For an ideal gas define internal energy. state and explain how the internal energy and

Temperature and Heat Welcome to Thermodynamics

Temperature and Heat Welcome to Thermodynamics (or welcome to heat transfer) Up to now: mass, length, time, current The fourth quantity in physics: Temperature and related another form of energy, HEAT

Entropy and the Second Law of Thermodynamics. The Adiabatic Expansion of Gases

Lecture 7 Entropy and the Second Law of Thermodynamics 15/08/07 The Adiabatic Expansion of Gases In an adiabatic process no heat is transferred, Q=0 = C P / C V is assumed to be constant during this process

c. Applying the first law of thermodynamics from Equation 15.1, we find that c h c h.

Week 11 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

ENTROPY AND THE SECOND LAW OF THERMODYNAMICS

Chapter 20: ENTROPY AND THE SECOND LAW OF THERMODYNAMICS 1. In a reversible process the system: A. is always close to equilibrium states B. is close to equilibrium states only at the beginning and end

THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

Temperature & Heat. Overview

Temperature & Heat Overview Temperature vs Heat What is temperature (degrees)? A measure of the average kinetic energy of the particles in an object What is heat (joules)? That energy transferred between

2. Room temperature: C. Kelvin. 2. Room temperature:

Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

Name: SOLUTIONS. Physics 240, Exam #1 Sept (4:15-5:35)

Name: SOLUTIONS Physics 240, Exam #1 Sept. 24 2015 (4:15-5:35) Instructions: Complete all questions as best you can and show all of your work. If you just write down an answer without explaining how you

Temperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Chapter 17 Temperature and Heat PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_17_2012 Topics for Chapter 17

WebAssign Problem 1: When the temperature of a coin is raised by 75 C, the coin s. , find the coefficient of linear expansion.

Week 10 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

Calculating Work. Thermodynamics. Isobaric Process. Isochoric (isovolumetric) Work from Graph: Example 1 2/27/2012. Chapter 15

Pressure (X105 N/m2) Pressure (X105 N/m2) 2/27/2012 Thermodynamics Chapter 15 Calculating Work Work = area under Pressure vs. Volume graph W = Fd F = PA W=PAd W = P V Calculus link V 2 W = - p dv V 1 Isochoric

Measuring Temperature

Measuring Temperature The standard metric unit of temperature is the degree Celsius ( C). Water freezes at 0 C. Water boils at 100 C. The Fahrenheit scale is used only in the United States. Why Do We Need

Temperature and Heat

Temperature and Heat Foundation Physics Lecture 2.4 26 Jan 10 Temperature, Internal Energy and Heat What is temperature? What is heat? What is internal energy? Temperature Does a glass of water sitting

Chapter 3 Temperature and Heat

Chapter 3 Temperature and Heat In Chapter, temperature was described as an intensive property of a system. In common parlance, we understand temperature as a property which is related to the degree of

Ground Rules. PC1221 Fundamentals of Physics I. Temperature. Thermal Contact. Lectures 19 and 20. Temperature. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 19 and 20 Temperature Dr Tay Seng Chuan Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture is

Properties of Bulk Matter Sections Covered in the Text: Chapter 16

Properties of Bulk Matter Sections Covered in the Text: Chapter 16 In this note we survey certain concepts that comprise the macroscopic description of matter, that is to say, matter in bulk. These include

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

Second Law of Thermodynamics

Thermodynamics T8 Second Law of Thermodynamics Learning Goal: To understand the implications of the second law of thermodynamics. The second law of thermodynamics explains the direction in which the thermodynamic

PSS 17.1: The Bermuda Triangle

Assignment 6 Consider 6.0 g of helium at 40_C in the form of a cube 40 cm. on each side. Suppose 2000 J of energy are transferred to this gas. (i) Determine the final pressure if the process is at constant

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

Final Exam. Wednesday, December 10. 1:30 4:30 pm. University Centre Rooms

16.102 Final Exam Wednesday, December 10 1:30 4:30 pm University Centre Rooms 210 224 30 questions, multiple choice The whole course, equal weighting Formula sheet provided 26 Lab and Tutorial Marks Final

Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B

Serway/Jewett: PSE 8e Problems Set Ch. 19-1

Serway/Jewett: PSE 8e Problems Set Ch. 19-1 Physics 2326 - Assignment No: 1 Chapter 19 Temperature Objective Questions 1. A hole is drilled in a metal plate. When the metal is raised to a higher temperature,

Physics 2326 - Assignment No: 3 Chapter 22 Heat Engines, Entropy and Second Law of Thermodynamics

Serway/Jewett: PSE 8e Problems Set Ch. 22-1 Physics 2326 - Assignment No: 3 Chapter 22 Heat Engines, Entropy and Second Law of Thermodynamics Objective Questions 1. A steam turbine operates at a boiler

Physics 2101 Section 3 April 26th: Chap. 18 : Chap Ann n ce n e t nnt : Exam #4, April Exam #4,

Physics 2101 Section 3 April 26 th : Chap. 18-1919 Announcements: n nt Exam #4, April 28 th (Ch. 13.6-18.8) 18.8) Final Exam: May 11 th (Tuesday), 7:30 AM Make up Final: May 15 th (Saturday) 7:30 AM Class

CHAPTER 20. Q h = 100/0.2 J = 500 J Q c = J = 400 J

CHAPTER 20 1* Where does the energy come from in an internal-combustion engine? In a steam engine? Internal combustion engine: From the heat of combustion (see Problems 19-106 to 19-109). Steam engine:

Chapter 17: Change of Phase

Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

PHYS 1020 Final Exam. Seating (from exam listing on Aurora) Brown Gym. Gold Gym

PHYS 1020 Final Exam Monday, December 17, 6-9 pm The whole course 30 multiple choice questions Formula sheet provided Seating (from exam listing on Aurora) Brown Gym A - SIM Gold Gym SIN - Z 27 Week of

HW#13a Note: numbers used in solution steps are different from your WebAssign values. Page 1 of 8

Note: numbers used in solution steps are different from your WebAssign values. Page 1 of 8 Note: numbers used in solution steps are different from your WebAssign values. 1. Walker3 17.P.003. [565748] Show

Physics 142: Lecture 10 Today s Agenda. Review: Specific Heat. Review: Units of Heat. Review: Internal Energy of Ideal Gas

Physics 142: Lecture 10 Today s Agenda Heat: Phase Change and Latent Heat Heat Transfer (time permitting) Examples Suggested problems for CH11: 23, 46, 49, 0, 1, 78 Review: Internal Energy of Ideal Gas

Lecture 36 (Walker 18.8,18.5-6,)

Lecture 36 (Walker 18.8,18.5-6,) Entropy 2 nd Law of Thermodynamics Dec. 11, 2009 Help Session: Today, 3:10-4:00, TH230 Review Session: Monday, 3:10-4:00, TH230 Solutions to practice Lecture 36 final on

Physics 101: Lecture 23 Temperature and Ideal Gas

EXAM III Physics 101: Lecture 23 Temperature and Ideal Gas Today s lecture will cover Textbook Chapter 13.1-13.4 Temperature of Earth s surface/clouds from NASA/AIRS satellite Physics 101: Lecture 23,

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

Chapter 15: Thermodynamics

Chapter 15: Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat

Temperature, Expansion, Ideal Gas Law

Temperature, Expansion, Ideal Gas Law Physics 1425 Lecture 30 Michael Fowler, UVa Everything s Made of Atoms This idea was only fully accepted about 100 years ago in part because of Einstein s analysis

Introduction to the Ideal Gas Law

Course PHYSICS260 Assignment 5 Consider ten grams of nitrogen gas at an initial pressure of 6.0 atm and at room temperature. It undergoes an isobaric expansion resulting in a quadrupling of its volume.

Reversible & Irreversible Processes

Reversible & Irreversible Processes Example of a Reversible Process: Cylinder must be pulled or pushed slowly enough (quasistatically) that the system remains in thermal equilibrium (isothermal). Change

Copper, Zinc and Brass (an alloy of Cu and Zn) have very similar specific heat capacities. Why should this be so?

