# Statistical Concepts and Market Return

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Statistical Concepts and Market Return 2014 Level I Quantitative Methods IFT Notes for the CFA exam

3 1. Introduction Statistical methods provide a powerful set of tools for analyzing data and drawing conclusions from them. These are particularly useful when we are analyzing asset returns, earning growth rates, commodity prices, or any other financial data. Descriptive statistics is the branch of statistics that deals with describing and analyzing data. In this reading, we will study statistical methods that allow us to summarize return distributions. Specifically, we will explore four properties of return distributions: Where the returns are centered (central tendency) How far returns are dispersed from their center (dispersion) Whether the distribution of returns is symmetrically shaped or lopsided (skewness) Whether extreme outcomes are likely (kurtosis) 2. Some Fundamental Concepts 2.1 The Nature of Statistics The term statistics can have two broad meanings, one referring to data and the other to method. Statistical methods include: Descriptive statistics: Study of how data can be summarized effectively to describe the important aspects of large data sets. Statistical inference: Making forecasts, estimates, or judgments about a larger group from the smaller group actually observed. 2.2 Populations and Samples A population is defined as all members of a specified group. Any descriptive measure of a population characteristic is called a parameter. A sample is a subset of a population. Any descriptive measure of a sample characteristic is called a sample statistic (statistic, for short). Copyright Irfanullah Financial Training. All rights reserved. Page 2

4 2.3 Measurement Scales To choose the appropriate statistical method for summarizing and analyzing data, we need to distinguish among different measurement scales. All data measurements are taken on one of the following scales: Nominal scales: These scales categorize data but do not rank them. Hence, they are often considered the weakest level of measurement. An example could be if we assigned integers to mutual funds that follow different investment strategies. Number 1 might refer to a small-cap value fund, number 2 might refer to a large-cap value fund, and so on for each possible style. Ordinal scales: These scales sort data into categories that are ordered with respect to some characteristic. An example is Standard & Poor s star ratings for mutual funds. One star represents the group of mutual funds with the worst performance. Similarly, groups with two, three, four and five stars represent groups with increasingly better performance. Interval scales: These scales not only rank data, but also ensure that the differences between scale values are equal. The Celsius and Fahrenheit scales are examples of such scales. The difference in temperature between 10 o C and 11 o C is the same amount as the difference between 40 o C and 41 o C. The zero point of an interval scale does not reflect complete absence of what is being measured. Hence, it is not a true zero point or natural zero. Ratio scales: These scales have all the characteristics of interval scales as well as a true zero point as the origin. This is the strongest level of measurement. The rate of return on an investment is measured on a ratio scale. A return of 0% means the absence of any return. Worked Example 1: Identifying Scales of Measurement Note: this example has been reproduced from the curriculum. State the scale of measurement for each of the following: 1. Credit ratings for bond issues. 2. Cash dividends per share. Copyright Irfanullah Financial Training. All rights reserved. Page 3

5 3. Hedge fund classification types. 4. Bond maturity in years. Solution to 1: Credit ratings are measured on an ordinal scale. A rating places a bond issue in a category, and the categories are ordered with respect to the expected probability of default. But the difference in the expected probability of default between AA and A+, for example, is not necessarily equal to that between BB and B+. In other words, letter credit ratings are not measured on an interval scale. Solution to 2: Cash dividends per share are measured on a ratio scale. For this variable, 0 represents the complete absence of dividends; it is a true zero point. Solution to 3: Hedge fund classification types are measured on a nominal scale. Each type groups together hedge funds with similar investment strategies. In contrast to credit ratings for bonds, however, hedge fund classification schemes do not involve a ranking. Thus such classification schemes are not measured on an ordinal scale. Solution to 4: Bond maturity is measured on a ratio scale. 3. Summarizing Data Using Frequency Distributions A frequency distribution is a tabular display of data summarized into a relatively small number of intervals. In order to construct a frequency distribution, we can follow the following procedure: Sort the data in ascending order. Copyright Irfanullah Financial Training. All rights reserved. Page 4

6 Calculate the range of the data, defined as Range = Maximum value Minimum value. Decide on the number of intervals in the frequency distribution, k. Determine interval width as Range/k. Determine the intervals by successively adding the interval width to the minimum value to determine the ending points of intervals. Stop after reaching an interval that includes the maximum value. Count the number of observations falling in each interval. Construct a table of the intervals listed from smallest to largest that shows the number of observations falling in each interval. The following example illustrates the process. Worked Example 2: Construction of a Frequency Table Say you are evaluating 100 stocks with prices ranging from 46 to 65. Stock Price (Absolute) Frequency Cumulative Frequency Relative Frequency Cumulative Relative Frequency In order to summarize this data, we have divided the stock prices into 4 intervals of stock price each having a width of 5. The actual number of observations in a given interval is called the absolute frequency, or simply the frequency. For example, there are 25 stocks falling in the interval of price range from The relative frequency is the absolute frequency of each interval divided by the total number of observations. The cumulative relative frequency cumulates the relative frequencies as we move from the first to the last interval. It tells us the fraction of observations that are less than the upper limit of each interval. So there are 60 observations less than the stock price of 55. The frequency distribution gives us a sense of where most of the observations lie and also whether the distribution is evenly distributed, lopsided, or peaked. Copyright Irfanullah Financial Training. All rights reserved. Page 5

7 Frequency Statistical Concepts and Market Return Irfanullah.co 4. The Presentation of Data Graphic A graphical display allows us to visualize important characteristics of a data set. In this section we discuss the histogram, frequency polygon, and the cumulative frequency distribution. 4.1 The Histogram A histogram is a bar chart of data that have been grouped into a frequency distribution. The advantage of the visual display is that we can quickly see where most of the observations lie. Consider the histogram shown below Histogram 15 Frequency Stock Price The height of each bar in the histogram represents the absolute frequency for each interval. 4.2 The Frequency Polygon and the Cumulative Frequency Distribution The frequency polygon is constructed when we plot the midpoint of each interval on the x-axis and the absolute frequency for that interval on the y-axis. We then connect the neighboring points with a straight line. The figure below is an example of a frequency polygon. Copyright Irfanullah Financial Training. All rights reserved. Page 6

