2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?"

Transcription

1 MATH Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE? Yes. Since C is the midpoint of AB, they are all collinear and AC = CB. Since B is the midpoint of AE, A, E and B are collinear and AB = BE. Therefore, A, B, C, and E are all collinear and AC = 1 4 AE. 3. Draw a cube and label the eight vertices. (a) Name two line segments in your cube that are in the same plane. AB and CD are an example of two line segments in the same plane. (b) Name two line segments in your cube that are not in the same plane. AB and EH are an example of two line segments that are not in the same plane. (c) Are there any complementary angles? If so, name one pair. If not, state why not. Not in the lines drawn, but yes there are some in the lines that are not seen. For example, ABD and DBC are complementary (d) Are there any supplementary angles? If so, name one pair. If not, state why not. Yes, for example ABC and DCG are supplmentary. 4. Draw a triangle that is both isosceles and acute. Isosceles because AB = AC, and acute because all angles are less then 90 degrees. 5. Draw an obtuse triangle and construct the median from the largest angle. The median (dashed line) goes from the vertex to the midpoint of the opposite side. 6. Draw an equilateral triangle. Construct one of the medians. What can you say about the two triangles that are created?

2 ABD is congruent to ACD. 7. Draw a triangle in which an altitude is outside the triangle. Altitudes go from a vertex perpendicular to the opposite side. Any obtuse triangle will have an altitude that is outside of the triangle. 8. Is it possible for a triangle to be both obtuse and scalene? Explain your answer. Yes, this is an example because all sides are different lengths (scalene) and one angle is greater than 90 degrees (obtuse). 9. Construct a Venn diagram to represent the relationship between trapezoids and rectangles. Explain or construct examples to justify your diagram. Trapezoids have one pair of parallel sides. Rectangles have all 90 degree angles, which means they have 2 pairs of parallel sides. Therefore, all rectangles are trapezoids. 10. Draw a concave quadrilateral with exactly one right angle. Concave because it caves in, one 90 degree angle. 11. Draw a quadrilateral with exactly one right angle. Same pic as above would work, or this one works as well. 12. How many faces does a hexagonal pyramid have? How many edges? How many vertices? A hexagonal pyramid has a six-sided base up to an apex. It has 7 faces (base plus 6 sides), 12 edges (6 on base, 6 up to vertex), and 7 vertices (6 on base plus apex). 13. Draw a net for a right triangular prism. A right triangules prism has a triangle base and top and lateral faces that are rectangles.

3 14. Consider the following two possible nets. For each one, answer the following: Can the net be used to construct a polyhedron? If so, draw or describe the resulting shape. If not, state why not. The first one cannot because the two top shapes don t cover the top and bottom openings, it s like a cereal box without a bottom. The second one does work, it makes something kind of like a barn. 15. Is there an angle for which a rotation clockwise and a rotation counter-clockwise will result in the same image? If not, why not? If so, what is the angle? Yes, 180 degrees is the same rotation clockwise as it is counterclockwise, regardless of the figure being rotated. 16. Draw the image of the figure below if it is rotated 90 degrees clockwise about the point R. Draw the image if the original is rotated 90 degrees clockwise about the point S. Compare the two images. Are they the same? Same orientation of the shape, but different positions. 17. What single translation would produce the same image as the composition of the translation vector 1 followed by the translation vector 2? Vector 1 shifts a figure 2 units up and 4 units right. Vector 2 shifts a figure 3 units down and 2 units left. Together, the combined translation is 1 unit down and 2 units right. 18. The coordinates of the corners of a quadrilateral are (2,3), (2,6), (5,3), (5,7). What are the coordinates of the corners if the figure is reflected over the line x = 6? What are the coordinates of the corners if the original figure is rotated 90 degrees clockwise about the point (2,3)?