Thermal Properties 1. Specific Heat Capacity The heat capacity or thermal capacity of a body is a measure of how much thermal energy is required to raise its temperature by 1K (1 C). This will depend on

Objectives. ordered motion is equal to mv 2 2. , where m and v are the mass and speed of the entire body. SECTION 5.4 ENERGY IN THERMAL SYSTEMS 277

Objectives Define the internal energy of a system. Describe two ways you can change a system s internal energy. Explain the first law of thermodynamics. Use the first law to solve problems involving internal

Temperature and. Chapter 5: Temperature and Heat. Thermometer. Bimetallic Strip and Thermal Expansion. Temperature Scales Celsius, Kelvin, Fahrenheit

Temperature Chapter 5 Chapter 5: Temperature and Heat Temperature and Homework: All questions Heat on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter.

HNRS 227 Fall 2008 Chapter 4. Do You Remember These? iclicker Question. iclicker Question. iclicker Question. iclicker Question

HNRS 227 Fall 2008 Chapter 4 Heat and Temperature presented by Prof. Geller Do You Remember These? Units of length, mass and time, and metric Prefixes Density and its units The Scientific Method Speed,

Temperature and Energy. Temperature and Energy, continued. Visual Concept: Measuring Temperature. Temperature Scales. Temperature Scales, continued

Temperature and Energy What does temperature have to do with energy? The temperature of a substance is proportional to the average kinetic energy of the substance s s particles. temperature: a measure

20 m neon m propane 20

Problems with solutions:. A -m 3 tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T73K; P00KPa; M air 9;

Temperature. Temperature

Chapter 8 Temperature Temperature a number that corresponds to the warmth or coldness of an object measured by a thermometer is a per-particle property no upper limit definite limit on lower end Temperature

IB PHYSICS HL REVIEW PACKET: THERMODYNAMICS (2) (3)

NAME IB PHYSICS HL REVIEW PACKET: THERMODYNAMICS 1. This question is about gases and specific heat capacity. (a) State what is meant by an ideal gas.......... An ideal gas occupies a volume of 1.2 m 3

Chapter 22. Heat Engines, Entropy, and the Second Law of Thermodynamics

Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics C HAP T E R O UTLI N E 221 Heat Engines and the Second Law of Thermodynamics 222 Heat Pumps and Refrigerators 223 Reversible and Irreversible

February 3, 2012 1. Pick up your calculations and your lab sheet. 2. Have your temperature calculations out. 1. The average daytime temperature on Venus is 453 C. What is this temperature in degrees Fahrenheit

Temperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A.

Chapter 17 Temperature and Heat PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Copyright 2012 Pearson Education Inc. Goals

General Physics (PHY 2130)

General Physics (PHY 2130) Lecture 30 Thermal physics Thermal expansion Gases. Absolute temperature Ideal Gas law Exam 3 review http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture:

Chapter 10 Study Questions

Chapter 10 Study Questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following temperatures is the lowest? a. 100ºC c.

The Second Law of Thermodynamics

The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L

hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal

PHYS 102 HOMEWORK VIII

PHYS 102 HOMEWORK VIII DUE DATE: 24/12/2010 FRIDAY 11:50 (end of class) Please Sign Below I pledge my honor that I have not copied the solutions from a solution manual or from a friend. I have neither

Chapter 5: Temperature and Heat

Chapter 5 Chapter 5: Temperature and Heat Temperature and Heat Homework: All questions on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter. Temperature

Internal energy. The internal (total) energy for an ideal gas is the total kinetic energy of the atoms/particles in a gas.

