5.1 Midsegment Theorem and Coordinate Proof
|
|
|
- Alfred Carroll
- 9 years ago
- Views:
Transcription
1 5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects the midpoints of two sides of the triangle. Coordinate proof A coordinate proof involves placing geometric figures in a coordinate plane. Midsegment Theorem The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long as that side. DE // AC and DE = ½ AC EXAMPLE 1 Use the Midsegment Theorem to find lengths Windows A large triangular window is segmented as shown. In the diagram, DF and EF are midsegments of ABC. Find DF and AB. EXAMPLE 2 Use the Midsegment Theorem In the diagdram at the right, QS = SP and PT = TR. Show that QR ST EXAMPLE 3 Place a figure in a coordinate plane Place each figure in a coordinate plane in a way that is convenient for finding side lengths. Assign coordinates to each vertex. a. A square b. An acute triangle (5.1 cont.)
2 EXAMPLE 4 Apply variable coordinates In Example 3 part (a), find the length and midpoint of a diagonal of the square. 5.1 Cont.
3 5.2 Use Perpendicular Bisectors Obj.: Use perpendicular bisectors to solve problems. Key Vocabulary Perpendicular bisector - A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Equidistant - A point is equidistant from two figures if the point is the same distance from each figure. Concurrent - When three or more lines, rays, or segments intersect in the same point, they are called concurrent lines, rays, or segments. Point of concurrency - The point of intersection of the lines, rays, or segments is called the point of concurrency. Circumcenter - The point of concurrency of the three perpendicular bisectors of a triangle is called the circumcenter of the triangle. Perpendicular Bisector Theorem bis Th. In a plane, if a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. If CP is the bisector of AB, then CA = CB. Converse of the Perpendicular Bisector Theorem In a plane, if a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment. If DA = DB, then D lies on the bisector of AB. Concurrency of Perpendicular Bisectors of a Triangle The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle. If PD, PE, and PF are perpendicular bisectors, then PA =PB = PC. Conv. bis Th Acute triangle Right triangle Obtuse triangle P is inside triangle. P is on triangle P is outside triangle.
4 EXAMPLE 1 Use the Perpendicular Bisector Theorem ALGEBRA AC is the perpendicular bisector of BD. Find AD. (5.2 cont.) EXAMPLE 2 Use perpendicular bisectors In the diagram, KN is the perpendicular bisector of JL. a. What segment lengths in the diagram are equal? b. Is M on KN? EXAMPLE 3 Use the concurrency of perpendicular bisectors Football Three friends are playing catch. You want to join and position yourself so that you are the same distance from your friends. Find a location for you to stand.
5 5.3 Use Angle Bisectors of Triangles Obj.: Use angle bisectors to find distance relationships. Key Vocabulary Incenter - The point of concurrency of the three angle bisectors of a triangle is called the incenter of the triangle. The incenter always lies inside the triangle. Angle bisector - An angle bisector is a ray that divides an angle into two congruent adjacent angles. Distance from a point to a line The distance from a point to a line is the length of the perpendicular segment from the point to the line. Angle Bisector Theorem bis Th If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle. If AD bisects BAC and DB AB and DC AC, then DB = DC. Converse of the Angle Bisector Theorem Conv. bis Th If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle. If DB AB and DC AC and DB = DC, then AD bisects BAC. Concurrency of Angle Bisectors of a Triangle The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle. If AP, BP, and CP are angle bisectors of ABC, then PD = PE = PF. EXAMPLE 1 Use the Angle Bisector Theorems Find the measure of CBE.
6 EXAMPLE 2 Solve a real-world problem Web A spider s position on its web relative to an approaching fly and the opposite sides of the web forms congruent angles, as shown. Will the spider have to move farther to reach a fly toward the right edge or the left edge? (5.3 cont.) EXAMPLE 3 Use algebra to solve a problem ALGEBRA For what value of x does P lie on the bisector of J? EXAMPLE 4 Use the concurrency of angle bisectors In the diagram, L is the incenter of FHJ. Find LK.
7 5.3 Cont.