4 Reflection has points (7,3), (7,7), (10,6), and (10,3) Rotation has points (2,0), (6,0), (5,3), and (2,3) 19. Draw a square with sides of 2 units and lower left corner at point A (2,2). What will the coordinates of the upper left corner be? Rotate the figure 90 degrees counter-clockwise about point A and then translate it 2 units left and 3 units up. What will the coordinates of the square be after these transformations? Upper left corner is (2,4). The new coordinates after the transformations are (0,3), (2,3), (0,5), and (2,5). 20. Define the term congruence transformation and give an example. A congruence transformation is a mapping of a figure to a new figure that is congruent to the original. Translations, rotations, and reflections are all congruence transformations. 21. Terry said that he moved triangle A into the same position as triangle B in exactly two moves. Which two changes did Terry make to triangle A? Triangle B is shifted right and horizontally reflected from A. (this is not the only option for a description) 22. How many lines of symmetry does an equilateral triangle have? Does a regular pentagon have rotational symmetry? If so, where is the center of rotation, and what is/are the angle(s) of rotation? Yes, the center of rotation is the center of the pentagon. The angles are 72, 144, 216, 288, and 360 degrees. 24. Which of the following does the arrangement of stars on the American flag have: vertical line symmetry, horizontal line symmetry, rotational symmetry, diagonal line symmetry? Vertical line symmetry through the center, no diagonal or horizontal line symmetry and no rotational symmetry. 25. Which of the digits 0-9 have line symmetry? Vertical line symmetry in the digits 0, 1 (if only drawn as a straight line), and 8. Horizontal line symmetry in the digits 0, 1 (if only a straight line), 3, 8

5 26. Does a prism have rotational symmetry? A prism will only have rotational symmetry if it is a right prism and the base has rotational symmetry. 27. Explain why an octagon used along with a square will tessellate even though an octagon alone will not. A regular octagon has angles of 135 degrees and so cannot tessellate by itself. However, two octagon angles plus one angle from a square gives 360 degrees total and so they could tessellate together. 28. Which of the following, if you traced around them, will tessellate the plane: nickel, dime, quarter, half-dollar, dollar bill? The dollar bill is the only one that will tessellate the plan because it is a rectangle and the others are circles and so cannot fill in all the gaps. 29. Will the figures below tessellate? The first figure is a quadrilateral and all quadrilaterals tessellate. The second and third figures will tessellate assuming the angles and shapes all meet up as they appear to do.

Angles that are between parallel lines, but on opposite sides of a transversal.

Angles that are between parallel lines, but on opposite sides of a transversal. GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

More information

Which two rectangles fit together, without overlapping, to make a square?

Which two rectangles fit together, without overlapping, to make a square? SHAPE level 4 questions 1. Here are six rectangles on a grid. A B C D E F Which two rectangles fit together, without overlapping, to make a square?... and... International School of Madrid 1 2. Emily has

More information

Geometry Vocabulary Booklet

Geometry Vocabulary Booklet Geometry Vocabulary Booklet Geometry Vocabulary Word Everyday Expression Example Acute An angle less than 90 degrees. Adjacent Lying next to each other. Array Numbers, letter or shapes arranged in a rectangular

More information

BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

More information

acute angle acute triangle Cartesian coordinate system concave polygon congruent figures

acute angle acute triangle Cartesian coordinate system concave polygon congruent figures acute angle acute triangle Cartesian coordinate system concave polygon congruent figures convex polygon coordinate grid coordinates dilatation equilateral triangle horizontal axis intersecting lines isosceles

More information

parallel lines perpendicular lines intersecting lines vertices lines that stay same distance from each other forever and never intersect

parallel lines perpendicular lines intersecting lines vertices lines that stay same distance from each other forever and never intersect parallel lines lines that stay same distance from each other forever and never intersect perpendicular lines lines that cross at a point and form 90 angles intersecting lines vertices lines that cross

More information

Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

More information

Begin recognition in EYFS Age related expectation at Y1 (secure use of language)

Begin recognition in EYFS Age related expectation at Y1 (secure use of language) For more information - http://www.mathsisfun.com/geometry Begin recognition in EYFS Age related expectation at Y1 (secure use of language) shape, flat, curved, straight, round, hollow, solid, vertexvertices

More information

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in

More information

Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

More information

LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable.

LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable. Name LEVEL G, SKILL 1 Class Be sure to show all work.. Leave answers in terms of ϖ where applicable. 1. What is the area of a triangle with a base of 4 cm and a height of 6 cm? 2. What is the sum of the

More information

Geometry Vocabulary. Created by Dani Krejci referencing:

Geometry Vocabulary. Created by Dani Krejci referencing: Geometry Vocabulary Created by Dani Krejci referencing: http://mrsdell.org/geometry/vocabulary.html point An exact location in space, usually represented by a dot. A This is point A. line A straight path

More information

Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

More information

Line. A straight path that continues forever in both directions.

Line. A straight path that continues forever in both directions. Geometry Vocabulary Line A straight path that continues forever in both directions. Endpoint A point that STOPS a line from continuing forever, it is a point at the end of a line segment or ray. Ray A

More information

Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular)

Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular) MA.912.G.2 Geometry: Standard 2: Polygons - Students identify and describe polygons (triangles, quadrilaterals, pentagons, hexagons, etc.), using terms such as regular, convex, and concave. They find measures

More information

Shape Dictionary YR to Y6

Shape Dictionary YR to Y6 Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use

More information

Geometry Progress Ladder

Geometry Progress Ladder Geometry Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes

More information

Chapter 1: Essentials of Geometry

Chapter 1: Essentials of Geometry Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

More information

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry. Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

More information

11.3 Curves, Polygons and Symmetry

11.3 Curves, Polygons and Symmetry 11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon

More information

Geometry. Unit 6. Quadrilaterals. Unit 6

Geometry. Unit 6. Quadrilaterals. Unit 6 Geometry Quadrilaterals Properties of Polygons Formed by three or more consecutive segments. The segments form the sides of the polygon. Each side intersects two other sides at its endpoints. The intersections

More information

Maths Toolkit Teacher s notes

Maths Toolkit Teacher s notes Angles turtle Year 7 Identify parallel and perpendicular lines; know the sum of angles at a point, on a straight line and in a triangle; recognise vertically opposite angles. Use a ruler and protractor

More information

*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.

*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review

More information

2 feet Opposite sides of a rectangle are equal. All sides of a square are equal. 2 X 3 = 6 meters = 18 meters

2 feet Opposite sides of a rectangle are equal. All sides of a square are equal. 2 X 3 = 6 meters = 18 meters GEOMETRY Vocabulary 1. Adjacent: Next to each other. Side by side. 2. Angle: A figure formed by two straight line sides that have a common end point. A. Acute angle: Angle that is less than 90 degree.

More information

116 Chapter 6 Transformations and the Coordinate Plane

116 Chapter 6 Transformations and the Coordinate Plane 116 Chapter 6 Transformations and the Coordinate Plane Chapter 6-1 The Coordinates of a Point in a Plane Section Quiz [20 points] PART I Answer all questions in this part. Each correct answer will receive

More information

Centroid: The point of intersection of the three medians of a triangle. Centroid

Centroid: The point of intersection of the three medians of a triangle. Centroid Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

More information

Three-Dimensional Figures or Space Figures. Rectangular Prism Cylinder Cone Sphere. Two-Dimensional Figures or Plane Figures

Three-Dimensional Figures or Space Figures. Rectangular Prism Cylinder Cone Sphere. Two-Dimensional Figures or Plane Figures SHAPE NAMES Three-Dimensional Figures or Space Figures Rectangular Prism Cylinder Cone Sphere Two-Dimensional Figures or Plane Figures Square Rectangle Triangle Circle Name each shape. [triangle] [cone]

More information

Winter 2016 Math 213 Final Exam. Points Possible. Subtotal 100. Total 100

Winter 2016 Math 213 Final Exam. Points Possible. Subtotal 100. Total 100 Winter 2016 Math 213 Final Exam Name Instructions: Show ALL work. Simplify wherever possible. Clearly indicate your final answer. Problem Number Points Possible Score 1 25 2 25 3 25 4 25 Subtotal 100 Extra

More information

Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item 2) (MAT 360) Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

More information

State whether the figure appears to have line symmetry. Write yes or no. If so, copy the figure, draw all lines of symmetry, and state their number.

