The Parallelogram REMEMBER A parallelogram is a quadrilateral with opposite sides parallel. It has many special properties.


 Ernest Newman
 2 years ago
 Views:
Transcription
1 ame: Date: The Parallelogram REMEMBER A parallelogram is a quadrilateral with opposite sides parallel. It has many special properties. If you are given parallelogram ABCD then: Property Meaning (1) opposite sides are parallel (1) AB ll DC, AD ll BC (2) opposite sides are congruent (2) AB DC, AD BC (3) opposite angles are congruent (3) <A <C, <D <B (4) consecutive angles are supplementary (4) m<a + m<b =180 m<b + m<c =180 m<c + m<d =180 m<d + m<a = 180 If the diagonals are drawn then: (5) the diagonals bisect each other (5) AE EC, DE EB 1. In parallelogram ABCD, m < B = 60. Find m < C. 4.In parallelogram ABCD, m<d=(6x+40) and m<b=(4x+70). Find the value of m<b. 2. In parallelogram PQRS, the ratio of measure of <Q to the measure of <R 1:5. Find m<q. 5. Which statement is not true for every given parallelogram PQRS? (1) PQ SR (3)PR is perpendicular to SQ (2)<P <R (4)m<P + m<s = In parallelogram CDEF, CD=(5x6) and FE=(3x+8). Find the value of CD. 6. In parallelogram QRST, diagonals QS and RT intersect at point E. If is QE=4x+3 and ES=23, find the value of QE and x.
2 7. In parallelogram ABCD, the measures of angles A and B are in the ratio of 1:8. Find m<b. 12. In the accompanying diagram of parallelogram ABCD, DF is perpendicular to diagonal AC at point F. If m<cab=34, find m<cdf. 8.The measures of two opposite angles of a parallelogram are represented by 5x + 40 and 3x+50. Find x. 13. In parallelogram ABCD, m<a=(3x+40) and m<c=(7x100). Find the measure in degrees of <D. 9. Which statement is always true? (1) The diagonals of a parallelogram are congruent (2) The diagonals of a parallelogram bisect the angle of the parallelogram (3) The diagonals of a parallelogram bisect each other. (4) The diagonals of a parallelogram are perpendicular to each other. 10. In parallelogram ABCD, diagonals AC and BD intersect at point E. (1) AC DB (2) ΔDEC ΔAEB (3) ΔABD ΔAED (4) ΔBEC ΔDEC 14. In parallelogram ABCD, diagonal AC is drawn. If m<d=110 and m<cad=50, find m<cab. 15. In parallelogram PQRS, diagonal PR is drawn. If m<s=100 and m<srp=40, then which of the following statements must be true? (1) SR>SP (2) SP>SR (3) SP=SR (4) PR is the smallest side of ΔPRS 11. In the accompanying diagram, side AB of parallelogram ABCD is extended to E. If m<cbe=35, find m<d.
3 Name: Date: Quadrilateral NOTES A is a polygon with 4 sides. The SUM of the 4 angles is 360. I) Properties of a : a) Opposite sides are. b) Opposite are congruent. c) Opposite are congruent. d) Consecutive angles are. e) The diagonals each other. Note: A diagonal divides a parallelogram into 2 congruent triangles. Examples: 1) If one angle of a parallelogram measures 55, then find the measures of the other 3 angles. 2) In parallelogram ABCD, m<a = 2x  20 and m<c = 5x Find the value of <A. 3) In parallelogram FGHI, m<f:m<g = 2:7. Find the measure of <H.
