Exam 4  PHYS 101. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.


 Gillian French
 2 years ago
 Views:
Transcription
1 Name: Class: Date: Exam 4  PHYS 101 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A steel tape measure is marked such that it gives accurate measurements at room temperature. You place the tape measure in a very cold place and measure the length of a bar which you know to be 1 meter in length. What length will the cold tape measure show? a. length = 1 meter c. length > 1 meter b. length < 1 meter d. Not enough information 2. You want to take apart a couple of steel parts held together by brass screws, but the parts are stuck. What should you do to remove the screws? (The coefficient of linear expansion for steel is C 1. The coefficient for brass is C 1.) a. heat the parts c. Not enough information given b. cool the parts 3. Which of these is the Kelvin temperature scale not based upon? a. freezing point of water d. temperature of the cosmic background b. heat of vaporization of water e. all of the above c. boiling point of water 4. Which is the smallest unit of temperature: one degree Kelvin, Celsius, or Fahrenheit? a. Celsius c. Kelvin & Celsius b. Kelvin d. Fahrenheit 5. You heat a bimetallic strip that is made of brass on one side and steel on the other side. As you heat it, the strip will bend towards which side? (The coefficient of linear expansion for steel is C 1. The coefficient for brass is C 1.) a. the brass side c. the strip will not bend b. the steel side d. don t know 6. An atomic ideal gas occupies a volume of 0.01 m 3 at 30 C and a pressure of Pa. How many atoms are present in the gas? (universal gas constant=8.314 J/(mol K); Boltzmann s constant = J/K; Avogadro s number is ) a. 4.0 moles c. 0.4 atoms b atoms d atoms 7. A containter of atomic gas is present in a volume of 0.02 m 3, with a temperature of 20 C, and at a pressure of 1 atmosphere. If the pressure drops to atmosphere, what is the temperature? (ideal gas constant = J/mol K; 1 atm = Pa) a. 0 C c. 2.7 K b K d. 3 mk 1
2 Name: 8. Two identical cylinders at the same temperature contain the same gas. If container A has 4 times as much gas as container B, which has the highest pressure? a. A c. they have the same pressure b. B d. not enough information given 9. Neon has a molar mass of kg/mol. Helium has a molar mass of kg/mol. In one mole, which has the greater number of atoms? a. Neon c. both the same b. Helium 10. A steel bar is 10 meters long. It is heated from 100 C to 1000 C. What is the new length of the steel bar? (The coefficient of linear expansion for steel is C 1.) For this problem, ignore the proper use of significant figures. a m c. 10 cm b m d. 0.1 m 11. The specific heat of aluminum is 900 J/kg C. The specific heat of glass is 837 J/kg C. If two pieces of glass and aluminum, each with the same mass, are placed in an oven. For which of these will the temperature rise more quickly? a. aluminum c. temperature of both will increase at same rate b. glass d. not enough information given 12. Water falls from 50 meters. Assume all gravitational potential energy is converted to thermal energy. What is the change in temperature of the water? The specific heat of water is 4186 J/kg C. a. 0.1 C c. 1 C b C d. not enough information given 13. You place a mass of copper at 10 C into a container with 100 g of steam at 100 C. The system reaches an equilibrium temperature of 45 C. What is the mass of the copper? (for water: latent heat of vaporization= J/kg, latent heat of fusion= J/kg, and specific heat=4186 J/kg C. For copper, the specific heat is 387 J/kg C.) a. 10 kg c. 1 kg b. 3 kg d. 10,000 kg 14. Does one transer heat into a substance (Q>0) or take heat away from a substance (Q<0) in order to convert it from a vapor to a liquid? a. Q<0 c. not enough information b. Q>0 d. neither, Q=0 2