State whether the figure appears to have line symmetry. Write yes or no. If so, copy the figure, draw all lines of symmetry, and state their number. State whether the figure appears to have line symmetry. Write yes or no. If so, copy the figure, draw all lines of symmetry, and state their number. esolutions Manual - Powered by Cognero Page 1 1. A figure

More information

Date: Period: Symmetry

Date: Period: Symmetry Name: Date: Period: Symmetry 1) Line Symmetry: A line of symmetry not only cuts a figure in, it creates a mirror image. In order to determine if a figure has line symmetry, a figure can be divided into

More information

Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line. Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

More information

SHAPE, SPACE AND MEASURES

SHAPE, SPACE AND MEASURES SHAPE, SPACE AND MEASURES Pupils should be taught to: Use accurately the vocabulary, notation and labelling conventions for lines, angles and shapes; distinguish between conventions, facts, definitions

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

Name: 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work

Name: 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work Name: _ 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work 1. An equilateral triangle always has three 60 interior angles. 2. A line segment

More information

Consolidation of Grade 6 EQAO Questions Geometry and Spatial Sense

Consolidation of Grade 6 EQAO Questions Geometry and Spatial Sense Consolidation of Grade 6 EQAO Questions Geometry and Spatial Sense Compiled by Devika William-Yu (SE2 Math Coach) Overall Expectations GV1 Classify and construct polygons and angles GV2 GV3 Sketch three-dimensional

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

Constructing Symmetrical Shapes

Constructing Symmetrical Shapes 07-NEM5-WBAns-CH07 7/20/04 4:36 PM Page 62 1 Constructing Symmetrical Shapes 1 Construct 2-D shapes with one line of symmetry A line of symmetry may be horizontal or vertical 2 a) Use symmetry to complete

More information

Grade 4 - Module 4: Angle Measure and Plane Figures

Grade 4 - Module 4: Angle Measure and Plane Figures Grade 4 - Module 4: Angle Measure and Plane Figures Acute angle (angle with a measure of less than 90 degrees) Angle (union of two different rays sharing a common vertex) Complementary angles (two angles

More information

Featured Mathematical Practice: MP.5. Use appropriate tools strategically. MP.6. Attend to precision.

Featured Mathematical Practice: MP.5. Use appropriate tools strategically. MP.6. Attend to precision. Domain: Geometry 4.G Mathematical Content Standard: 1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in twodimensional figures.

More information

Shape and Space. General Curriculum Outcome E: Students will demonstrate spatial sense and apply geometric concepts, properties and relationships.

Shape and Space. General Curriculum Outcome E: Students will demonstrate spatial sense and apply geometric concepts, properties and relationships. Shape and Space General Curriculum Outcome E: Students will demonstrate spatial sense and apply geometric concepts, properties and relationships. Elaboration Instructional Strategies/Suggestions KSCO:

More information

Chapter 8 Geometry We will discuss following concepts in this chapter.

Chapter 8 Geometry We will discuss following concepts in this chapter. Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

More information

Line Segments, Rays, and Lines

Line Segments, Rays, and Lines HOME LINK Line Segments, Rays, and Lines Family Note Help your child match each name below with the correct drawing of a line, ray, or line segment. Then observe as your child uses a straightedge to draw

More information

15. PRISMS AND CYLINDERS

15. PRISMS AND CYLINDERS 15. PRISMS AND CYLINDERS 15-1 Drawing prisms 2 15-2 Modelling prisms 4 15-3 Cross-sections of prisms 6 15-4 Nets of prisms 7 15-5 Euler's formula 8 15-6 Stacking prisms 9 15-7 Cylinders 10 15-8 Why is

More information

Unit 8 Angles, 2D and 3D shapes, perimeter and area

Unit 8 Angles, 2D and 3D shapes, perimeter and area Unit 8 Angles, 2D and 3D shapes, perimeter and area Five daily lessons Year 6 Spring term Recognise and estimate angles. Use a protractor to measure and draw acute and obtuse angles to Page 111 the nearest

More information

SHAPE, SPACE AND MEASURES

SHAPE, SPACE AND MEASURES SHPE, SPCE ND MESURES Pupils should be taught to: Understand and use the language and notation associated with reflections, translations and rotations s outcomes, Year 7 pupils should, for example: Use,

More information

Chapter Three. Parallel Lines and Planes

Chapter Three. Parallel Lines and Planes Chapter Three Parallel Lines and Planes Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately

More information

Vertex : is the point at which two sides of a polygon meet.