8 40 Frequency Polygon Frequency Another graphical tool is the cumulative frequency distribution. Such a graph can plot either the cumulative absolute or cumulative relative frequency against the upper interval limit. The cumulative frequency distribution allows us to see how many or what percent of the observations lie below a certain value. The figure below is an example of a cumulative frequency distribution. 120 Cumulative Frequency Cumulative Frequency Copyright Irfanullah Financial Training. All rights reserved. Page 7

9 5. Measures of Central Tendency A measure of central tendency specifies where the data are centered. Measures of location include not only measures of central tendency but other measures that illustrate the location or distribution of data. As a basis for understanding the measures of central tendency, let us consider the stock returns of a company over the last 10 years: 2%, 5%, 4%, 7%, 8%, 8%, 12%, 10%, 8%, and 5%. We will use this data set to explain various measures of central tendency. 5.1 The Arithmetic Mean The arithmetic mean is the sum of the observations divided by the number of observations. It is the most frequently used measure of the middle or center of data. The Population Mean The population mean is the arithmetic mean computed for a population. A given population has only one mean. For a finite population, the population mean is: µ = N i=1 X i N where N is the number of observations in the entire population and X i is the ith observation. For the dataset described above, µ = 10 µ = 6.9% The Sample Mean The sample mean is calculated like the population mean, except we use the sample values. X = n i=1 X i n where n is the number of observations in the sample. If the sample data is: 8, 12, 10, 8 and 5, the sample mean can be calculated as: Copyright Irfanullah Financial Training. All rights reserved. Page 8

10 X = X = Properties of the Arithmetic Mean As analysts, we often use the mean return as a measure of the typical outcome for an asset. Some of the advantages of the arithmetic mean are: Uses all information about the size and magnitude of the observations Easy to work with and compute mathematically One of the drawbacks of the arithmetic mean is its sensitivity to extreme values. Because all observations are used to compute the mean, the arithmetic mean can be pulled sharply upward or downward by extremely large or small observations, respectively. Unusually large or small observations are called outliers. 5.2 The Median The median is the value of the middle item of a set of items that has been sorted into ascending or descending order. In an odd numbered sample of n items, the median occupies the (n + 1)/2 position. In an even numbered sample, we define the median as the mean of the values of items occupying the n/2 and (n + 2)/2 positions (the two middle items). Sorting the sample data given above we have: 5%, 8%, 8% 10%, 12%. Here n = 5. The position or location of the median number is given by (n + 1)/2 = 3 and the median value is 8%. A distribution has only one median. An advantage of the median is that, unlike the mean, extreme values do not affect it. The median, however, does not use all the information about the size and magnitude of the observations. It focuses only on the relative position of the ranked observations. Another disadvantage is that it is more tedious to compute as compared to the mean. Copyright Irfanullah Financial Training. All rights reserved. Page 9

11 5.3 The Mode The mode is the most frequently occurring value in a distribution. For the following data set: 5%, 8%, 8% 10%, 12%, the mode is 8%. A distribution can have more than one mode, or even no mode. When a distribution has one most frequently occurring value, the distribution is said to be unimodal. If a distribution has two modes, it is bimodal. The mode is the only measure of central tendency that can be used with nominal data. Stock return data and other data from continuous distributions may not have a modal outcome. When such data are grouped into intervals, however, we often find an interval (possibly more than one) with the highest frequency. This is called the modal interval (or intervals). 5.4 Other Concepts of Mean The arithmetic mean is a fundamental concept for describing the central tendency of data. Other concepts of mean are also important and are discussed below. The Weighted Mean In the arithmetic mean, all observations are equally weighted by the factor 1/n. In working with portfolios, we need the more general concept of weighted mean to allow different weights on different observations. The formula for the weighted mean is: n X w = w i X i i=1 where the sum of the weights equals 1; that is n i=1 w i = 1 Consider an investor with a portfolio of three stocks. 40 is invested in A, 60 in B and 100 in C. If returns were 5% on A, 7% on B and 9% on C, we can compute the portfolio return by using the weighted mean: (40/200) x 5% + (60/200) x 5% + (100/200) x 9% = 7% The Geometric Mean The general formula for calculating the geometric mean is: G =(X1 X2 X3 Xn) 1/n with X i 0 for i =1, 2, n. Copyright Irfanullah Financial Training. All rights reserved. Page 10

12 As an example, the geometric mean of 7, 8 and 9 will be: (7 x 8 x 9) 1/3 = The most common application of the geometric mean is to calculate the average return of an investment. The formula is: R G =[(1+R1)(1+R2).(1+Rn)] 1/ n 1 We will illustrate the use of this formula through a simple scenario: For a given stock the return over the last four periods is: 10%, 8%, -5% and 2%. The geometric mean is calculated as: [( )( )(1 0.05)( )] 1/4 1 = = 3.58% Given the returns shown above, \$1.00 invested at the start of period 1 grew to: \$1.00 x 1.10 x 1.08 x 0.95 x 1.02 = If the investment had grown at 3.58% every period, \$1.00 invested at the start of period 1 would have increased to: \$1.00 x x x x = As expected, both scenarios give the same answer. 3.58% is simply the average growth rate per period. The geometric mean is always less than or equal to the arithmetic mean. The only time that the two means will be equal is when there is no variability in the observations i.e. when all the observations are the same. Note: In the reading on Discounted Cash Flow Applications we used the geometric mean to calculate the time-weighted rate of return. The Harmonic Mean The harmonic mean is a special type of weighted mean in which an observation s weight is inversely proportional to its magnitude. The formula for a harmonic mean is: n X H = n / ( 1 X i ) i=1 with X i > 0 for i = 1,2, n, and n is the number of observations. Copyright Irfanullah Financial Training. All rights reserved. Page 11