3 Name: 15. Convection is the transfer of heat caused by a. contact between two objects c. the conversion of work to heat b. the transfer of radiation d. the motion of a substance 16. Water has a higher specific heat than sand. Therefore, in the afternoon, breezes blow a. from the beach to the ocean c. either way, makes no difference b. from the ocean to the beach 17. You put 1 kg of ice at 0 C with 1 kg of water at 50 C. What is the final temperature of the water? (For water: latent heat of vaporization= J/kg, latent heat of fusion= J/kg, and specific heat=4186 J/kg C.) a. 25 C c. 0 C b. 75 C d. 50 C 18. A special type of star has a temperature of 100,000 K and a radius of 10 3 m. The star is a perfect blackbody absorber. What power is radiated by the star in the form of radiation? (The StefanBoltzmann constant is W/m 2 K 4 ) a W c. 0 W b. 6 W d. 70,000 W 19. How much heat is required to raise the temperature of 100 g of ice from 20 C to 50 C? (For water: latent heat of vaporization= J/kg, latent heat of fusion= J/kg, and specific heat=4186 J/kg C.) a J c J b J d J 20. Zero degrees Celsius is equivalent to which of these temperatures: a. 273 K c K b. 20 F d. 32 F 21. In which of these processes is the internal energy of the gas equal to the work done on the gas? a. adiabatic d. isovolumetric b. isothermal e. isochroic c. isobaric 3
4 Name: 22. In this figure, what is the work done on the gas when it follows the path ab (beginning at a and ending at b)? a c. 12,000 J b. 12,000 J d. 10,000 J 23. In the figure for problem 22, what is the heat transferred to the gas for the cyclic path ABCA? a. 6,000 J c. 6,000 J b. 12,000 J d. 6 J 24. In a heat engine, 10,000 J of heat is absorbed by the steam from the coal boiler. This steam powers a turbine with 8,000 J of work. Then, 2,000 J of heat is dispersed in a cooling tower. What is the efficiency of this heat engine? a. 20% c. 80% b. 160% d. 25% 25. Which of these is not a step in the 4stroke internal combustion engine? a. power c. exhaust b. ignition d. intake 26. The second law of thermodynamics says which of these can never be zero? a. entropy c. work b. heat from the hot reservoir d. heat to the cold reservoir 4
5 Name: 27. A movable piston has a mass of 8.00 kg and an area of 9.50 cm 2. Inside the piston, 0.1 moles of an ideal gas experience a temperature change from 30 C to 100 C while the piston moves (without friction). How much work is done on the gas? (universal gas constant=8.314 J/(mol K); Boltzmann s constant = J/K; StefanBoltzmann constant= W/(m 2 K 4 )) a J c J b. 60 J d. 60 J 28. Gas in a container is at a pressure of 1000 Pa and a volume of 4 m 3. How much work is done on the gas if it expands at constant pressure to three times its original volume? a. 8,000 J c. 8,000 J b. 12,000 J d. 4,000 J 29. An ideal, monatomic gas undergoes a thermal process where no heat is transferred to the gas. The inital pressure is 1000 Pa, and the initial volume is 0.1 m 3. The final volume is 0.2 m 3. What is the final pressure? (For a monatomic gas, Cp= 5 2 R and Cv= 3 2 R.) a. 300 Pa c. 700 Pa b. 100 Pa d. 500 Pa 30. You are using version A of this test. Please bubble A and write Version A on your scantron. a. A c. C b. B d. D 5
6 Exam 4  PHYS 101 Answer Section MULTIPLE CHOICE 1. ANS: C PTS: 1 2. ANS: B PTS: 1 3. ANS: E PTS: 1 4. ANS: D PTS: 1 5. ANS: B PTS: 1 6. ANS: D PTS: 1 7. ANS: D PTS: 1 8. ANS: A PTS: 1 9. ANS: C PTS: ANS: B PTS: ANS: B PTS: ANS: A PTS: ANS: A PTS: ANS: A PTS: ANS: D PTS: ANS: B PTS: ANS: C PTS: ANS: C PTS: ANS: D PTS: ANS: A PTS: ANS: A PTS: ANS: D PTS: ANS: A PTS: ANS: C PTS: ANS: B PTS: ANS: D PTS: ANS: D PTS: ANS: C PTS: ANS: A PTS: ANS: A PTS: 1 1
Physics Final Exam Chapter 13 Review
Physics 1401  Final Exam Chapter 13 Review 11. The coefficient of linear expansion of steel is 12 10 6 /C. A railroad track is made of individual rails of steel 1.0 km in length. By what length would