8 5.4 Use Medians and Altitudes Obj.: Use medians and altitudes of triangles. Key Vocabulary Median of a triangle - A median of a triangle is a segment from a vertex to the midpoint of the opposite side. Centroid - The point of concurrency, called the centroid, is inside the triangle. Altitude of a triangle - An altitude of a triangle is the perpendicular segment from a vertex to the opposite side or to the line that contains the opposite side. Orthocenter - The point at which the lines containing the three altitudes of a triangle intersect is called the orthocenter of the triangle. Concurrency of Medians of a Triangle The medians of a triangle intersect at a point that is two thirds of the distance from each vertex to the midpoint of the opposite side.the medians of ABC meet at P and AP = ⅔ AE, BP = ⅔ BF, and CP = ⅔ CD. Concurrency of Altitudes of a Triangle The lines containing the altitudes of a triangle are concurrent. The lines containing AF,BE, and CD meet at G. EXAMPLE 1 Use the centroid of a triangle In FGH, M is the centroid and GM = 6. Find ML and GL. Three medians meet at the centroid.
9 EXAMPLE 2 Use the centroid of a triangle (5.4 cont.) The vertices of JKL are J(1, 2), K(4, 6), and L(7, 4). Find the coordinates of the centroid P of JKL. Sketch JKL. Then use the Midpoint Formula to find the midpoint M of JL and sketch median KM. EXAMPLE 3 Find the orthocenter Find the orthocenter P in the triangle. EXAMPLE 4 Prove a property of isosceles triangles Prove that the altitude to the base of an isosceles triangle is median. Given: ABC is isosceles, with base AC. BD is the altitude to base AC. Prove: BD is a median of ABC
10 5.4 Cont.
11 5.5 Use Inequalities in a Triangle Obj.: Find possible side lengths of a triangle. Key Vocabulary Side opposite - The side not adjacent to the angle is opposite the angle. Inequality - A mathematical sentence built from expressions using one or more of the symbols <, >,, or. side- inequal. Th. If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than the angle opposite the shorter side. AB > BC, so m C > m A. -side inequal. Th. If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle. m A > m C, so BC > AB. Triangle Inequality Theorem sum th. The sum of the lengths of any two sides of a triangle is greater than the length of the third side. AB + BC > AC AC + BC > AB AB + AC > BC EXAMPLE 1 Relate side length and angle measure Mark the largest angle, longest side, smallest angle, and shortest side of the triangle shown. What do you notice?
12 EXAMPLE 2 Find angle measures (5.5 cont.) Boating A long-tailed boat leaves a dock and travels 2500 feet to a cave, 5000 feet to a beach, then 6000 feet back to the dock as shown below. One of the angles in the path is about 55 O and one is about 24 O. What is the angle measure of the path made at the cave? EXAMPLE 3 Find possible side lengths ALGEBRA A triangle has one side of length 14 and another of length 10. Describe the possible lengths of the third side.
13 5.5 Cont.
14 5.6 Inequalities in Two Triangles and Indirect Proof Obj.: Use inequalities to make comparisons in two triangles. Key Vocabulary Indirect proof - In an indirect proof, you start by making the temporary assumption that the desired conclusion is false. By then showing that this assumption leads to a logical impossibility, you prove the original statement true by contradiction. Included angle - The included angle is the angle made by two sides of a polygon. Hinge Theorem Hinge th If two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second, then the third side of the first is longer than the third side of the second. Converse of the Hinge Theorem Conv Hinge th If two sides of one triangle are congruent to two sides of another triangle, and the third side of the first is longer than the third side of the second, then the included angle of the first is larger than the included angle of the second. WX > ST m C > m F KEY CONCEPT How to Write an Indirect Proof STEP 1 Identify the statement you want to prove. Assume temporarily that this statement is false by assuming that its opposite is true. STEP 2 Reason logically until you reach a contradiction. STEP 3 Point out that the desired conclusion must be true because the contradiction proves the temporary assumption false. EXAMPLE 1 Use the Converse of the Hinge Theorem Given that AD BC, how does 1 compare to 2?
15 EXAMPLE 2 Solve a multi-step problem (5.6 cont.) Travel Car A leaves a mall, heads due north for 5 mi and then turns due west for 3 mi. Car B leaves the same mall, heads due south for 5 mi and then turns 80 O toward east for 3 mi. Which car is farther from the mall? Explain your reasoning. EXAMPLE 3 Write an indirect proof Write an indirect proof that an odd number is not divisible by 6. GIVEN: x is an odd number. PROVE: x is not divisible by 6.