4 Name: Date: Aim: To prove a quadrilateral is a parallelogram DO NOW Without looking at your notes or homework, try to list all the properties of a parallelogram (There are 5 Properties)
5 Proving a Quadrilateral is a Parallelogram. *You can be asked to prove a Parallelogram by either coordinate geometry or statement/reason. Six ways to prove a quadrilateral is a parallelogram: In a parallelogram, 1. (Coordinate Geometry: ) 2. (Coordinate Geometry: ) 3. (Coordinate Geometry: ) 4. (Coordinate Geometry: ) 5. (Coordinate Geometry: ) 6. (Coordinate Geometry: )
6 Name: Date: Proving Quadrilaterals are Parallelograms 1) The coordinates of three points in the coordinate plane are A( 2, 3), B(5, 3) and C(2,2). a) Find the coordinates of D if ABCD is a parallelogram. b) By COORDINATE GEOMETRY, prove that ABCD is a parallelogram. 2) Given: PQRS is a parallelogram with PT RM Prove: TQMS is a parallelogram Statements Reasons
7 HOMEWORK 3) Quadrilateral ABCD has coordinates A( 1,3), B(4,4), C(5, 3) and D( 2, 2). Using coordinate geometry, prove: a) the diagonals are perpendicular. b) ABCD has a least one pair of congruent sides. c) ABCD is NOT a parallelogram. 4) Given: Quadrilateral ABCD. FGE, AGC, FG EG, AG CG and <B <D Prove: ABCD is a parallelogram Statements Reasons
8 Name: Date: Aim: To define the properties of a rectangle and a rhombus. To prove a quadrilateral is a rectangle and a rhombus. Rectangle Notes II) Rectangle Properties: a) b) c) To PROVE a quadrilateral is a rectangle: * 1). (Coordinate Geometry: ) 2). (Coordinate Geometry: )
9 Rhombus Notes III) Rhombus Properties: a) b) c) d) Proving that a Quadrilateral is a Rhombus * 1). (Coordinate Geometry: ) 2). (Coordinate Geometry: ) 3). (Coordinate Geometry: )
10 Name: Date: 1) The coordinates of vertices ABCD are A(2,0), B(2,2), C(5,4) and D(1,6). a) Graph the quadrilateral. b) Prove that ABCD is a rectangle.
11 2) The vertices of quadrilateral ABCD are A(1,1), B(4,0), C(5,5) and D(0,6). a) Prove that ABCD is a parallelogram. b) Prove that the diagonals of ABCD are perpendicular. c) Is ABCD a rhombus? EXPLAIN!!
12 Name: Date: The RHOMBUS REMEMBER A rhombus is a parallelogram with adjacent sides equal. In addition to having all the properties of a parallelogram, the rhombus has several other properties. If you are given rhombus ABCD then: Property Meaning (1) all properties of the (1) Refer to notes parallelogram are true (2) all sides are congruent (2)AB BC CD AD (3) the diagonals bisect the opposite angles (3) m<dac=m<bac m<dca=m<bca m<adb=m<cdb m<abd=m<cbd (4) the diagonals are perpendicular (4) DB AC at E to each other 1. In rhombus ABCD, AB=(6x 3) and BC=(4x+7). Find AB. X = 5 AB = If the lengths of the diagonals of a rhombus are 10 and 24, find the length of one side of the rhombus. 2.The lengths of the diagonals of a rhombus are 6 and 8. What is the length of a side of a rhombus? 6. In the accompanying diagram of rhombus ABCD, m<abd=50. Find m<a. Pythagorean Theorem 3. In the accompanying diagram of rhombus CDEF, diagonal FD is drawn and m<e=40. Find m<cfd Given a parallelogram, a rhombus and a rectangle. If one of these quadrilaterals is picked at random, what is the probability that its diagonals bisect each other? (1) 1 (2) 2/3 (3) 1/3 (4) 0 4. In rhombus ABCD, diagonal DB is congruent to side AD. What is the measure of <A? 60
13 Name: Date: The RECTANGLE REMEMBER A rectangle is a parallelogram with a right angle. In addition to having all the properties of a parallelogram, the rectangle has several other properties. If you are given rectangle ABCD then: Property Meaning (1) all the properties of the (1) Refer to notes parallelogram are true (2) all the angles are right (2) m<a=m<b=m<c=m<d=90 and are congruent (3) the diagonals are congruent (3) AC DB 1. In rectangle PQRS with diagonals PR and SQ, if PR=(4x 10) and SQ=(7x 40), find PR. 6. In rectangle ABCD, AD=6 and AB=8. What is the measure of diagonal AC? 2. In rectangle ABCD, AB=4 and BC=3. AC must be (1) 5 (2) 7 (3) 25 (4) 4 7. The diagonals of rectangle ABCD intersect at E. If DE=(2x+3) and AE=(x+6), find the value of AE. 3. In rectangle ABCD diagonal AC is drawn. In m<dca=30, find m<cad. 8. The diagonals of rectangle RSTV intersect at Q. If VQ=(3x 3) and RT=(5x 1) find the value of RT. 4. The diagonals of rectangle ABCD intersect at E. If DE=(3x+1) and EB=(2x+7), find the value of BE and ED. 9. The diagonals of a rectangle must always be perpendicular to each other. (True or False) 5. If the measure of one angle of a parallelogram is 90, what is the probability that the parallelogram is a rectangle? 10. In rectangle ABCD, BC=30 and AB=40. If diagonals AC and AB intersect at E, find the measure of BE.