Internal energy The internal (total) energy for an ideal gas is the total kinetic energy of the atoms/particles in a gas. For a non-ideal gas: the internal energy is due to kinetic and potential energy

Laws of Thermodynamics

Laws of Thermodynamics Thermodynamics Thermodynamics is the study of the effects of work, heat, and energy on a system Thermodynamics is only concerned with macroscopic (large-scale) changes and observations

= T T V V T = V. By using the relation given in the problem, we can write this as: ( P + T ( P/ T)V ) = T

hermodynamics: Examples for chapter 3. 1. Show that C / = 0 for a an ideal gas, b a van der Waals gas and c a gas following P = nr. Assume that the following result nb holds: U = P P Hint: In b and c,

Heat Engines and the Second Law of Thermodynamics

Heat Engines and the Second Law of Thermodynamics Heat Engines Reversible and Irreversible Processes The Carnot Engine Refrigerators and Heat Pumps The Second Law of Thermodynamics Homework Heat Engines

Heat Engines, Entropy, and the Second Law of Thermodynamics

2.2 This is the Nearest One Head 669 P U Z Z L E R The purpose of a refrigerator is to keep its contents cool. Beyond the attendant increase in your electricity bill, there is another good reason you should

Physics 101: Lecture 25 Heat

Final Physics 101: Lecture 25 Heat Today s lecture will cover Textbook Chapter 14.1-14.5 Physics 101: Lecture 25, Pg 1 Internal Energy Energy of all molecules including Random motion of individual molecules»

dm 3. dm 3 ) b Find the buoyant force (noste) on the stone when immersed in water. B = r f Vg)

CHAPTER 9 1 Archimedes Law The magnitude of the buoyant force always equals the weight of the fluid displaced by the object Noste nesteessä on yhtä suuri kuin syrjäytetyn nestemäärän paino. Hpätee myös

Chapter 19 Thermodynamics

19.1 Introduction Chapter 19 Thermodynamics We can express the fundamental laws of the universe which correspond to the two fundamental laws of the mechanical theory of heat in the following simple form.

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume

6 Absorption of Heat According to the First Law, E = q + w = q - P V, assuming P-V work is the only kind that can occur. Therefore, E = q V. The subscript means that the process occurs at constant volume.

The First Law of Thermodynamics

The First aw of Thermodynamics Q and W are process (path)-dependent. (Q W) = E int is independent of the process. E int = E int,f E int,i = Q W (first law) Q: + heat into the system; heat lost from the

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

Temperature and Heat. How to Measure Temperature? Temperature and Heat. Temperature, Heat, and Expansion. Thermal Conductivity

Temperature and Heat How to Measure Temperature? Fahrenheit (US) after G.D. Fahrenheit 32 F = freezing 212 F = boiling Celsius (rest of world) after A. Celsius 0 C = freezing 100 C = boiling C = 5/9 (F

Esystem = 0 = Ein Eout

AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.

Phys214 exam#2 (30 problems in total. 5 points each, total 150 points. )

Phys214 exam#2 (30 problems in total. 5 points each, total 150 points. ) 1. An oil tanker heading due west, straight into a strong wind, reaches a speed of 5 m/s and then shuts down its engines to drift.

Thermodynamics. Theory: We can summarize the four laws of thermodynamics as follows:

1 Thermodynamics Objective: To investigate the zeroth and first laws of thermodynamics. To calculate properties such as specific heat. To investigate the ideal gas law. To become familiar with basic P-V

The First Law of Thermodynamics

Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

IT IS THEREFORE A SCIENTIFIC LAW.

361 Lec 4 Fri 2sep16 Now we talk about heat: Zeroth Law of Thermodynamics: (inserted after the 1 st 3 Laws, and often not mentioned) If two objects are in thermal equilibrium with a third object, they

Chapter 11: Heat Engines, and the Second Law of Thermodynamics

Chapter 11: Heat Engines, and the Second Law of Thermodynamics 1. The second law of thermodynamics says that the total amount of entropy, or randomness, in the universe cannot decrease. However, we see

HW#13a Note: numbers used in solution steps are different from your WebAssign values. Page 1 of 6

Note: numbers used in solution steps are different from your WebAssign values. Page 1 of 6 1. Walker3 16.P.006. One day you notice that the outside temperature increased by 24 F between your early morning