13 This concept can be applied when we invest the same amount every month in a particular stock and want to calculate the average purchase price. Suppose an investor purchases \$1,000 of a security each month for three months. The share prices are \$10, \$15 and \$20 at the three purchase dates. The average purchase price is simply the harmonic mean of 10, 15 and 20. The harmonic mean is: 3 / (1/10 + 1/15 + 1/20) = The harmonic mean is generally less than the geometric mean, which is in turn less than the arithmetic mean. To illustrate this fact take three numbers: 10, 15, and 20. It has just been shown that the harmonic mean is The geometric mean is (10 x 15 x 20) 1/3 = The arithmetic mean is simply 15. If all the observations in a dataset are the same then the three means are the same. 6. Other Measures of Location: Quantiles A quantile is a value at or below which a stated fraction of the data lies. 6.1 Quartiles, Quintiles, Deciles and Percentiles Quartiles divide the distribution into quarters, quintiles into fifths, deciles into tenths, and percentiles into hundredths. Given a set of observations, the y th percentile is the value at or below which y percent of observations lie. Often we need to approximate the value of a percentile. To do so we arrange the data in ascending order and locate the position of the percentile within the set of observations. We then determine (or estimate) the value associated with that position. The formula to calculate the percentile in such a way is: L y = (n+1) y /100 Where y is the percentage point at which we are dividing the distribution, n is the number of observations and L y is the location (L) of the percentile (P y ) in an array sorted in ascending order. Some important points to remember are: Copyright Irfanullah Financial Training. All rights reserved. Page 12

14 When the location, L y, is a whole number, the location corresponds to an actual observation. When L y is not a whole number or integer, L y lies between the two closest integer numbers (one above and one below) and we use linear interpolation between those two places to determine P y. Worked Example 3: Calculating Percentiles Given below is the return data on 20 mutual funds arranged in ascending order. Number Return in % Number Return in % At a given percentile, y = 10%, with n = 20 and the data sorted in ascending order, the location of the observation is given by: L 10 = (20 + 1) (10/100) = 2.1 With a small data set, such as this one, the location calculated using the above formula is approximate. As the data set becomes larger, the formula gives a more precise location. 6.2 Quantiles in Investment Practice Quantiles can be used to rank the performance of portfolios and even investment managers. In investment research, analysts often refer to the set of companies with returns falling below the 10 th percentile cutoff point as the bottom return decile. It is also common to place funds in quartiles based on performance in a given period. A top quartile fund means that relative to comparable funds, the performance of this fund is in the top 25%. Copyright Irfanullah Financial Training. All rights reserved. Page 13

15 7. Measures of Dispersion Dispersion is the variability around the central tendency. Absolute dispersion is the amount of variability present without comparison to any reference point or benchmark. Range, mean absolute deviation, variance, and standard deviation are all examples of absolute dispersion. 7.1 The Range The range is the difference between the maximum and minimum values in a data set. Consider the same data set we used before: 2%, 5%, 4%, 7%, 8%, 8%, 12%, 10%, 8%, and 5%. Here the maximum return is 12% and the minimum return is 4%. The range is 12% 4% = 8%. The range is easy to calculate but uses only two pieces of information from the distribution. It cannot tell us how the data are distributed i.e. the shape of the distribution. 7.2 The Mean Absolute Deviation The dispersion around the mean is a fundamental piece of information used in statistics. However, if we take an arithmetic average of the deviations around the mean, we encounter a problem: such an arithmetic average always sums to 0. One solution to this is to examine the absolute deviations around the mean as in the mean absolute deviation. n MAD = [ X i X ] /n i=1 where X is the sample mean and n is the number of observations in the sample. Consider the following data set: 8, 12, 10, 8 and 5. X = ( )/5 = ) MAD = = 0 5 Copyright Irfanullah Financial Training. All rights reserved. Page 14

16 7.3 Population Variance and Population Standard Deviation Variance is defined as the average of the squared deviations around the mean. Standard deviation is the positive square root of the variance. Population variance is the arithmetic average of the squared deviations around the mean. N σ 2 = (X i μ) 2 / N i=0 where µ is the population mean and N is the size of the population. For the data set: 2%, 5%, 4%, 7%, 8%, 8%, 12%, 10%, 8%, and 5%, the variance is given by: σ 2 = [(2 6.9)2 +(5 6.9) 2 +(4 6.9) 2 +(7 6.9) 2 +(8 6.9) 2 +(8 6.9) 2 +(12 6.9) 2 +(10 6.9) 2 +(8 6.9) 2 + (5 6.9) 2 ] 10 σ 2 = 7.89 Because variance is measured in squared units, we need a way to return to the original units. We can solve this problem by using standard deviation, the square root of the variance. The population standard deviation is defined as the positive square root of the population variance. For the data given above, σ = 7.89 = 2.81%. Both the population variance and standard deviation are examples of parameters of a distribution. We often do not know the mean of a population of interest. We then estimate the population mean with a mean from a sample drawn from the population. Next, we calculate the sample variance and standard deviation. 7.4 Sample Variance and Sample Standard Deviation When we deal with samples, the summary measures are called statistics. The statistic that measures dispersion in a sample is called the sample variance. n s 2 = (X i X ) 2 / (n 1) i=0 Copyright Irfanullah Financial Training. All rights reserved. Page 15

17 where X is the sample mean and n is the number of observations in the sample. The steps to calculate a sample variance are: Calculate the same mean, X Calculate each observation s squared deviation from the sample mean, (X i X ) 2 Sum the squared deviations from the mean: n i=0(x i X ) 2 Divide the sum of squared deviations from the mean by n-1: n (X i X ) 2 / (n 1) i=0 By using n - 1 (rather than n) as the divisor, we improve the statistical properties of the sample variance. Consider the following data set: 8, 12, 10, 8 and 5. The sample variance is calculated as follows: s 2 = [(8 8.6)2 + (12 8.6) 2 + (10 8.6) 2 + (8 8.6) 2 + (5 8.6) 2 ] 5 1 s 2 = 6.80% The sample standard deviation is the positive square root of the sample variance. For the sample data given above, s = 6.80 = 2.61%. The population and sample standard deviation can easily be computed using a financial calculator. Assume the following data set: 10%, -5%, 10%, 25%, the calculator key strokes are show below: Keystrokes Explanation Display [2nd] [DATA] Enter data entry mode [2nd] [CLR WRK] Clear data registers X01 10 [ENTER] X01 = 10 [ ] [ ] 5+/- [ENTER] X02 = -5 [ ] [ ] 10 [ENTER] X03 = 10 [ ] [ ] 25 [ENTER] X04 = 25 Copyright Irfanullah Financial Training. All rights reserved. Page 16

