# /27 Intro to Geometry Review

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 /27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the figure bisects FCB. If CG FCG = 9x + 3 and GCB = 13x-9, find GCB and classify the type of angle. 4. A straight has a measure of. 5. Draw and label a plane Q. Put each of the following relationships in this plane. a. is in plane Q. AB b. intersects at P. ST AB c. Point X is collinear with points A and P. d. Point Y is not collinear with points T and P. e. Line contains points X and Y. The figure below refers to problems Line AD line CF, and m DOE= Find the length of BC. A 13cm B C 25cm 7. Find y if B is between A and C, AB is 2y, BC is 6y and AC is Find m EOF. 16. Find m AOB. 8. Find the complement of 40º. 9. Find the supplement of 150º comp 3 and 4 = 131. Find the measure of the rest of the angles of 2 complementary angles is twice the other. Find the measure of the angles. 11. One of 2 supplementary angles is 70 greater than the 2 nd. Find the measure of the larger angle. 12. If 2 angles are both supplementary and congruent, then they are. a. 1 = b. 2 = c. 3 = d. 5 = e. 6 = f. 7 = g. 8 = 1 Rev D.1

2 /32 Reasoning & Proofs Review 18. What are some things that can be assumed? c. d. 19. What are some things that cannot be assumed? c. d. 20. What are two things that can be concluded from Straight Angle? 21. What are two things that can be concluded from Right Angle? 22. What is one thing that can be concluded from Midpoint? 23. What is one thing that can be concluded from Bisect? For questions 24-26, provide possible conclusions based on the diagram and given information. 24. Given: A is a right Conclusion: A D 25. Given: 3 sup to 4, 5 sup to 4 Conclusion: 26. Given: F sup G, H sup J, G J Conclusion: B C 27. Identify the hypothesis and conclusion of the following statement: If 2 lines are perpendicular then they form 4 right angles. 28. Write converse, inverse and contrapositive of If today is President s Day, then there is no school. a. Converse: b. Inverse: c. Contrapositive 29. Write the converse, inverse and contrapositive of a b a. Converse: b. Inverse: c. Contrapositive 30. Complete a truth table for r s (3pts) For problems 31-35, state the property that justifies each statement. 31. AB AB 32. If A P then P A. XY PQ 33. If XY PQ then If 3( x 6) 0 then3x If a = b and b = c then a = c. 2 Rev D.1

3 /22 Lines in the Plane Review (Coordinates & Parallel Lines) 44. Identify the following pairings: 36. What is the slope formula? 37. What is the midpoint formula? 38. What is the distance formula? 39. Find the slope of the line that passes through (1, 3) and (5, -2) 40. Find the coordinates of the point where the median from A intersects BC. (-4,3) B (6,5) A a. alternate interior: b. alternate exterior: c. corresponding: d. same side interior: e. same side exterior: 45. Given that m 14 51, find the value of the rest of the angles. C (6,-1) 41. Given the following coordinate (2,-3) perform the following transformations. a. reflect over x-axis b. reflect over y-axis c. translate to up 3 units 42. List 5 ways to prove lines. a. b. c. d. e. 43. Find x so that e f a. b. 46. Find m Rev D.1

4 /26 Triangle Properties Review 47. An acute triangle has 60. Find the value of x a. b. 48. An obtuse triangle has 49. A right triangle has 50. An equiangular triangle has 51. An equilateral triangle has 52. An isosceles triangle has 53. A scalene triangle has 54. A median is 55. An altitude is 56. Given YA is a median and XA x 6and ZA 2x 12 find ZX 61. Based on the diagram above, identify 5 angle relationships: a. b. c. d. e. 62. Name the longest side of ABC. 57. Determine whether the given measures can be lengths of the sides of a triangle: a. 2, 4, 5 b. 6, 9, Name the smallest angle of ABC. 58. Find the range for the measure of the third side of the triangle given the measures of 2 sides: a. 1 and 6 b. 82 and Determine the type of triangle, if any, based on the lengths of the 3 sides (Hint use Pythagorean Theorem): a. 8, 15, 17 b. 1, 1, Determine the relationship between the lengths of the sides AE and EB. 4 Rev D.1