16 5.6 Cont. (Write these on your paper)
DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
Name Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem
Name Period 10/22 11/1 Vocabulary Terms: Acute Triangle Right Triangle Obtuse Triangle Scalene Isosceles Equilateral Equiangular Interior Angle Exterior Angle 10/22 Classify and Triangle Angle Theorems
Lesson 5-3: Concurrent Lines, Medians and Altitudes
Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special
Chapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
Chapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
Geometry Module 4 Unit 2 Practice Exam
Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning
Geometry. Relationships in Triangles. Unit 5. Name:
Geometry Unit 5 Relationships in Triangles Name: 1 Geometry Chapter 5 Relationships in Triangles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK.
Geometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
Definitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
Duplicating Segments and Angles
CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty
5-1 Perpendicular and Angle Bisectors
5-1 Perpendicular and Angle Bisectors Equidistant Distance and Perpendicular Bisectors Theorem Hypothesis Conclusion Perpendicular Bisector Theorem Converse of the Perp. Bisector Theorem Locus Applying
Conjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
Incenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
Conjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical
Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.
Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
Visualizing Triangle Centers Using Geogebra
Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ [email protected] ABSTRACT. In this paper, we will
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors
Unit 2 - Triangles. Equilateral Triangles
Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4
of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the
Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
Analytical Geometry (4)
Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line
NAME DATE PERIOD. Study Guide and Intervention
opyright Glencoe/McGraw-Hill, a division of he McGraw-Hill ompanies, Inc. 5-1 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector
Centers of Triangles Learning Task. Unit 3
Centers of Triangles Learning Task Unit 3 Course Mathematics I: Algebra, Geometry, Statistics Overview This task provides a guided discovery and investigation of the points of concurrency in triangles.
Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3
Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs
Lesson 3.1 Duplicating Segments and Angles
Lesson 3.1 Duplicating Segments and ngles In Exercises 1 3, use the segments and angles below. Q R S 1. Using only a compass and straightedge, duplicate each segment and angle. There is an arc in each
Ceva s Theorem. Ceva s Theorem. Ceva s Theorem 9/20/2011. MA 341 Topics in Geometry Lecture 11
MA 341 Topics in Geometry Lecture 11 The three lines containing the vertices A, B, and C of ABC and intersecting opposite sides at points L, M, and N, respectively, are concurrent if and only if 2 3 1
Final Review Geometry A Fall Semester
Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over
GEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
TIgeometry.com. Geometry. Angle Bisectors in a Triangle
Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.
Angles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
Lecture 24: Saccheri Quadrilaterals
Lecture 24: Saccheri Quadrilaterals 24.1 Saccheri Quadrilaterals Definition In a protractor geometry, we call a quadrilateral ABCD a Saccheri quadrilateral, denoted S ABCD, if A and D are right angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1
Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical
1.1 Identify Points, Lines, and Planes
1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms - These words do not have formal definitions, but there is agreement aboutwhat they mean.
GEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
Circle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
Most popular response to
Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
CAIU Geometry - Relationships with Triangles Cifarelli Jordan Shatto
CK-12 FOUNDATION CAIU Geometry - Relationships with Triangles Cifarelli Jordan Shatto CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12
Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
Math 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results
CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids
Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
Advanced Euclidean Geometry
dvanced Euclidean Geometry What is the center of a triangle? ut what if the triangle is not equilateral?? Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line
IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition:
IMO Geomety Problems (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector
/27 Intro to Geometry Review
/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
3.1 Triangles, Congruence Relations, SAS Hypothesis
Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.
Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (1-1) Points, Lines, & Planes Topic: (1-2) Segment Measure Quiz
Lesson 2: Circles, Chords, Diameters, and Their Relationships
Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct
Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
Geometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
15. Appendix 1: List of Definitions
page 321 15. Appendix 1: List of Definitions Definition 1: Interpretation of an axiom system (page 12) Suppose that an axiom system consists of the following four things an undefined object of one type,
GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:
GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 1-4 Lesson 1.2: SWBAT: Use
Mathematics Geometry Unit 1 (SAMPLE)
Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This
Lesson 18: Looking More Carefully at Parallel Lines
Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using
Blue Pelican Geometry Theorem Proofs
Blue Pelican Geometry Theorem Proofs Copyright 2013 by Charles E. Cook; Refugio, Tx (All rights reserved) Table of contents Geometry Theorem Proofs The theorems listed here are but a few of the total in
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your
POTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
Unit 3: Circles and Volume
Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,
Heron s Formula. Key Words: Triangle, area, Heron s formula, angle bisectors, incenter
Heron s Formula Lesson Summary: Students will investigate the Heron s formula for finding the area of a triangle. The lab has students find the area using three different methods: Heron s, the basic formula,
Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions
Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.
Exercise Set 3. Similar triangles. Parallel lines
Exercise Set 3. Similar triangles Parallel lines Note: The exercises marked with are more difficult and go beyond the course/examination requirements. (1) Let ABC be a triangle with AB = AC. Let D be an
SIMSON S THEOREM MARY RIEGEL
SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: ID: A Q3 Geometry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Graph the image of each figure under a translation by the given
GPS GEOMETRY Study Guide
GPS GEOMETRY Study Guide Georgia End-Of-Course Tests TABLE OF CONTENTS INTRODUCTION...5 HOW TO USE THE STUDY GUIDE...6 OVERVIEW OF THE EOCT...8 PREPARING FOR THE EOCT...9 Study Skills...9 Time Management...10
A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:
summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment
CHAPTER 8 QUADRILATERALS. 8.1 Introduction
CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is
Terminology: When one line intersects each of two given lines, we call that line a transversal.
Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal.
Projective Geometry - Part 2
Projective Geometry - Part 2 Alexander Remorov [email protected] Review Four collinear points A, B, C, D form a harmonic bundle (A, C; B, D) when CA : DA CB DB = 1. A pencil P (A, B, C, D) is the
How To Solve The Pythagorean Triangle
Name Period CHAPTER 9 Right Triangles and Trigonometry Section 9.1 Similar right Triangles Objectives: Solve problems involving similar right triangles. Use a geometric mean to solve problems. Ex. 1 Use
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
Quadrilateral Geometry. Varignon s Theorem I. Proof 10/21/2011 S C. MA 341 Topics in Geometry Lecture 19
Quadrilateral Geometry MA 341 Topics in Geometry Lecture 19 Varignon s Theorem I The quadrilateral formed by joining the midpoints of consecutive sides of any quadrilateral is a parallelogram. PQRS is
The Euler Line in Hyperbolic Geometry
The Euler Line in Hyperbolic Geometry Jeffrey R. Klus Abstract- In Euclidean geometry, the most commonly known system of geometry, a very interesting property has been proven to be common among all triangles.
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
A. The answer as per this document is No, it cannot exist keeping all distances rational.
Rational Distance [email protected] www.unsolvedproblems.org: Q. Given a unit square, can you find any point in the same plane, either inside or outside the square, that is a rational distance from
39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
Geometry Handout 2 ~ Page 1
1. Given: a b, b c a c Guidance: Draw a line which intersects with all three lines. 2. Given: a b, c a a. c b b. Given: d b d c 3. Given: a c, b d a. α = β b. Given: e and f bisect angles α and β respectively.
Geometry EOC Practice Test #2
Class: Date: Geometry EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rebecca is loading medical supply boxes into a crate. Each supply
2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?
MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of
Geometry Enduring Understandings Students will understand 1. that all circles are similar.
High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
Cumulative Test. 161 Holt Geometry. Name Date Class
Choose the best answer. 1. P, W, and K are collinear, and W is between P and K. PW 10x, WK 2x 7, and PW WK 6x 11. What is PK? A 2 C 90 B 6 D 11 2. RM bisects VRQ. If mmrq 2, what is mvrm? F 41 H 9 G 2
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications
The Geometry of Piles of Salt Thinking Deeply About Simple Things
The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word
Collinearity and concurrence
Collinearity and concurrence Po-Shen Loh 23 June 2008 1 Warm-up 1. Let I be the incenter of ABC. Let A be the midpoint of the arc BC of the circumcircle of ABC which does not contain A. Prove that the
Algebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