18 Keystrokes Explanation Display [2nd] [STAT] [ENTER] Puts calculator into stats mode. [2nd] [SET] Press repeatedly till you see 1-V [ ] Number of data points N = 4 [ ] Mean X = 10 [ ] Sample standard deviation Sx = [ ] Population standard deviation σx = Notice that the calculator gives both the sample and the population standard deviation. On the exam we will have to determine whether we are dealing with population or sample data. 7.5 Semivariance, Semideviation, and Related Concepts Note: Semivariance and semideviation are not emphasized in the learning outcomes and have a very low probability of being tested on the Level I exam. Nevertheless, a brief explanation is given below. Variance and standard deviation of returns take account of returns above and below the mean, but investors are concerned only with downside risk, for example returns below the mean. As a result, analysts have developed semivariance, semideviation and related dispersion measures that focus on downside risk. Semivariance is defined as the average squared deviation below the mean. Semideviation is the positive square root of semivariance. When return distributions are symmetric, semivariance and variance are effectively equivalent. For asymmetric distributions, variance and semivariance rank prospects risk differently. 7.6 Chebyshev s Inequality According to Chebyshev s inequality, the proportion of the observations within k standard deviations of the arithmetic mean is at least 1-1/k 2 for all k > 1. To find out what percent of the observations must be within 2 standard deviations of the mean we simply plug into the formula and get: 1 1/2 2 = 1 ¼ = 0.75 = 75%. Hence at least 75% of the data will be between 2 Copyright Irfanullah Financial Training. All rights reserved. Page 17

19 standard deviations of the mean. To understand this concept, consider a distribution with a mean value of 10 and a standard deviation of 3. For this distribution at least 75% of the data will be between 4 and 16. Note that 4 is two standard deviations (2 x 3) less than the mean (10) and 16 is two standard deviations greater than the mean. Plugging in a value of k = 3 in Chebyshev s inequality shows us that at least 89% of the population data will lie within three standard deviations of the mean. Chebyshev s inequality holds for samples and populations, and for discrete and continuous data regardless of the shape of the distribution. Worked Example 4: Chebyshev s Inequality Note: this example has been reproduced from the curriculum. The arithmetic mean monthly return and standard deviation of monthly returns on the S&P 500 were 0.97 percent and 5.65 percent, respectively, during the period, totaling 924 monthly observations. Using this information, address the following: 1. Calculate the endpoints of the interval that must contain at least 75 percent of monthly returns according to Chebyshev s inequality. 2. What are the minimum and maximum number of observations that must lie in the interval computed in Part 1, according to Chebyshev s inequality? Solution to 1: According to Chebyshev s inequality, at least 75 percent of the observations must lie within two standard deviations of the mean, X ± 2s. For the monthly S&P 500 return series, we have 0.97% ± 2(5.65%) = 0.97% ± 11.30%. Thus the lower endpoint of the interval that must contain at least 75 percent of the observations is 0.97% 11.30% = 10.33%, and the upper endpoint is 0.97% % = 12.27%. Solution to 2: Copyright Irfanullah Financial Training. All rights reserved. Page 18

20 For a sample size of 924, at least 0.75(924) = 693 observations must lie in the interval from 10.33% to 12.27% that we computed in Part Coefficient of Variation Sometimes we may find it difficult to interpret what the standard deviation means in terms of the relative degree of variability of different data sets. This can be because the data sets are significantly different or because the data sets have different units of measurement. The coefficient of variation can be useful in such situations. It is the ratio of the standard deviation of a set of observations to their mean value. CV = s/x When the observations are returns, the coefficient of variation measures the amount of risk (standard deviation) per unit of mean return. Hence, it allows us to directly compare dispersion across different data sets. Consider a simple example. Investment A has a mean return of 7% and a standard deviation of 5%. Investment B has a mean return of 12% and a standard deviation of 7%. The coefficients of variation can be calculated as follows: CV A = 5% 7% = 0.71 CV B = 7% 12% = 0.58 This metric shows that Investment A is more risky than Investment B. 7.8 The Sharpe Ratio If we use an inverse of the CV, we get a measure for the return per unit of risk of an investment. A more precise return-risk measure is the Sharpe ratio. The Sharpe ratio is the ratio of excess return to standard deviation of return for a portfolio, p. Excess return refers to the return above the risk free rate. The formula for calculating the Sharpe ratio is: S p = R p R F s p where Copyright Irfanullah Financial Training. All rights reserved. Page 19

21 R p = Mean return to the portfolio R F = Mean return to a risk-free asset s p = Standard deviation of return on the portfolio Worked Example 5: Calculating Sharpe Ratio The table below provides data for two portfolios. Given that the mean annual risk free rate is 10.5%, which portfolio has the higher Sharpe ratio? Portfolio Arithmetic mean Variance of (%) return (%) Portfolio A 16.4% 4.9% Portfolio B 12.6% 3.5% Solution: Portfolio A: Portfolio B: = = Portfolio A offers a higher excess return per unit of risk relative to Portfolio B. 8. Symmetry and Skewness in Return Distributions While mean and variance are useful, we need to go beyond measures of central tendency and dispersion to reveal other important characteristics of a distribution. One important characteristic of interest to analysts is the degree of symmetry in return distributions. If a return distribution is symmetrical about its mean, then each side of the distribution is a mirror image of the other. A distribution that is not symmetrical is called skewed. A return distribution with positive skew has frequent small losses and a few extreme gains. A return distribution with negative skew has frequent small gains and a few extreme losses. The figures below show these distributions. Copyright Irfanullah Financial Training. All rights reserved. Page 20

22 Distribution Skewed to the Right (Positively Skewed) Distribution Skewed to the Left (Negatively Skewed) For the positively skewed unimodal distribution, the mode is less than the median, which is less than the mean. For the negatively skewed unimodal distribution, the mean is less than the median, which is less than the mode. All else equal, if investment returns have negative skew, that is considered more risky than symmetric and positively skewed distributions. A negative skew implies a fat left tail and hence a relatively high probability of extreme losses. A skewness of greater than 0.5 or less than -0.5 is considered significant. The curriculum presents formulas for calculating skewness. However, it is extremely unlikely that we ll be tested on these formulas at Level I. Consequently the formulas are not being reproduced in these notes. 9. Kurtosis in Return Distributions A return distribution might differ from a normal distribution by having more returns clustered closely around the mean (being more peaked) and more returns with large deviations from the mean (having fatter tails). Kurtosis is the statistical measure that tells us when a distribution is more or less peaked than a normal distribution. A distribution that is more peaked than normal is called leptokurtic. A distribution that is less peaked than normal is called platykurtic. A distribution identical to the normal distribution is called mesokurtic. Examples of a mesokurtic distribution (normal) and leptokurtic distribution (fat tails) are shown below. Copyright Irfanullah Financial Training. All rights reserved. Page 21