5 /28 Triangles Review 65. What are some ways to prove 2 triangles are congruent? a. b. c. d. 66. What must you have in order to use the HL postulate? a. b. c. 71. Given the following indirect proof, what must be assumed? Given: AB AD, BAC DAC Prove: BC DC Complete the following proofs. 72. Given: FGI IGH, GI FH Prove: GIH is a right 67. Can CPCTC be used as a reason in a proof before proving any triangles are congruent? 68. When given a circle as a diagram, what can one assume? 69. Determine whether the pair of triangles is congruent. If so, write a congruence statement and explain why the triangles are congruent. a. b. Statements Reasons Given: C H, T is midpoint of AO Prove: CAT HOT Statements Reasons Indicate the needed information to make the 2 triangles congruent via AAS. 74. Given: HGJ KJG, KGJ HJG Prove: HG KJ Statements Reasons Rev D.1

6 /43 Polygons & Quadrilaterals 75. List 3 properties of a polygon. a. b. c. 76. Name the polygon based by its # of sides, convex/concave and regular/irregular. 77. List the properties of a parallelogram Beyond the properties of a parallelogram, list the properties of a rhombus. 79. Name all the properties of a kite. Which shapes also have these properties? 80. Name all the properties of a square. 81. List the properties of an isosceles trapezoid Name all quadrilaterals that have congruent opposite angles. a. b. c. d. 83. Name all quadrilaterals that have congruent diagonals. a. b. c. Use rhombus QRST for Questions If m QTS = 56, find m If m P = 6x, find x. 86. If TP = 15, find TR. Use rectangle ABCD for Questions If m DCE = 4x+5 and m DEC = 5x Find x. 88. If DC = 4x 30 and AB = 30-x, find DC. 89. The bases of a trapezoid are 12 and 26. Find the length of the median. 90. Draw the quadrilateral tree representing the relationship of the various quadrilaterals. 6 Rev D.1

### Geo, Chap 4 Practice Test, EV Ver 1

Class: Date: Geo, Chap 4 Practice Test, EV Ver 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (4-3) In each pair of triangles, parts are congruent as

### Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer

### Regents Examination in Geometry (Common Core) Sample and Comparison Items Spring 2014

Regents Examination in Geometry (Common Core) Sample and Comparison Items Spring 2014 i May 2014 777777 THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY 12234 New York

### Chapter 3. Inversion and Applications to Ptolemy and Euler

Chapter 3. Inversion and Applications to Ptolemy and Euler 2 Power of a point with respect to a circle Let A be a point and C a circle (Figure 1). If A is outside C and T is a point of contact of a tangent

### CHAPTER 1. LINES AND PLANES IN SPACE

CHAPTER 1. LINES AND PLANES IN SPACE 1. Angles and distances between skew lines 1.1. Given cube ABCDA 1 B 1 C 1 D 1 with side a. Find the angle and the distance between lines A 1 B and AC 1. 1.2. Given

### GeoGebra. 10 lessons. Gerrit Stols

GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

### Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions

Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.

### Support Materials for Core Content for Assessment. Mathematics

Support Materials for Core Content for Assessment Version 4.1 Mathematics August 2007 Kentucky Department of Education Introduction to Depth of Knowledge (DOK) - Based on Norman Webb s Model (Karin Hess,

### Oklahoma School Testing Program

Oklahoma School Testing Program Oklahoma Core Curriculum Tests (OCCT) End-of-Instruction ACE Geometry Parent, Student, and Teacher Guide Winter/Trimester 013 01 Oklahoma State Department of Education 70561-W

### (15.) To find the distance from point A to point B across. a river, a base line AC is extablished. AC is 495 meters

(15.) To find the distance from point A to point B across a river, a base line AC is extablished. AC is 495 meters long. Angles

### Graphing and Solving Nonlinear Inequalities

APPENDIX LESSON 1 Graphing and Solving Nonlinear Inequalities New Concepts A quadratic inequality in two variables can be written in four different forms y < a + b + c y a + b + c y > a + b + c y a + b

### 9 Areas and Perimeters

9 Areas and Perimeters This is is our next key Geometry unit. In it we will recap some of the concepts we have met before. We will also begin to develop a more algebraic approach to finding areas and perimeters.

### Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

### DOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2

DOE-HDBK-1014/2-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release; distribution

### Fundamentals of Geometry. Oleg A. Belyaev belyaev@polly.phys.msu.ru

Fundamentals of Geometry Oleg A. Belyaev belyaev@polly.phys.msu.ru February 28, 2007 Contents I Classical Geometry 1 1 Absolute (Neutral) Geometry 3 1.1 Incidence....................................................