More informationFinal Exam Review Questions PHY Final Chapters
Final Exam Review Questions PHY 2425  Final Chapters Section: 17 1 Topic: Thermal Equilibrium and Temperature Type: Numerical 12 A temperature of 14ºF is equivalent to A) 10ºC B) 7.77ºC C) 25.5ºC D) 26.7ºC
More informationThermodynamics AP Physics B. Multiple Choice Questions
Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium
More informationThermodynamics is the study of heat. It s what comes into play when you drop an ice cube
Chapter 12 You re Getting Warm: Thermodynamics In This Chapter Converting between temperature scales Working with linear expansion Calculating volume expansion Using heat capacities Understanding latent
More informationTemperature Scales. temperature scales Celsius Fahrenheit Kelvin
Ch. 1011 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature
More informationChapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57
Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity
More informationAP Physics Problems Kinetic Theory, Heat, and Thermodynamics
AP Physics Problems Kinetic Theory, Heat, and Thermodynamics 1. 19746 (KT & TD) Onetenth of a mole of an ideal monatomic gas undergoes a process described by the straightline path AB shown in the pv
More informationPhysics Assignment No 2 Chapter 20 The First Law of Thermodynamics Note: Answers are provided only to numerical problems.
Serway/Jewett: PSE 8e Problems Set Ch. 201 Physics 2326  Assignment No 2 Chapter 20 The First Law of Thermodynamics Note: Answers are provided only to numerical problems. 1. How long would it take a
More informationProblems of Chapter 2
Section 2.1 Heat and Internal Energy Problems of Chapter 2 1 On his honeymoon James Joule traveled from England to Switzerland. He attempted to verify his idea of the interconvertibility of mechanical
More informationThe final numerical answer given is correct but the math shown does not give that answer.
Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but
More informationAnswer, Key Homework 6 David McIntyre 1
Answer, Key Homework 6 David McIntyre 1 This printout should have 0 questions, check that it is complete. Multiplechoice questions may continue on the next column or page: find all choices before making
More informationHeat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature
Unit of heat: calorie (cal) Heat as Energy Transfer Heat is energy transferred from one object to another because of a difference in temperature 1 cal is the amount of heat necessary to raise the temperature
More informationChapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law. Copyright 2009 Pearson Education, Inc.
Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law Units of Chapter 17 Atomic Theory of Matter Temperature and Thermometers Thermal Equilibrium and the Zeroth Law of Thermodynamics Thermal
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam 3 General Physics 202 Name 1) 550 g of water at 75eC are poured into an 855 g aluminum container with an initial temperature of 11eC. The specific heat of aluminum is 900 J/(kgœK). How much heat flows
More information1. A 4 kg aluminum rod has a temperature of 100 C. It is placed into an insulated bucket containing 50 kg of water at 0 C. (T 0 C) = (4 kg) 900 J
Physics 101 Quiz #8 Solution November 20, 2002 Name 20 Minutes. Box your answers. density specific heat thermal coefficient of capacity conductivity thermal expansion (kg/m 3 ) (J/kg C) (J/m s C) (1/ C)
More informationEnergy in Thermal Processes: The First Law of Thermodynamics
Energy in Thermal Processes: The First Law of Thermodynamics 1. An insulated container half full of room temperature water is shaken vigorously for two minutes. What happens to the temperature of the water?
More informationName: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.
Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling
More informationPhysics Honors Page 1
1. An ideal standard of measurement should be. variable, but not accessible variable and accessible accessible, but not variable neither variable nor accessible 2. The approximate height of a 12ounce
More informationKinetic Molecular Theory. A theory is a collection of ideas that attempts to explain certain phenomena.
Kinetic Molecular Theory A theory is a collection of ideas that attempts to explain certain phenomena. A law is a statement of specific relationships or conditions in nature. After centuries of questioning
More informationPhys222 W11 Quiz 1: Chapters 1921 Keys. Name:
Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.
More informationExpansion and Compression of a Gas
Physics 6B  Winter 2011 Homework 4 Solutions Expansion and Compression of a Gas In an adiabatic process, there is no heat transferred to or from the system i.e. dq = 0. The first law of thermodynamics
More informationHeat is transferred in or out of system, but temperature may NOT change: Change of phase. sublimation
Heat is transferred in or out of system, but temperature may NOT change: Change of phase sublimation Heat of Fusion Heat of Vaporization Q = ± L m ΔT = 0 L F Heat of fusion Solid to liquid (heat is adsorbed
More informationTHERMODYNAMICS. ENGR 103 Lecture 11 Chapter 6 Introduction Pressure Temperature Energy
THERMODYNAMICS ENGR 103 Lecture 11 Chapter 6 Introduction Pressure Temperature Energy Day 11 Student Outcomes Students should be able to: Identify the 1 st and 2 nd laws of Thermodynamics Pressure pick
More informationstate and explain how the internal energy and the absolute (kelvin) temperature are related....
6 N08/4/PHYSI/SP2/ENG/TZ0/XX+ A2. This question is about ideal gases. (a) State what is meant by an ideal gas....... For an ideal gas define internal energy. state and explain how the internal energy and
More informationTemperature and Heat Welcome to Thermodynamics
Temperature and Heat Welcome to Thermodynamics (or welcome to heat transfer) Up to now: mass, length, time, current The fourth quantity in physics: Temperature and related another form of energy, HEAT
More informationEntropy and the Second Law of Thermodynamics. The Adiabatic Expansion of Gases
Lecture 7 Entropy and the Second Law of Thermodynamics 15/08/07 The Adiabatic Expansion of Gases In an adiabatic process no heat is transferred, Q=0 = C P / C V is assumed to be constant during this process
More informationc. Applying the first law of thermodynamics from Equation 15.1, we find that c h c h.
Week 11 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationENTROPY AND THE SECOND LAW OF THERMODYNAMICS
Chapter 20: ENTROPY AND THE SECOND LAW OF THERMODYNAMICS 1. In a reversible process the system: A. is always close to equilibrium states B. is close to equilibrium states only at the beginning and end
More informationTHE KINETIC THEORY OF GASES
Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure
More informationTemperature & Heat. Overview
Temperature & Heat Overview Temperature vs Heat What is temperature (degrees)? A measure of the average kinetic energy of the particles in an object What is heat (joules)? That energy transferred between
More information2. Room temperature: C. Kelvin. 2. Room temperature:
Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational
More informationName: SOLUTIONS. Physics 240, Exam #1 Sept (4:155:35)
Name: SOLUTIONS Physics 240, Exam #1 Sept. 24 2015 (4:155:35) Instructions: Complete all questions as best you can and show all of your work. If you just write down an answer without explaining how you
More informationTemperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman
Chapter 17 Temperature and Heat PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_17_2012 Topics for Chapter 17
More informationWebAssign Problem 1: When the temperature of a coin is raised by 75 C, the coin s. , find the coefficient of linear expansion.