14 Name: Date: Proofs using the Properties of a Rectangle and Rhombus E 1) Given: Rectangle ABCD with E the midpoint of DC Prove: <1 <2 Statements Reasons 2) Given: AECB is a rhombus, AED, FEC, <FAB <DCB Prove: FE DE Statements Reasons
15 Name: Date: 3) In the coordinate plane A, (1,2), B(1,2), C(1,3), and D(3,1) are the vertices of a quadrilateral. a) Find AB and CD b) Find the slope of AB and the slope of CD c) What does the answer to part b tell you about AB and CD? d) Based on the answers to a and b, explain why ABCD is a parallelogram. e) Find the slope of AD. f) What do the answers to part b and e tell you about AB and AD? g) Based on the answers to part d and f, explain why ABCD is a rectangle.
16 4) In the coordinate plane, A(1,0), B(3,3), C(3,2), and D(1,5) are the vertices of a quadrilateral. AC and BD intersect at M(1,1). a) Show that AC and BD bisect each other. b) Based on the answer to part a, explain why ABCD is a parallelogram. c) Show that AC BD. d) Based on the answers to parts b and c, explain why ABCD is a rhombus.
17 Name: Date: 5) Given: A(2,2), B(6,5), C(4,0), D(4,3) Prove: ABCD is a parallelogram but not a rectangle
18 6) The vertices of quadrilateral ABCD are A(2,3), B(11,6), C(10,9), and D(1,6). a) Using coordinate geometry, show that diagonals AC and BD bisect each other b) Using coordinate geometry, show that quadrilateral ABCD is a rectangle.
19 Name: Date: Aim: To define the properties of a square. To prove a quadrilateral is a square. Square Notes IV) SQUARE Properties: a) b) To PROVE a quadrilateral is a SQUARE: 1). 2).
20 Name: Date: The SQUARE REMEMBER A square is a rhombus with four angles or is a rectangle with four equal sides. Since it is both a rectangle and a rhombus, all the properties you have learned hold true for the square. Example: If the side of a square ABCD is 5, find the diagonal BD. Solution: AB=DA=5 sides are congruent x 2 = Pythagorean theorem x 2 =25+25 x 2 =50 x= 50= 25*2=5 2 ANSWER 1. In the accompanying diagram, quadrilateral ABCD is a square with diagonal DB. Which of the statements are NOT true? (1) AB CB (2) AD CB (3) DA AB (4) AD DB 2. Which statement is false? (1) a square is a rectangle 4. If the side of a square is 4, find the length of the diagonal. 5. In the accompanying diagram CDEF is a square with diagonal CE drawn. Which statement is NOT true? (2) a square is a rhombus (3) a rhombus is a square (4) a square is a parallelogram (1) ΔCFE is isosceles (2) ΔCFE is a right triangle (3) ΔCFE ΔCDE (4) ΔCDE is equilateral 3. In the accompanying diagram, PQRS is a square with diagonal SQ. Which statement is NOT true? 6. In square ABCD diagonal AC is drawn. How many degrees are there in the measure of <ACB? (1) <1 <2 (2) <2 <3 (3) <4 <P (4) <P <R 7. Find the diagonal of a square whose perimeter is 28.
21 1. The vertices of quadrilateral GRID are G(4,1), R(7,3), I(11,0), and D(8,4). Using coordinate geometry, prove that quadrilateral GRID is a square.
22 2. The vertices of quadrilateral ABCD are A(1,1), B(4,5), C(9,1), and D(4,3). Using coordinate geometry, prove that a. ABCD is a rhombus b. ABCD is NOT a square
23 Name: Date: Trapezoid Notes V) Trapezoid *. (NOT ) The ANGLES of the trapezoid add up to. Isosceles Trapezoid . 1). 2). 3).