### Triangle Centers MOP 2007, Black Group

Triangle Centers MOP 2007, Black Group Zachary Abel June 21, 2007 1 A Few Useful Centers 1.1 Symmedian / Lemmoine Point The Symmedian point K is defined as the isogonal conjugate of the centroid G. Problem

### 2009 Chicago Area All-Star Math Team Tryouts Solutions

1. 2009 Chicago Area All-Star Math Team Tryouts Solutions If a car sells for q 1000 and the salesman earns q% = q/100, he earns 10q 2. He earns an additional 100 per car, and he sells p cars, so his total

### Functional Math II. Information CourseTitle. Types of Instruction

Functional Math II Course Outcome Summary Riverdale School District Information CourseTitle Functional Math II Credits 0 Contact Hours 135 Instructional Area Middle School Instructional Level 8th Grade

### 2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2

00 Problem If a and b are nonzero real numbers such that a b, compute the value of the expression ( ) ( b a + a a + b b b a + b a ) ( + ) a b b a + b a +. b a a b Answer: 8. Solution: Let s simplify the

### CHAPTER FIVE. 5. Equations of Lines in R 3

118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a

### Contents. Problems... 2 Solutions... 6

Contents Problems............................ Solutions............................ 6 Problems Baltic Way 014 Problems Problem 1 Show that cos(56 ) cos( 56 ) cos( 56 )... cos( 3 56 ) = 1 4. Problem Let

### Middle School Mathematics

The Praxis Study Companion Middle School Mathematics 5169 www.ets.org/praxis Welcome to the Praxis Study Companion Welcome to The Praxis Study Companion Prepare to Show What You Know You have been working

### Unit 5 Area. What Is Area?

Trainer/Instructor Notes: Area What Is Area? Unit 5 Area What Is Area? Overview: Objective: Participants determine the area of a rectangle by counting the number of square units needed to cover the region.

### Star and convex regular polyhedra by Origami.

Star and convex regular polyhedra by Origami. Build polyhedra by Origami.] Marcel Morales Alice Morales 2009 E D I T I O N M O R A L E S Polyhedron by Origami I) Table of convex regular Polyhedra... 4

### Geometric Relationships

Geometric Relationships 8 Lines and ngles 8-1 8-3 8-4 LB Building Blocks of Geometry Measuring and Classifying ngles ngle Relationships Classifying Lines Parallel Line Relationships 8B Polygons LB 8-5

### College Prep. Geometry Course Syllabus

College Prep. Geometry Course Syllabus Mr. Chris Noll Turner Ashby High School - Room 211 Email: cnoll@rockingham.k12.va.us Website: http://blogs.rockingham.k12.va.us/cnoll/ School Phone: 828-2008 Text:

### Mean Geometry. Zachary R. Abel. July 9, 2007

Mean Geometry Zachary R. bel July 9, 2007 ontents Introduction 3. asic efinitions............................................... 3.2 oint verages................................................ 3.3 Figure

### The Inversion Transformation

The Inversion Transformation A non-linear transformation The transformations of the Euclidean plane that we have studied so far have all had the property that lines have been mapped to lines. Transformations

### Trigonometry WORKSHEETS

WORKSHEETS The worksheets available in this unit DO NOT constitute a course since no instructions or worked examples are offered, and there are far too many of them. They are offered here in the belief

### 13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the

### Possible Stage Two Mathematics Test Topics

Possible Stage Two Mathematics Test Topics The Stage Two Mathematics Test questions are designed to be answerable by a good problem-solver with a strong mathematics background. It is based mainly on material

### To analyze students geometric thinking, use both formative and summative assessments and move students along the van Hiele model of thought.

van Hiele Rev To analyze students geometric thinking, use both formative and summative assessments and move students along the van Hiele model of thought. M. Lynn Breyfogle and Courtney M. Lynch When you

### CHAPTER 7. Think & Discuss (p. 393) m Z 55 35 180. m Z 90 180. m Z 90 QR 2 RP 2 PQ 2 QR 2 10 2 12.2 2 QR 2 100 148.84 QR 2 48.84 AB 1 6 2 3 4 2 QR 7.

HPTER 7 Think & Discuss (p. 393). The image in bo is flipped to get the image in bo. The image in bo is turned to get the image in bo D.. Sample answer: If ou look at the picture as a whole, the right

### Blue Pelican Alg II First Semester

Blue Pelican Alg II First Semester Teacher Version 1.01 Copyright 2009 by Charles E. Cook; Refugio, Tx (All rights reserved) Alg II Syllabus (First Semester) Unit 1: Solving linear equations and inequalities

### Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

### 12.5 Equations of Lines and Planes

Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

### Appendix A Designing High School Mathematics Courses Based on the Common Core Standards

Overview: The Common Core State Standards (CCSS) for Mathematics are organized by grade level in Grades K 8. At the high school level, the standards are organized by strand, showing a logical progression

### 12-1 Representations of Three-Dimensional Figures

Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 12-1 Representations of Three-Dimensional Figures Use isometric dot paper to sketch each prism. 1. triangular

### L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

### For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### Questions. Strategies August/September Number Theory. What is meant by a number being evenly divisible by another number?