23 For all normal distributions, kurtosis is equal to 3. Excess kurtosis is kurtosis minus 3. Hence, a mesokurtic distribution has excess kurtosis equal to 0. A leptokurtic distribution has excess kurtosis greater than 0, and a platykurtic distribution has excess kurtosis less than 0. For a sample of 100 or larger taken from a normal distribution, a sample excess kurtosis of 1.0 or larger would be considered unusually large. A leptokurtic distribution is considered more risky than a normal distribution because it has fatter tails and hence a higher probability of extreme losses. 10. Using Geometric and Arithmetic Means For reporting historical returns (time series data), the geometric mean is attractive because it is the rate of growth of return we would have had to earn each year to match the actual, cumulative investment performance. Consequently, to estimate the average returns over more than one period, we should use the geometric mean because it captures how the total returns are linked over time. On the other hand, if we want to estimate the average return of multiple investments over a one-period horizon (cross-sectional data), we should use the arithmetic mean. Copyright Irfanullah Financial Training. All rights reserved. Page 22

24 Summary Note: This summary has been adapted from the CFA Program curriculum. A population is defined as all members of a specified group. A sample is a subset of a population. A parameter is any descriptive measure of a population. A sample statistic (statistic, for short) is a quantity computed from or used to describe a sample. Data measurements are taken using one of the four major scales: nominal, ordinal, interval, or ratio. Nominal scales categorize data but do not rank them. Ordinal scales sort data into categories that are ordered with respect to some characteristic. Interval scales provide not only ranking but also assurance that the differences between scale values are equal. Ratio scales have all the characteristics of interval scales as well as a true zero point as the origin. The scale on which data are measured determines the type of analysis that can be performed on the data. A frequency distribution is a tabular display of data summarized into a relatively small number of intervals. Frequency distributions permit us to evaluate how data are distributed. The relative frequency of observations in an interval is the number of observations in the interval divided by the total number of observations. The cumulative relative frequency cumulates (adds up) the relative frequencies as we move from the first interval to the last, thus giving the fraction of the observations that are less than the upper limit of each interval. A histogram is a bar chart of data that have been grouped into a frequency distribution. A frequency polygon is a graph of frequency distributions obtained by drawing straight lines joining successive points representing the class frequencies. Sample statistics such as measures of central tendency, measures of dispersion, skewness, and kurtosis help with investment analysis, particularly in making probabilistic statements about returns. Measures of central tendency specify where data are centered and include the (arithmetic) mean, median, and mode (most frequently occurring value). The mean is the sum of the observations divided by the number of observations. The median is the value of the middle item (or the mean of the values of the two middle items) when the items in a set are sorted Copyright Irfanullah Financial Training. All rights reserved. Page 23

25 into ascending or descending order. The mean is the most frequently used measure of central tendency. The median is not influenced by extreme values and is most useful in the case of skewed distributions. The mode is the only measure of central tendency that can be used with nominal data. A portfolio s return is a weighted mean return computed from the returns on the individual assets, where the weight applied to each asset s return is the fraction of the portfolio invested in that asset. The geometric mean, G, of a set of observations X1, X2,... Xn is G =(X1X2X3 Xn) 1/n The geometric mean is especially important in reporting compound growth rates for time series data. When calculating the average return over a given period the following formula is used: R G =[(1+R1) (1+R2) (1+Rn)] 1/ n 1 The harmonic mean is a special type of weighted mean in which an observation s weight is inversely proportional to its magnitude. The formula is: n X H = n / ( 1 X i ) i=1 For any data set where the values are not the same, arithmetic mean > geometric mean > harmonic mean. Quantiles such as the median, quartiles, quintiles, deciles, and percentiles are location parameters that divide a distribution into halves, quarters, fifths, tenths, and hundredths, respectively. Dispersion measures such as the variance, standard deviation, and mean absolute deviation (MAD) describe the variability of outcomes around the arithmetic mean. Range is defined as the maximum value minus the minimum value. Range has only a limited scope because it uses information from only two observations. MAD is average of the absolute deviation from the mean. This can be expressed as: n MAD = [ X i X ] /n i=1 The variance is the average of the squared deviations around the mean, and the standard deviation is the positive square root of variance. In computing sample variance (s 2 ) and Copyright Irfanullah Financial Training. All rights reserved. Page 24

26 sample standard deviation, the average squared deviation is computed using a divisor equal to the sample size minus 1. According to Chebyshev s inequality, the proportion of the observations within k standard deviations of the arithmetic mean is at least 1 1/k 2 for all k > 1. Chebyshev s inequality permits us to make probabilistic statements about the proportion of observations within various intervals around the mean for any distribution with finite variance. As a result of Chebyshev s inequality, a two-standard-deviation interval around the mean must contain at least 75 percent of the observations, and a three-standard-deviation interval around the mean must contain at least 89 percent of the observations, no matter how the data are distributed. The coefficient of variation, CV, is the ratio of the standard deviation of a set of observations to their mean value. A scale-free measure of relative dispersion, by expressing the magnitude of variation among observations relative to their average size, the CV permits direct comparisons of dispersion across different data sets. The Sharpe ratio for a portfolio, p, based on historical returns, is defined as: (return on portfolio risk free rate) / standard deviation of portfolio. It gives the excess return per unit of risk. Skew describes the degree to which a distribution is not symmetric about its mean. A return distribution with positive skewness has frequent small losses and a few extreme gains. A return distribution with negative skewness has frequent small gains and a few extreme losses. Zero skewness indicates a symmetric distribution of returns. Kurtosis measures the peakness of a distribution and provides information about the probability of extreme outcomes. A distribution that is more peaked than the normal distribution is called leptokurtic; a distribution that is less peaked than the normal distribution is called platykurtic; and a distribution identical to the normal distribution in this respect is called mesokurtic. Excess kurtosis is kurtosis minus 3, the value of kurtosis for all normal distributions. Next Steps Make sure you are comfortable using the financial calculator for statistical calculations. Copyright Irfanullah Financial Training. All rights reserved. Page 25