Week 10 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationCalculating Work. Thermodynamics. Isobaric Process. Isochoric (isovolumetric) Work from Graph: Example 1 2/27/2012. Chapter 15
Pressure (X105 N/m2) Pressure (X105 N/m2) 2/27/2012 Thermodynamics Chapter 15 Calculating Work Work = area under Pressure vs. Volume graph W = Fd F = PA W=PAd W = P V Calculus link V 2 W =  p dv V 1 Isochoric
More informationMeasuring Temperature
Measuring Temperature The standard metric unit of temperature is the degree Celsius ( C). Water freezes at 0 C. Water boils at 100 C. The Fahrenheit scale is used only in the United States. Why Do We Need
More informationTemperature and Heat
Temperature and Heat Foundation Physics Lecture 2.4 26 Jan 10 Temperature, Internal Energy and Heat What is temperature? What is heat? What is internal energy? Temperature Does a glass of water sitting
More informationChapter 3 Temperature and Heat
Chapter 3 Temperature and Heat In Chapter, temperature was described as an intensive property of a system. In common parlance, we understand temperature as a property which is related to the degree of
More informationGround Rules. PC1221 Fundamentals of Physics I. Temperature. Thermal Contact. Lectures 19 and 20. Temperature. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 19 and 20 Temperature Dr Tay Seng Chuan Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture is
More informationProperties of Bulk Matter Sections Covered in the Text: Chapter 16
Properties of Bulk Matter Sections Covered in the Text: Chapter 16 In this note we survey certain concepts that comprise the macroscopic description of matter, that is to say, matter in bulk. These include
More informationChapter 10 Temperature and Heat
Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its
More informationCHAPTER 14 THE CLAUSIUSCLAPEYRON EQUATION
CHAPTER 4 THE CAUIUCAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to reread ections 9. and 9.3 of Chapter 9. The ClausiusClapeyron equation relates the latent heat
More informationSecond Law of Thermodynamics
Thermodynamics T8 Second Law of Thermodynamics Learning Goal: To understand the implications of the second law of thermodynamics. The second law of thermodynamics explains the direction in which the thermodynamic
More informationPSS 17.1: The Bermuda Triangle
Assignment 6 Consider 6.0 g of helium at 40_C in the form of a cube 40 cm. on each side. Suppose 2000 J of energy are transferred to this gas. (i) Determine the final pressure if the process is at constant
More information18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a
First Major T042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the
More informationFinal Exam. Wednesday, December 10. 1:30 4:30 pm. University Centre Rooms
16.102 Final Exam Wednesday, December 10 1:30 4:30 pm University Centre Rooms 210 224 30 questions, multiple choice The whole course, equal weighting Formula sheet provided 26 Lab and Tutorial Marks Final
More informationPractice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C
Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B
More informationSerway/Jewett: PSE 8e Problems Set Ch. 191
Serway/Jewett: PSE 8e Problems Set Ch. 191 Physics 2326  Assignment No: 1 Chapter 19 Temperature Objective Questions 1. A hole is drilled in a metal plate. When the metal is raised to a higher temperature,
More informationPhysics 2326  Assignment No: 3 Chapter 22 Heat Engines, Entropy and Second Law of Thermodynamics
Serway/Jewett: PSE 8e Problems Set Ch. 221 Physics 2326  Assignment No: 3 Chapter 22 Heat Engines, Entropy and Second Law of Thermodynamics Objective Questions 1. A steam turbine operates at a boiler
More informationPhysics 2101 Section 3 April 26th: Chap. 18 : Chap Ann n ce n e t nnt : Exam #4, April Exam #4,
Physics 2101 Section 3 April 26 th : Chap. 181919 Announcements: n nt Exam #4, April 28 th (Ch. 13.618.8) 18.8) Final Exam: May 11 th (Tuesday), 7:30 AM Make up Final: May 15 th (Saturday) 7:30 AM Class
More informationCHAPTER 20. Q h = 100/0.2 J = 500 J Q c = J = 400 J
CHAPTER 20 1* Where does the energy come from in an internalcombustion engine? In a steam engine? Internal combustion engine: From the heat of combustion (see Problems 19106 to 19109). Steam engine:
More informationChapter 17: Change of Phase
Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.