24 Name: Date: The Trapezoid and Isosceles Trapezoid REMEMBER A trapezoid is a quadrilateral that has two and only two sides parallel. The parallel sides are called the bases and the nonparallel sides are called the legs. An isosceles trapezoid is a trapezoid, which has congruent legs. Example: Given isosceles trapezoid ABCD with AB ll CD, AB=4, CD=14, and AD=13. Find the length of an altitude of trapezoid ABCD. Solution: Draw in altitude AE and BF such that Rectangle ABFE is formed and EF=4. Since ABCD is isosceles, ΔADE can be proven to be congruent to ΔBFC and DE FC. Therefore, DE=FC=5. 1.In the accompanying diagram, isosceles trapezoid CDEF has bases of lengths 6 and 12 and an altitude of length 4. Find CD. By the Pythagorean theorem x =13 2 x 2 +25=169 x 2 =144 x=12 answer 4. In the accompanying diagram, isosceles trapezoid ABCD has bases AB and DC, and diagonals AC and BD are drawn. Which statement is NOT true? (1) AD BC (2) AC BD (3) AB DC (4) AB ll DC 2.In the accompanying diagram of trapezoid ABCD, CD=10, m<a=45, m<d=90, and base BC=3. Find the length of base AD. 5. ABCD is an isosceles trapezoid with bases AB and DC. If AD=3x+4 and BC=x+12, find AD. 3.In isosceles trapezoid ABCD, AB ll CD, AB=18, CD=6 and AD=10. Find the length of an altitude of ABCD. 6. CDEF is a trapezoid with CD // FE. If m<f and m<c are in the ratio 1:4, find the measure of <F.
25 In 712, answer true or false in each case. 7. In an isosceles trapezoid, nonparallel sides are congruent. 8.In a trapezoid, at least two sides must be congruent. 9. In a trapezoid, base angles are always congruent. 10. The diagonals of a trapezoid are congruent only if the nonparallel sides of the trapezoid are congruent. 11. A trapezoid is a special kind of parallelogram. 12. In a trapezoid, two consecutive angles that are not angles on the same base must be supplementary. In is a trapezoid with AB//DC. When ABCD is isosceles, sides AD and BC are marked as congruent. In each case, find the measures of the angles indicated by arcs in the diagram
26 17. Quadrilateral PQRS has vertices P(3,4), Q(9,5), R(1,10), and S(5,7). Prove that quadrilateral PQRS is an isosceles trapezoid.
27 19 18) Given: Isosceles Trapezoid ABCD with ABllDC and AD CB Prove: AC BD Statements Reasons 119) Given: Isosceles trapezoid GTHR with GR TH and diagonals GH and TR Prove: GH TR Statements Reasons
Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms  Trapezoids
Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms  Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?
More informationGeometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
More informationhttp://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4
of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the
More information/27 Intro to Geometry Review
/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the
More informationGeometry Module 4 Unit 2 Practice Exam
Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
More informationQuadrilateral Geometry. Varignon s Theorem I. Proof 10/21/2011 S C. MA 341 Topics in Geometry Lecture 19
Quadrilateral Geometry MA 341 Topics in Geometry Lecture 19 Varignon s Theorem I The quadrilateral formed by joining the midpoints of consecutive sides of any quadrilateral is a parallelogram. PQRS is
More informationGeometry Handout 2 ~ Page 1
1. Given: a b, b c a c Guidance: Draw a line which intersects with all three lines. 2. Given: a b, c a a. c b b. Given: d b d c 3. Given: a c, b d a. α = β b. Given: e and f bisect angles α and β respectively.
More informationDEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your
More informationQUADRILATERALS CHAPTER 8. (A) Main Concepts and Results
CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of
More informationGeometry 81 Angles of Polygons
. Sum of Measures of Interior ngles Geometry 81 ngles of Polygons 1. Interior angles  The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationCHAPTER 8 QUADRILATERALS. 8.1 Introduction
CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three noncollinear points in pairs, the figure so obtained is
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
More information1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.