27 Work through the examples presented in the curriculum. Solve the practice problems in the curriculum. Solve the IFT Practice Questions associated with this reading. Review the learning outcomes presented in the curriculum. Make sure that you can perform that actions implied by learning outcome. Copyright Irfanullah Financial Training. All rights reserved. Page 26

### We will use the following data sets to illustrate measures of center. DATA SET 1 The following are test scores from a class of 20 students:

MODE The mode of the sample is the value of the variable having the greatest frequency. Example: Obtain the mode for Data Set 1 77 For a grouped frequency distribution, the modal class is the class having

### CHINHOYI UNIVERSITY OF TECHNOLOGY

CHINHOYI UNIVERSITY OF TECHNOLOGY SCHOOL OF NATURAL SCIENCES AND MATHEMATICS DEPARTMENT OF MATHEMATICS MEASURES OF CENTRAL TENDENCY AND DISPERSION INTRODUCTION From the previous unit, the Graphical displays

### 2. Describing Data. We consider 1. Graphical methods 2. Numerical methods 1 / 56

2. Describing Data We consider 1. Graphical methods 2. Numerical methods 1 / 56 General Use of Graphical and Numerical Methods Graphical methods can be used to visually and qualitatively present data and

### Content DESCRIPTIVE STATISTICS. Data & Statistic. Statistics. Example: DATA VS. STATISTIC VS. STATISTICS

Content DESCRIPTIVE STATISTICS Dr Najib Majdi bin Yaacob MD, MPH, DrPH (Epidemiology) USM Unit of Biostatistics & Research Methodology School of Medical Sciences Universiti Sains Malaysia. Introduction

### Data Analysis: Describing Data - Descriptive Statistics

WHAT IT IS Return to Table of ontents Descriptive statistics include the numbers, tables, charts, and graphs used to describe, organize, summarize, and present raw data. Descriptive statistics are most

### Quantitative Methods for Finance

Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain

### Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam

Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests

### Chapter 3: Data Description Numerical Methods

Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,

### A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes

A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes together with the number of data values from the set that

### Time Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam

Time Value of Money 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction...2 2. Interest Rates: Interpretation...2 3. The Future Value of a Single Cash Flow...4 4. The

### STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

### Data Mining Part 2. Data Understanding and Preparation 2.1 Data Understanding Spring 2010

Data Mining Part 2. and Preparation 2.1 Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Outline Introduction Measuring the Central Tendency Measuring the Dispersion of Data Graphic Displays References

### MCQ S OF MEASURES OF CENTRAL TENDENCY

MCQ S OF MEASURES OF CENTRAL TENDENCY MCQ No 3.1 Any measure indicating the centre of a set of data, arranged in an increasing or decreasing order of magnitude, is called a measure of: (a) Skewness (b)

### Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo

Readings: Ha and Ha Textbook - Chapters 1 8 Appendix D & E (online) Plous - Chapters 10, 11, 12 and 14 Chapter 10: The Representativeness Heuristic Chapter 11: The Availability Heuristic Chapter 12: Probability

### Time Value of Money. Reading 5. IFT Notes for the 2015 Level 1 CFA exam

Time Value of Money Reading 5 IFT Notes for the 2015 Level 1 CFA exam Contents 1. Introduction... 2 2. Interest Rates: Interpretation... 2 3. The Future Value of a Single Cash Flow... 4 4. The Future Value

### Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

### Univariate Descriptive Statistics

Univariate Descriptive Statistics Displays: pie charts, bar graphs, box plots, histograms, density estimates, dot plots, stemleaf plots, tables, lists. Example: sea urchin sizes Boxplot Histogram Urchin

### Descriptive Statistics. Frequency Distributions and Their Graphs 2.1. Frequency Distributions. Chapter 2

Chapter Descriptive Statistics.1 Frequency Distributions and Their Graphs Frequency Distributions A frequency distribution is a table that shows classes or intervals of data with a count of the number

### Time Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam

Time Value of Money 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 2 2. Interest Rates: Interpretation... 2 3. The Future Value of a Single Cash Flow... 4 4. The

### 1 Measures for location and dispersion of a sample

Statistical Geophysics WS 2008/09 7..2008 Christian Heumann und Helmut Küchenhoff Measures for location and dispersion of a sample Measures for location and dispersion of a sample In the following: Variable

### Statistics Chapter 3 Averages and Variations

Statistics Chapter 3 Averages and Variations Measures of Central Tendency Average a measure of the center value or central tendency of a distribution of values. Three types of average: Mode Median Mean

### 4. Introduction to Statistics

Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

### Descriptive Statistics and Measurement Scales

Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

### Session 1.6 Measures of Central Tendency

Session 1.6 Measures of Central Tendency Measures of location (Indices of central tendency) These indices locate the center of the frequency distribution curve. The mode, median, and mean are three indices

### Numerical Measures of Central Tendency

Numerical Measures of Central Tendency Often, it is useful to have special numbers which summarize characteristics of a data set These numbers are called descriptive statistics or summary statistics. A

### Report of for Chapter 2 pretest

Report of for Chapter 2 pretest Exam: Chapter 2 pretest Category: Organizing and Graphing Data 1. "For our study of driving habits, we recorded the speed of every fifth vehicle on Drury Lane. Nearly every

### Chapter 7 What to do when you have the data

Chapter 7 What to do when you have the data We saw in the previous chapters how to collect data. We will spend the rest of this course looking at how to analyse the data that we have collected. Stem and

### Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

### Chapter 3 Descriptive Statistics: Numerical Measures. Learning objectives

Chapter 3 Descriptive Statistics: Numerical Measures Slide 1 Learning objectives 1. Single variable Part I (Basic) 1.1. How to calculate and use the measures of location 1.. How to calculate and use the

### Week 1. Exploratory Data Analysis

Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam

### Measures of Central Tendency. There are different types of averages, each has its own advantages and disadvantages.

Measures of Central Tendency According to Prof Bowley Measures of central tendency (averages) are statistical constants which enable us to comprehend in a single effort the significance of the whole. The