More informationPHYS 1020 Final Exam. Seating (from exam listing on Aurora) Brown Gym. Gold Gym
PHYS 1020 Final Exam Monday, December 17, 69 pm The whole course 30 multiple choice questions Formula sheet provided Seating (from exam listing on Aurora) Brown Gym A  SIM Gold Gym SIN  Z 27 Week of
More informationHW#13a Note: numbers used in solution steps are different from your WebAssign values. Page 1 of 8
Note: numbers used in solution steps are different from your WebAssign values. Page 1 of 8 Note: numbers used in solution steps are different from your WebAssign values. 1. Walker3 17.P.003. [565748] Show
More informationPhysics 142: Lecture 10 Today s Agenda. Review: Specific Heat. Review: Units of Heat. Review: Internal Energy of Ideal Gas
Physics 142: Lecture 10 Today s Agenda Heat: Phase Change and Latent Heat Heat Transfer (time permitting) Examples Suggested problems for CH11: 23, 46, 49, 0, 1, 78 Review: Internal Energy of Ideal Gas
More informationLecture 36 (Walker 18.8,18.56,)
Lecture 36 (Walker 18.8,18.56,) Entropy 2 nd Law of Thermodynamics Dec. 11, 2009 Help Session: Today, 3:104:00, TH230 Review Session: Monday, 3:104:00, TH230 Solutions to practice Lecture 36 final on
More informationPhysics 101: Lecture 23 Temperature and Ideal Gas
EXAM III Physics 101: Lecture 23 Temperature and Ideal Gas Today s lecture will cover Textbook Chapter 13.113.4 Temperature of Earth s surface/clouds from NASA/AIRS satellite Physics 101: Lecture 23,
More informationFUNDAMENTALS OF ENGINEERING THERMODYNAMICS
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant
More informationChapter 15: Thermodynamics
Chapter 15: Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat
More informationTemperature, Expansion, Ideal Gas Law
Temperature, Expansion, Ideal Gas Law Physics 1425 Lecture 30 Michael Fowler, UVa Everything s Made of Atoms This idea was only fully accepted about 100 years ago in part because of Einstein s analysis
More informationIntroduction to the Ideal Gas Law
Course PHYSICS260 Assignment 5 Consider ten grams of nitrogen gas at an initial pressure of 6.0 atm and at room temperature. It undergoes an isobaric expansion resulting in a quadrupling of its volume.
More informationReversible & Irreversible Processes
Reversible & Irreversible Processes Example of a Reversible Process: Cylinder must be pulled or pushed slowly enough (quasistatically) that the system remains in thermal equilibrium (isothermal). Change
More informationCopper, Zinc and Brass (an alloy of Cu and Zn) have very similar specific heat capacities. Why should this be so?
Thermal Properties 1. Specific Heat Capacity The heat capacity or thermal capacity of a body is a measure of how much thermal energy is required to raise its temperature by 1K (1 C). This will depend on
More informationObjectives. ordered motion is equal to mv 2 2. , where m and v are the mass and speed of the entire body. SECTION 5.4 ENERGY IN THERMAL SYSTEMS 277
Objectives Define the internal energy of a system. Describe two ways you can change a system s internal energy. Explain the first law of thermodynamics. Use the first law to solve problems involving internal
More informationTemperature and. Chapter 5: Temperature and Heat. Thermometer. Bimetallic Strip and Thermal Expansion. Temperature Scales Celsius, Kelvin, Fahrenheit
Temperature Chapter 5 Chapter 5: Temperature and Heat Temperature and Homework: All questions Heat on the Multiple Choice and the oddnumbered questions on Exercises sections at the end of the chapter.