1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationQuadrilaterals. Definition
Quadrilaterals Definition A quadrilateral is a foursided closed figure in a plane that meets the following conditions: Each side has its endpoints in common with an endpoint of two adjacent sides. Consecutive
More informationSession 5 Dissections and Proof
Key Terms for This Session Session 5 Dissections and Proof Previously Introduced midline parallelogram quadrilateral rectangle sideangleside (SAS) congruence square trapezoid vertex New in This Session
More informationCSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfdprep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
More informationQuadrilaterals GETTING READY FOR INSTRUCTION
Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper
More information39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
More informationDefinitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
More informationEquation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1
Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows : gradient = vertical horizontal horizontal A B vertical
More informationSection 91. Basic Terms: Tangents, Arcs and Chords Homework Pages 330331: 118
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,
More informationSelected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
More information43 Perimeter and Area
43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study
More information5.1 Midsegment Theorem and Coordinate Proof
5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle  A midsegment of a triangle is a segment that connects
More information1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
More informationhttp://jsuniltutorial.weebly.com/ Page 1
Parallelogram solved Worksheet/ Questions Paper 1.Q. Name each of the following parallelograms. (i) The diagonals are equal and the adjacent sides are unequal. (ii) The diagonals are equal and the adjacent
More informationBlue Pelican Geometry Theorem Proofs
Blue Pelican Geometry Theorem Proofs Copyright 2013 by Charles E. Cook; Refugio, Tx (All rights reserved) Table of contents Geometry Theorem Proofs The theorems listed here are but a few of the total in
More informationConjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C2 Vertical Angles Conjecture If two angles are vertical
More informationGeometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationPOTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
More informationSituation: Proving Quadrilaterals in the Coordinate Plane
Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra
More information11.3 Curves, Polygons and Symmetry
11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon
More informationGEOMETRY (Common Core)
GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Tuesday, June 2, 2015 1:15 to 4:15 p.m., only Student Name: School Name: The possession
More informationMath 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:059:55. Exam 1 will be based on: Sections 1A  1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
More informationMost popular response to
Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles
More informationPostulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 111: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
More informationGeo, Chap 4 Practice Test, EV Ver 1
Class: Date: Geo, Chap 4 Practice Test, EV Ver 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (43) In each pair of triangles, parts are congruent as
More information2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
More informationChapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
More informationSemester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.
Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,
More informationAdvanced Euclidean Geometry
dvanced Euclidean Geometry What is the center of a triangle? ut what if the triangle is not equilateral?? Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line
More informationCumulative Test. 161 Holt Geometry. Name Date Class
Choose the best answer. 1. P, W, and K are collinear, and W is between P and K. PW 10x, WK 2x 7, and PW WK 6x 11. What is PK? A 2 C 90 B 6 D 11 2. RM bisects VRQ. If mmrq 2, what is mvrm? F 41 H 9 G 2
More informationConjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
More informationEstimating Angle Measures
1 Estimating Angle Measures Compare and estimate angle measures. You will need a protractor. 1. Estimate the size of each angle. a) c) You can estimate the size of an angle by comparing it to an angle
More informationFinal Review Geometry A Fall Semester
Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over
More informationConjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence  a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
More informationGEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
More informationIntermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
More informationwww.sakshieducation.com
LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c
More informationAlgebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
More informationGeometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
More informationThe common ratio in (ii) is called the scaledfactor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1
47 Similar Triangles An overhead projector forms an image on the screen which has the same shape as the image on the transparency but with the size altered. Two figures that have the same shape but not
More informationGeometry EOC Practice Test #2
Class: Date: Geometry EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rebecca is loading medical supply boxes into a crate. Each supply
More informationUnit 3: Circles and Volume
Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications
More informationGeometry of 2D Shapes
Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles
More informationChapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
More informationName Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem
Name Period 10/22 11/1 Vocabulary Terms: Acute Triangle Right Triangle Obtuse Triangle Scalene Isosceles Equilateral Equiangular Interior Angle Exterior Angle 10/22 Classify and Triangle Angle Theorems
More informationParallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
More informationChapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter?