Content Skills Essential August/September Number Theory Identify factors List multiples of whole numbers Classify prime and composite numbers Analyze the rules of divisibility What is meant by a number

### Secondary Mathematics Syllabuses

Secondary Mathematics Syllabuses Copyright 006 Curriculum Planning and Development Division. This publication is not for sale. All rights reserved. No part of this publication may be reproduced without

### The Australian Curriculum Mathematics

The Australian Curriculum Mathematics Mathematics ACARA The Australian Curriculum Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year

### ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

### EGMO 2013. Problems with Solutions

EGMO 2013 Problems with Solutions Problem Selection Committee: Charles Leytem (chair, Pierre Haas, Jingran Lin, Christian Reiher, Gerhard Woeginger. The Problem Selection Committee gratefully acknowledges

### SECTION 1-6 Quadratic Equations and Applications

58 Equations and Inequalities Supply the reasons in the proofs for the theorems stated in Problems 65 and 66. 65. Theorem: The complex numbers are commutative under addition. Proof: Let a bi and c di be

### 9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

### http://school-maths.com Gerrit Stols

For more info and downloads go to: http://school-maths.com Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

### 2.5 If-Then Statements and

Page 1 of 6 2.5 If-Then Statements and Deductive Reasoning Goal Use if-then statements. Apply laws of logic. An if-then statement has two parts. The if part contains the hypothesis. The then part contains

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### Shapes Bingo. More general matters which apply to the use of this unit are covered on the next page.

Shapes Bingo Shapes Bingo This unit provides the material for practicing some basic shape identification in the context of the well-known game of Bingo. Directions on how to play Bingo are not given here.

### MATHEMATICS A A502/01 Unit B (Foundation Tier)

THIS IS A NEW SPECIFICATION F GENERAL CERTIFICATE OF SECONDARY EDUCATION MATHEMATICS A A502/01 Unit B (Foundation Tier) *A533721112* Candidates answer on the question paper. OCR supplied materials: None

### SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent

### Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

### Factoring, Solving. Equations, and Problem Solving REVISED PAGES

05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

### MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

### Resource Guide to the Arkansas Curriculum Framework for Students with Disabilities for Ninth Grade Mathematics. Summer 2005

Resource Guide to the Arkansas Curriculum Framework for Students with Disabilities for Ninth Grade Mathematics Summer 2005 Purpose and Process The Individuals with Disabilities Education Act and No Child

### Lecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS

1 Lecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS This lecture, just as the previous one, deals with a classification of objects, the original interest in which was perhaps

### A Review of Four High-School Mathematics Programs. Guershon Harel University of California, San Diego harel@math.ucsd.edu

1 A Review of Four High-School Mathematics Programs Guershon Harel University of California, San Diego harel@math.ucsd.edu 1. Introduction Recently I was commissioned by Strategic Teaching to review four

XV. Mathematics, Grade 10 Grade 10 Mathematics Test The spring 2011 grade 10 MCAS Mathematics test was based on learning standards in the Massachusetts Mathematics Curriculum Framework (2000). The Framework

### Natural Disaster Recovery and Quadrilaterals

Natural Disaster Recovery and Quadrilaterals I. UNIT OVERVIEW & PURPOSE: In this unit, students will apply their knowledge of quadrilaterals to solve mathematics problems concerning a tornado that struck

### 2006 George Baloglou first draft: summer 2001 CHAPTER 7 COMPOSITIONS OF ISOMETRIES

2006 George Baloglou first draft: summer 2001 CHAPTER 7 COMPOSITIONS OF ISOMETRIES 7.0 Isometry hunting 7.0.1 Nothing totally new. Already in 4.0.4 we saw that the composition (combined effect) of a rotation

### 8th Grade Texas Mathematics: Unpacked Content

8th Grade Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student must

### Section 2.4 Law of Sines and Cosines

Section.4 Law of Sines and osines Oblique Triangle A triangle that is not a right triangle, either acute or obtuse. The measures of the three sides and the three angles of a triangle can be found if at

### 04 Mathematics CO-SG-FLD004-03. Program for Licensing Assessments for Colorado Educators

04 Mathematics CO-SG-FLD004-03 Program for Licensing Assessments for Colorado Educators Readers should be advised that this study guide, including many of the excerpts used herein, is protected by federal