Vertex : is the point at which two sides of a polygon meet. POLYGONS A polygon is a closed plane figure made up of several line segments that are joined together. The sides do not cross one another. Exactly two sides meet at every vertex. Vertex : is the point

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

A convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.

A convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon. hapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.

More information

Name Geometry Exam Review #1: Constructions and Vocab

Name Geometry Exam Review #1: Constructions and Vocab Name Geometry Exam Review #1: Constructions and Vocab Copy an angle: 1. Place your compass on A, make any arc. Label the intersections of the arc and the sides of the angle B and C. 2. Compass on A, make

More information

INDEX. Arc Addition Postulate,

INDEX. Arc Addition Postulate, # 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

More information

Geometry Regents Review

Geometry Regents Review Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

More information

**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.

**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:

More information

ENGINEERING DRAWING. UNIT I - Part A

ENGINEERING DRAWING. UNIT I - Part A ENGINEERING DRAWING UNIT I - Part A 1. Solid Geometry is the study of graphic representation of solids of --------- dimensions on plane surfaces of ------- dimensions. 2. In the orthographic projection,

More information

/27 Intro to Geometry Review

/27 Intro to Geometry Review /27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

More information

Grade 3 Core Standard III Assessment

Grade 3 Core Standard III Assessment Grade 3 Core Standard III Assessment Geometry and Measurement Name: Date: 3.3.1 Identify right angles in two-dimensional shapes and determine if angles are greater than or less than a right angle (obtuse

More information

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES NCERT

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES NCERT UNIT 12 PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES (A) Main Concepts and Results Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines,

More information

Sum of the interior angles of a n-sided Polygon = (n-2) 180

Sum of the interior angles of a n-sided Polygon = (n-2) 180 5.1 Interior angles of a polygon Sides 3 4 5 6 n Number of Triangles 1 Sum of interiorangles 180 Sum of the interior angles of a n-sided Polygon = (n-2) 180 What you need to know: How to use the formula

More information

Section 12.1 Translations and Rotations

Section 12.1 Translations and Rotations Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry (meaning equal measure ). In this section, we will investigate two types of isometries: translations

More information

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Grade level: 10 Prerequisite knowledge: Students have studied triangle congruences, perpendicular lines,

More information

1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area?

1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? 1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? (a) 20 ft x 19 ft (b) 21 ft x 18 ft (c) 22 ft x 17 ft 2. Which conditional

More information

39 Symmetry of Plane Figures

39 Symmetry of Plane Figures 39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

More information

Identifying Triangles 5.5

Identifying Triangles 5.5 Identifying Triangles 5.5 Name Date Directions: Identify the name of each triangle below. If the triangle has more than one name, use all names. 1. 5. 2. 6. 3. 7. 4. 8. 47 Answer Key Pages 19 and 20 Name

More information

G7-3 Measuring and Drawing Angles and Triangles Pages

G7-3 Measuring and Drawing Angles and Triangles Pages G7-3 Measuring and Drawing Angles and Triangles Pages 102 104 Curriculum Expectations Ontario: 5m51, 5m52, 5m54, 6m48, 6m49, 7m3, 7m4, 7m46 WNCP: 6SS1, review, [T, R, V] Vocabulary angle vertex arms acute

More information

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

More information

A. 32 cu ft B. 49 cu ft C. 57 cu ft D. 1,145 cu ft. F. 96 sq in. G. 136 sq in. H. 192 sq in. J. 272 sq in. 5 in

A. 32 cu ft B. 49 cu ft C. 57 cu ft D. 1,145 cu ft. F. 96 sq in. G. 136 sq in. H. 192 sq in. J. 272 sq in. 5 in 7.5 The student will a) describe volume and surface area of cylinders; b) solve practical problems involving the volume and surface area of rectangular prisms and cylinders; and c) describe how changing

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

NCERT. In examples 1 and 2, write the correct answer from the given four options.