### Numerical Summarization of Data OPRE 6301

Numerical Summarization of Data OPRE 6301 Motivation... In the previous session, we used graphical techniques to describe data. For example: While this histogram provides useful insight, other interesting

### Frequency Distributions

Displaying Data Frequency Distributions After collecting data, the first task for a researcher is to organize and summarize the data to get a general overview of the results. Remember, this is the goal

### CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

### Seminar paper Statistics

Seminar paper Statistics The seminar paper must contain: - the title page - the characterization of the data (origin, reason why you have chosen this analysis,...) - the list of the data (in the table)

### Graphical and Tabular. Summarization of Data OPRE 6301

Graphical and Tabular Summarization of Data OPRE 6301 Introduction and Re-cap... Descriptive statistics involves arranging, summarizing, and presenting a set of data in such a way that useful information

### CHAPTER 3 CENTRAL TENDENCY ANALYSES

CHAPTER 3 CENTRAL TENDENCY ANALYSES The next concept in the sequential statistical steps approach is calculating measures of central tendency. Measures of central tendency represent some of the most simple

### 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

### Table 2-1. Sucrose concentration (% fresh wt.) of 100 sugar beet roots. Beet No. % Sucrose. Beet No.

Chapter 2. DATA EXPLORATION AND SUMMARIZATION 2.1 Frequency Distributions Commonly, people refer to a population as the number of individuals in a city or county, for example, all the people in California.

### Chapter 3: Central Tendency

Chapter 3: Central Tendency Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately describes the center of the distribution and represents

### Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

### Chapter 2. Objectives. Tabulate Qualitative Data. Frequency Table. Descriptive Statistics: Organizing, Displaying and Summarizing Data.

Objectives Chapter Descriptive Statistics: Organizing, Displaying and Summarizing Data Student should be able to Organize data Tabulate data into frequency/relative frequency tables Display data graphically

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Central Tendency. n Measures of Central Tendency: n Mean. n Median. n Mode

Central Tendency Central Tendency n A single summary score that best describes the central location of an entire distribution of scores. n Measures of Central Tendency: n Mean n The sum of all scores divided

### F. Farrokhyar, MPhil, PhD, PDoc

Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How

### Measures of Central Tendency

CHAPTER Measures of Central Tendency Studying this chapter should enable you to: understand the need for summarising a set of data by one single number; recognise and distinguish between the different

### Exploratory Data Analysis. Psychology 3256

Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find

### Descriptive Statistics. Understanding Data: Categorical Variables. Descriptive Statistics. Dataset: Shellfish Contamination

Descriptive Statistics Understanding Data: Dataset: Shellfish Contamination Location Year Species Species2 Method Metals Cadmium (mg kg - ) Chromium (mg kg - ) Copper (mg kg - ) Lead (mg kg - ) Mercury

### Frequency Distributions

Descriptive Statistics Dr. Tom Pierce Department of Psychology Radford University Descriptive statistics comprise a collection of techniques for better understanding what the people in a group look like

### The Big 50 Revision Guidelines for S1

The Big 50 Revision Guidelines for S1 If you can understand all of these you ll do very well 1. Know what is meant by a statistical model and the Modelling cycle of continuous refinement 2. Understand

### ( ) ( ) Central Tendency. Central Tendency

1 Central Tendency CENTRAL TENDENCY: A statistical measure that identifies a single score that is most typical or representative of the entire group Usually, a value that reflects the middle of the distribution

### Data. ECON 251 Research Methods. 1. Data and Descriptive Statistics (Review) Cross-Sectional and Time-Series Data. Population vs.

ECO 51 Research Methods 1. Data and Descriptive Statistics (Review) Data A variable - a characteristic of population or sample that is of interest for us. Data - the actual values of variables Quantitative

### Lesson 4 Measures of Central Tendency

Outline Measures of a distribution s shape -modality and skewness -the normal distribution Measures of central tendency -mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central

### Glossary of numeracy terms

Glossary of numeracy terms These terms are used in numeracy. You can use them as part of your preparation for the numeracy professional skills test. You will not be assessed on definitions of terms during

### 10-3 Measures of Central Tendency and Variation

10-3 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.

### Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

### 6. Methods 6.8. Methods related to outputs, Introduction

6. Methods 6.8. Methods related to outputs, Introduction In order to present the outcomes of statistical data collections to the users in a manner most users can easily understand, a variety of statistical

### GCSE Statistics Revision notes

GCSE Statistics Revision notes Collecting data Sample This is when data is collected from part of the population. There are different methods for sampling Random sampling, Stratified sampling, Systematic

### Chapter 15 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately

### 18.2. STATISTICS 2 (Measures of central tendency) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 18.2 STATISTICS 2 (Measures of central tendency) by A.J.Hobson 18.2.1 Introduction 18.2.2 The arithmetic mean (by coding) 18.2.3 The median 18.2.4 The mode 18.2.5 Quantiles

### Describing Data. We find the position of the central observation using the formula: position number =

HOSP 1207 (Business Stats) Learning Centre Describing Data This worksheet focuses on describing data through measuring its central tendency and variability. These measurements will give us an idea of what

### Lecture 2. Summarizing the Sample

Lecture 2 Summarizing the Sample WARNING: Today s lecture may bore some of you It s (sort of) not my fault I m required to teach you about what we re going to cover today. I ll try to make it as exciting

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### Nominal Scaling. Measures of Central Tendency, Spread, and Shape. Interval Scaling. Ordinal Scaling

Nominal Scaling Measures of, Spread, and Shape Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning The lowest level of

### 2.0 Lesson Plan. Answer Questions. Summary Statistics. Histograms. The Normal Distribution. Using the Standard Normal Table

2.0 Lesson Plan Answer Questions 1 Summary Statistics Histograms The Normal Distribution Using the Standard Normal Table 2. Summary Statistics Given a collection of data, one needs to find representations

### Chapter 2: Exploring Data with Graphs and Numerical Summaries. Graphical Measures- Graphs are used to describe the shape of a data set.