### Such As Statements, Kindergarten Grade 8

Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### About Tutorials... 1 Algebra I... 2 Geometry... 3 Algebra II... 4 English I... 5 English II... 6 English III... 7

Outlines Texas Tutorials Apex Learning Texas Tutorials provide teachers with a solution to support all students in rising to the expectations established by the Texas state standards. With content developed

### SINUS. international. Towards New Teaching in Mathematics. Three Four Five Many. Peter Baptist & Carsten Miller. Peter Baptist

SINUS international Towards New Teaching in Mathematics 9 Peter Baptist & Carsten Miller Three Four Five Many Peter Baptist Carsten Miller 9 / 2011 ISSN 2192-7596 Dagmar Raab University of Bayreuth (Eds.)

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### DRAFT. New York State Testing Program Grade 8 Common Core Mathematics Test. Released Questions with Annotations

DRAFT New York State Testing Program Grade 8 Common Core Mathematics Test Released Questions with Annotations August 2014 Developed and published under contract with the New York State Education Department

### The Handshake Problem

The Handshake Problem Tamisha is in a Geometry class with 5 students. On the first day of class her teacher asks everyone to shake hands and introduce themselves to each other. Tamisha wants to know how

### FACTORING OUT COMMON FACTORS

278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

### ( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.

Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson

### DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

### Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

### Maryland English Language Arts

Maryland English Language Arts A S O F J U N E 2 0, 2 0 1 0, T H I S S TAT E H A D A D O P T E D T H E CO M M O N CO R E S TAT E S TA N DA R D S. DOCUMENTS REVIEWED Maryland Voluntary State Curriculum:

### Chapter 7. Cartesian Vectors. By the end of this chapter, you will

Chapter 7 Cartesian Vectors Simple vector quantities can be expressed geometrically. However, as the applications become more complex, or involve a third dimension, you will need to be able to express

### In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form).

CHAPTER 8 In Chapter 4, you used a web to organize the connections you found between each of the different representations of lines. These connections enabled you to use any representation (such as a graph,

### Warm-Up 1. 1. What is the least common multiple of 6, 8 and 10?

Warm-Up 1 1. What is the least common multiple of 6, 8 and 10? 2. A 16-page booklet is made from a stack of four sheets of paper that is folded in half and then joined along the common fold. The 16 pages

### Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

### College of Charleston Math Meet 2008 Written Test Level 1

College of Charleston Math Meet 2008 Written Test Level 1 1. Three equal fractions, such as 3/6=7/14=29/58, use all nine digits 1, 2, 3, 4, 5, 6, 7, 8, 9 exactly one time. Using all digits exactly one

### Academic Support Services Supplemental Learning Materials - Math

Academic Support Services Supplemental Learning Materials - Math Algebra and trigonometry Basic math Calculator help Charts and graphs Coordinate planes Decimals Exponents General math sites Graphing Integers

### Assumption College Final Examination Content

Final Examination Content EP-M 3/1 Semester 2 Academic Year 2013 Code: MA20212 Subject: Mathematical Skills 6 books / Pages Sum Final Coordinate Geometry 1. - Cartesian Coordinate System - Rectangular

### David Bressoud Macalester College, St. Paul, MN. NCTM Annual Mee,ng Washington, DC April 23, 2009

David Bressoud Macalester College, St. Paul, MN These slides are available at www.macalester.edu/~bressoud/talks NCTM Annual Mee,ng Washington, DC April 23, 2009 The task of the educator is to make the

### THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

### Fixed Point Theorems in Topology and Geometry

Fixed Point Theorems in Topology and Geometry A Senior Thesis Submitted to the Department of Mathematics In Partial Fulfillment of the Requirements for the Departmental Honors Baccalaureate By Morgan Schreffler

### Performance Assessment Task Which Shape? Grade 3. Common Core State Standards Math - Content Standards

Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### Warm-Up 3 Solutions. Peter S. Simon. October 13, 2004

Warm-Up 3 Solutions Peter S. Simon October 13, 2004 Problem 1 An automobile insurance company has compiled data from a survey of 1000 16-year-old drivers during the year 2003. According to the results

### SOL Warm-Up Graphing Calculator Active

A.2a (a) Using laws of exponents to simplify monomial expressions and ratios of monomial expressions 1. Which expression is equivalent to (5x 2 )(4x 5 )? A 9x 7 B 9x 10 C 20x 7 D 20x 10 2. Which expression