More informationHNRS 227 Fall 2008 Chapter 4. Do You Remember These? iclicker Question. iclicker Question. iclicker Question. iclicker Question
HNRS 227 Fall 2008 Chapter 4 Heat and Temperature presented by Prof. Geller Do You Remember These? Units of length, mass and time, and metric Prefixes Density and its units The Scientific Method Speed,
More informationTemperature and Energy. Temperature and Energy, continued. Visual Concept: Measuring Temperature. Temperature Scales. Temperature Scales, continued
Temperature and Energy What does temperature have to do with energy? The temperature of a substance is proportional to the average kinetic energy of the substance s s particles. temperature: a measure
More information20 m neon m propane 20
Problems with solutions:. A m 3 tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T73K; P00KPa; M air 9;
More informationTemperature. Temperature
Chapter 8 Temperature Temperature a number that corresponds to the warmth or coldness of an object measured by a thermometer is a perparticle property no upper limit definite limit on lower end Temperature
More informationIB PHYSICS HL REVIEW PACKET: THERMODYNAMICS (2) (3)
NAME IB PHYSICS HL REVIEW PACKET: THERMODYNAMICS 1. This question is about gases and specific heat capacity. (a) State what is meant by an ideal gas.......... An ideal gas occupies a volume of 1.2 m 3
More informationChapter 22. Heat Engines, Entropy, and the Second Law of Thermodynamics
Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics C HAP T E R O UTLI N E 221 Heat Engines and the Second Law of Thermodynamics 222 Heat Pumps and Refrigerators 223 Reversible and Irreversible
More information1. Pick up your calculations and your lab sheet. 2. Have your temperature calculations out.
February 3, 2012 1. Pick up your calculations and your lab sheet. 2. Have your temperature calculations out. 1. The average daytime temperature on Venus is 453 C. What is this temperature in degrees Fahrenheit
More informationTemperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A.
Chapter 17 Temperature and Heat PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Copyright 2012 Pearson Education Inc. Goals
More informationGeneral Physics (PHY 2130)
General Physics (PHY 2130) Lecture 30 Thermal physics Thermal expansion Gases. Absolute temperature Ideal Gas law Exam 3 review http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture:
More informationChapter 10 Study Questions
Chapter 10 Study Questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following temperatures is the lowest? a. 100ºC c.
More informationThe Second Law of Thermodynamics
The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction
More informationa) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L
hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal
More informationPHYS 102 HOMEWORK VIII
PHYS 102 HOMEWORK VIII DUE DATE: 24/12/2010 FRIDAY 11:50 (end of class) Please Sign Below I pledge my honor that I have not copied the solutions from a solution manual or from a friend. I have neither
More informationChapter 5: Temperature and Heat
Chapter 5 Chapter 5: Temperature and Heat Temperature and Heat Homework: All questions on the Multiple Choice and the oddnumbered questions on Exercises sections at the end of the chapter. Temperature
More informationInternal energy. The internal (total) energy for an ideal gas is the total kinetic energy of the atoms/particles in a gas.
Internal energy The internal (total) energy for an ideal gas is the total kinetic energy of the atoms/particles in a gas. For a nonideal gas: the internal energy is due to kinetic and potential energy
More informationLaws of Thermodynamics
Laws of Thermodynamics Thermodynamics Thermodynamics is the study of the effects of work, heat, and energy on a system Thermodynamics is only concerned with macroscopic (largescale) changes and observations
More information= T T V V T = V. By using the relation given in the problem, we can write this as: ( P + T ( P/ T)V ) = T
hermodynamics: Examples for chapter 3. 1. Show that C / = 0 for a an ideal gas, b a van der Waals gas and c a gas following P = nr. Assume that the following result nb holds: U = P P Hint: In b and c,
More informationHeat Engines and the Second Law of Thermodynamics
Heat Engines and the Second Law of Thermodynamics Heat Engines Reversible and Irreversible Processes The Carnot Engine Refrigerators and Heat Pumps The Second Law of Thermodynamics Homework Heat Engines
More informationHeat Engines, Entropy, and the Second Law of Thermodynamics
2.2 This is the Nearest One Head 669 P U Z Z L E R The purpose of a refrigerator is to keep its contents cool. Beyond the attendant increase in your electricity bill, there is another good reason you should
More informationPhysics 101: Lecture 25 Heat
Final Physics 101: Lecture 25 Heat Today s lecture will cover Textbook Chapter 14.114.5 Physics 101: Lecture 25, Pg 1 Internal Energy Energy of all molecules including Random motion of individual molecules»
More informationdm 3. dm 3 ) b Find the buoyant force (noste) on the stone when immersed in water. B = r f Vg)
CHAPTER 9 1 Archimedes Law The magnitude of the buoyant force always equals the weight of the fluid displaced by the object Noste nesteessä on yhtä suuri kuin syrjäytetyn nestemäärän paino. Hpätee myös
More informationChapter 19 Thermodynamics
19.1 Introduction Chapter 19 Thermodynamics We can express the fundamental laws of the universe which correspond to the two fundamental laws of the mechanical theory of heat in the following simple form.