Chapter Quiz Section.1 Area and Initial Postulates (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? (.) TRUE or FALSE: If two plane
More informationGPS GEOMETRY Study Guide
GPS GEOMETRY Study Guide Georgia EndOfCourse Tests TABLE OF CONTENTS INTRODUCTION...5 HOW TO USE THE STUDY GUIDE...6 OVERVIEW OF THE EOCT...8 PREPARING FOR THE EOCT...9 Study Skills...9 Time Management...10
More informationGeometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
More informationRight Triangles 4 A = 144 A = 16 12 5 A = 64
Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right
More informationCoordinate Geometry THE EQUATION OF STRAIGHT LINES
Coordinate Geometry THE EQUATION OF STRAIGHT LINES This section refers to the properties of straight lines and curves using rules found by the use of cartesian coordinates. The Gradient of a Line. As
More informationPractical Geometry CHAPTER. 4.1 Introduction DO THIS
PRACTICAL GEOMETRY 57 Practical Geometry CHAPTER 4 4.1 Introduction You have learnt how to draw triangles in Class VII. We require three measurements (of sides and angles) to draw a unique triangle. Since
More informationTarget To know the properties of a rectangle
Target To know the properties of a rectangle (1) A rectangle is a 3D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles
More informationGeometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
More information2014 2015 Geometry B Exam Review
Semester Eam Review 014 015 Geometr B Eam Review Notes to the student: This review prepares ou for the semester B Geometr Eam. The eam will cover units 3, 4, and 5 of the Geometr curriculum. The eam consists
More informationThreeDimensional Figures or Space Figures. Rectangular Prism Cylinder Cone Sphere. TwoDimensional Figures or Plane Figures
SHAPE NAMES ThreeDimensional Figures or Space Figures Rectangular Prism Cylinder Cone Sphere TwoDimensional Figures or Plane Figures Square Rectangle Triangle Circle Name each shape. [triangle] [cone]
More informationChapter 11. Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem!
Chapter 11 Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem! Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret
More informationPOTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector:
Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point
More information56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.
6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which
More informationArea. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
More informationPractice Test Answer and Alignment Document Mathematics: Geometry Performance Based Assessment  Paper
The following pages include the answer key for all machinescored items, followed by the rubrics for the handscored items.  The rubrics show sample student responses. Other valid methods for solving
More informationChapter 8 Geometry We will discuss following concepts in this chapter.
Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles
More informationGeometry Enduring Understandings Students will understand 1. that all circles are similar.
High School  Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
More informationCircle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
More information2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?
MATH 206  Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of
More informationAREAS OF PARALLELOGRAMS AND TRIANGLES
15 MATHEMATICS AREAS OF PARALLELOGRAMS AND TRIANGLES CHAPTER 9 9.1 Introduction In Chapter 5, you have seen that the study of Geometry, originated with the measurement of earth (lands) in the process of
More informationHon Geometry Midterm Review
Class: Date: Hon Geometry Midterm Review Multiple Choice Identify the choice that best completes the statement or answers the question. Refer to Figure 1. Figure 1 1. Name the plane containing lines m
More informationSet 4: Special Congruent Triangles Instruction
Instruction Goal: To provide opportunities for students to develop concepts and skills related to proving right, isosceles, and equilateral triangles congruent using realworld problems Common Core Standards
More informationTeaching Guidelines. Knowledge and Skills: Can specify defining characteristics of common polygons
CIRCLE FOLDING Teaching Guidelines Subject: Mathematics Topics: Geometry (Circles, Polygons) Grades: 46 Concepts: Property Diameter Radius Chord Perimeter Area Knowledge and Skills: Can specify defining
More informationAngles in a Circle and Cyclic Quadrilateral
130 Mathematics 19 Angles in a Circle and Cyclic Quadrilateral 19.1 INTRODUCTION You must have measured the angles between two straight lines, let us now study the angles made by arcs and chords in a circle
More informationSGS4.3 Stage 4 Space & Geometry Part A Activity 24
SGS4.3 Stage 4 Space & Geometry Part A Activity 24 Exploring triangles Resources required: Each pair students will need: 1 container (eg. a rectangular plastic takeaway container) 5 long pipe cleaners
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your school
More informationMATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014
EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle
More informationExercise Set 3. Similar triangles. Parallel lines
Exercise Set 3. Similar triangles Parallel lines Note: The exercises marked with are more difficult and go beyond the course/examination requirements. (1) Let ABC be a triangle with AB = AC. Let D be an
More informationSolutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 57:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
More informationWeek 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test
Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More information