Page 1 of 16 Chapter 2: Exploring Data with Graphs and Numerical Summaries Graphical Measures- Graphs are used to describe the shape of a data set. Section 1: Types of Variables In general, variable can

### Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)

Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center

### MBA 611 STATISTICS AND QUANTITATIVE METHODS

MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain

### MIDTERM EXAMINATION Spring 2009 STA301- Statistics and Probability (Session - 2)

MIDTERM EXAMINATION Spring 2009 STA301- Statistics and Probability (Session - 2) Question No: 1 Median can be found only when: Data is Discrete Data is Attributed Data is continuous Data is continuous

### Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

### 1.5 NUMERICAL REPRESENTATION OF DATA (Sample Statistics)

1.5 NUMERICAL REPRESENTATION OF DATA (Sample Statistics) As well as displaying data graphically we will often wish to summarise it numerically particularly if we wish to compare two or more data sets.

### Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

### Descriptive statistics parameters: Measures of centrality

Descriptive statistics parameters: Measures of centrality Contents Definitions... 3 Classification of descriptive statistics parameters... 4 More about central tendency estimators... 5 Relationship between

### Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.

Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of

### x Measures of Central Tendency for Ungrouped Data Chapter 3 Numerical Descriptive Measures Example 3-1 Example 3-1: Solution

Chapter 3 umerical Descriptive Measures 3.1 Measures of Central Tendency for Ungrouped Data 3. Measures of Dispersion for Ungrouped Data 3.3 Mean, Variance, and Standard Deviation for Grouped Data 3.4

### TYPES OF DATA TYPES OF VARIABLES

TYPES OF DATA Univariate data Examines the distribution features of one variable. Bivariate data Explores the relationship between two variables. Univariate and bivariate analysis will be revised separately.

### Research Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement

Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.

### GCSE HIGHER Statistics Key Facts

GCSE HIGHER Statistics Key Facts Collecting Data When writing questions for questionnaires, always ensure that: 1. the question is worded so that it will allow the recipient to give you the information

### Quantitative Research Methods II. Vera E. Troeger Office: Office Hours: by appointment

Quantitative Research Methods II Vera E. Troeger Office: 0.67 E-mail: v.e.troeger@warwick.ac.uk Office Hours: by appointment Quantitative Data Analysis Descriptive statistics: description of central variables

### Summarizing Scores with Measures of Central Tendency: The Mean, Median, and Mode

Summarizing Scores with Measures of Central Tendency: The Mean, Median, and Mode Outline of the Course III. Descriptive Statistics A. Measures of Central Tendency (Chapter 3) 1. Mean 2. Median 3. Mode

### Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

### LearnStat MEASURES OF CENTRAL TENDENCY, Learning Statistics the Easy Way. Session on BUREAU OF LABOR AND EMPLOYMENT STATISTICS

LearnStat t Learning Statistics the Easy Way Session on MEASURES OF CENTRAL TENDENCY, DISPERSION AND SKEWNESS MEASURES OF CENTRAL TENDENCY, DISPERSION AND SKEWNESS OBJECTIVES At the end of the session,

### Statistics Summary (prepared by Xuan (Tappy) He)

Statistics Summary (prepared by Xuan (Tappy) He) Statistics is the practice of collecting and analyzing data. The analysis of statistics is important for decision making in events where there are uncertainties.

### Sampling, frequency distribution, graphs, measures of central tendency, measures of dispersion

Statistics Basics Sampling, frequency distribution, graphs, measures of central tendency, measures of dispersion Part 1: Sampling, Frequency Distributions, and Graphs The method of collecting, organizing,

### Introduction to Descriptive Statistics

Mathematics Learning Centre Introduction to Descriptive Statistics Jackie Nicholas c 1999 University of Sydney Acknowledgements Parts of this booklet were previously published in a booklet of the same

### Lecture 9: Measures of Central Tendency and Sampling Distributions

Lecture 9: Measures of Central Tendency and Sampling Distributions Assist. Prof. Dr. Emel YAVUZ DUMAN Introduction to Probability and Statistics İstanbul Kültür University Faculty of Engineering Outline

### Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

### Means, standard deviations and. and standard errors

CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard

### Each exam covers lectures from since the previous exam and up to the exam date.

Sociology 301 Exam Review Liying Luo 03.22 Exam Review: Logistics Exams must be taken at the scheduled date and time unless 1. You provide verifiable documents of unforeseen illness or family emergency,

### In this chapter, you will learn to use descriptive statistics to organize, summarize, analyze, and interpret data for contract pricing.

3.0 - Chapter Introduction In this chapter, you will learn to use descriptive statistics to organize, summarize, analyze, and interpret data for contract pricing. Categories of Statistics. Statistics is

### 2. Filling Data Gaps, Data validation & Descriptive Statistics

2. Filling Data Gaps, Data validation & Descriptive Statistics Dr. Prasad Modak Background Data collected from field may suffer from these problems Data may contain gaps ( = no readings during this period)

### not to be republished NCERT Measures of Central Tendency

You have learnt in previous chapter that organising and presenting data makes them comprehensible. It facilitates data processing. A number of statistical techniques are used to analyse the data. In this

### Data Exploration Data Visualization

Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select

### PROPERTIES OF MEAN, MEDIAN

PROPERTIES OF MEAN, MEDIAN In the last class quantitative and numerical variables bar charts, histograms(in recitation) Mean, Median Suppose the data set is {30, 40, 60, 80, 90, 120} X = 70, median = 70

### BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

### STATISTICS FOR PSYCH MATH REVIEW GUIDE

STATISTICS FOR PSYCH MATH REVIEW GUIDE ORDER OF OPERATIONS Although remembering the order of operations as BEDMAS may seem simple, it is definitely worth reviewing in a new context such as statistics formulae.

### Measures of Central Tendency and Variability: Summarizing your Data for Others

Measures of Central Tendency and Variability: Summarizing your Data for Others 1 I. Measures of Central Tendency: -Allow us to summarize an entire data set with a single value (the midpoint). 1. Mode :

### LEARNING OBJECTIVES SCALES OF MEASUREMENT: A REVIEW SCALES OF MEASUREMENT: A REVIEW DESCRIBING RESULTS DESCRIBING RESULTS 8/14/2016

UNDERSTANDING RESEARCH RESULTS: DESCRIPTION AND CORRELATION LEARNING OBJECTIVES Contrast three ways of describing results: Comparing group percentages Correlating scores Comparing group means Describe