More informationAbsorption of Heat. Internal energy is the appropriate energy variable to use at constant volume
6 Absorption of Heat According to the First Law, E = q + w = q  P V, assuming PV work is the only kind that can occur. Therefore, E = q V. The subscript means that the process occurs at constant volume.
More informationThe First Law of Thermodynamics
The First aw of Thermodynamics Q and W are process (path)dependent. (Q W) = E int is independent of the process. E int = E int,f E int,i = Q W (first law) Q: + heat into the system; heat lost from the
More informationTHERMOCHEMISTRY & DEFINITIONS
THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the
More informationTemperature and Heat. How to Measure Temperature? Temperature and Heat. Temperature, Heat, and Expansion. Thermal Conductivity
Temperature and Heat How to Measure Temperature? Fahrenheit (US) after G.D. Fahrenheit 32 F = freezing 212 F = boiling Celsius (rest of world) after A. Celsius 0 C = freezing 100 C = boiling C = 5/9 (F
More informationEsystem = 0 = Ein Eout
AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.
More informationPhys214 exam#2 (30 problems in total. 5 points each, total 150 points. )
Phys214 exam#2 (30 problems in total. 5 points each, total 150 points. ) 1. An oil tanker heading due west, straight into a strong wind, reaches a speed of 5 m/s and then shuts down its engines to drift.
More informationThermodynamics. Theory: We can summarize the four laws of thermodynamics as follows:
1 Thermodynamics Objective: To investigate the zeroth and first laws of thermodynamics. To calculate properties such as specific heat. To investigate the ideal gas law. To become familiar with basic PV
More informationThe First Law of Thermodynamics
Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot
More informationIT IS THEREFORE A SCIENTIFIC LAW.
361 Lec 4 Fri 2sep16 Now we talk about heat: Zeroth Law of Thermodynamics: (inserted after the 1 st 3 Laws, and often not mentioned) If two objects are in thermal equilibrium with a third object, they
More informationChapter 11: Heat Engines, and the Second Law of Thermodynamics
Chapter 11: Heat Engines, and the Second Law of Thermodynamics 1. The second law of thermodynamics says that the total amount of entropy, or randomness, in the universe cannot decrease. However, we see
More informationHW#13a Note: numbers used in solution steps are different from your WebAssign values. Page 1 of 6
Note: numbers used in solution steps are different from your WebAssign values. Page 1 of 6 1. Walker3 16.P.006. One day you notice that the outside temperature increased by 24 F between your early morning
More informationHeat and Temperature. Temperature Scales. Thermometers and Temperature Scales
Heat and Temperature Thermometers and Temperature Scales The mercurybased one you see here relies on the fact that mercury expands at a predictable rate with temperature. The scale of the thermometer
More informationVersion PREVIEW Heat Chap. 11 sizemore (13756) 1
Version PREVIEW Heat Chap. 11 sizemore (13756) 1 This printout should have 25 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. Discharge
More information