NCERT. In examples 1 and 2, write the correct answer from the given four options. MTHEMTIS UNIT 2 GEOMETRY () Main oncepts and Results line segment corresponds to the shortest distance between two points. The line segment joining points and is denoted as or as. ray with initial point

More information

Characteristics of Solid Figures Face Edge Vertex (Vertices) A shape is characterized by its number of... Faces, Edges, and Vertices Faces - 6 Edges - 12 A CUBE has... Vertices - 8 Faces of a Prism The

More information

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points. 6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

More information

4 BASIC GEOMETRICAL IDEAS

4 BASIC GEOMETRICAL IDEAS 4 BASIC GEOMETRICAL IDEAS Q.1. Use the figure to name. (a) Five points (b) A line (c) Four rays (d) Five line segments Ans. (a) O, B, C, D and E. (b) DB, OB etc. (c) OB, OC, OD and ED Exercise 4.1 (d)

More information

1 of 69 Boardworks Ltd 2004

1 of 69 Boardworks Ltd 2004 1 of 69 2 of 69 Intersecting lines 3 of 69 Vertically opposite angles When two lines intersect, two pairs of vertically opposite angles are formed. a d b c a = c and b = d Vertically opposite angles are

More information

ABC is the triangle with vertices at points A, B and C

ABC is the triangle with vertices at points A, B and C Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

19. [Shapes] less than. The angle appears greater than 90. Check by placing the corner of a Maths Mate page inside the angle.

19. [Shapes] less than. The angle appears greater than 90. Check by placing the corner of a Maths Mate page inside the angle. 19. [Shapes] Skill 19.1 Comparing angles to a right angle. Place the corner of a page (which is a right angle) at the corner (vertex) of the angle. Align the base of the page with one line of the angle.

More information

17.1 Cross Sections and Solids of Rotation

17.1 Cross Sections and Solids of Rotation Name Class Date 17.1 Cross Sections and Solids of Rotation Essential Question: What tools can you use to visualize solid figures accurately? Explore G.10.A Identify the shapes of two-dimensional cross-sections

More information

Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

More information

2. Sketch and label two different isosceles triangles with perimeter 4a + b. 3. Sketch an isosceles acute triangle with base AC and vertex angle B.

2. Sketch and label two different isosceles triangles with perimeter 4a + b. 3. Sketch an isosceles acute triangle with base AC and vertex angle B. Section 1.5 Triangles Notes Goal of the lesson: Explore the properties of triangles using Geometer s Sketchpad Define and classify triangles and their related parts Practice writing more definitions Learn

More information

SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses

SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses CHAPTER SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY For the review sessions, I will try to post some of the solved homework since I find that at this age both taking notes and proofs are still a burgeoning

More information

Transformations Packet Geometry

Transformations Packet Geometry Transformations Packet Geometry 1 Name: Geometry Chapter 14: Transformations Date Due Section Topics Assignment 14.1 14.2 14.3 Preimage Image Isometry Mapping Reflections Note: Notation is different in

More information

Target To know the properties of a rectangle

Target To know the properties of a rectangle Target To know the properties of a rectangle (1) A rectangle is a 3-D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles

More information

Chapter 17. Mensuration of Pyramid

Chapter 17. Mensuration of Pyramid 44 Chapter 7 7. Pyramid: A pyramid is a solid whose base is a plane polygon and sides are triangles that meet in a common vertex. The triangular sides are called lateral faces. The common vertex is also

More information

Lesson 11. Playing Board Games. 3 D Objects

Lesson 11. Playing Board Games. 3 D Objects Math 5 Lesson 11 3 D Objects Playing Board Games Zach has a new board game that he wants to play with his friends. He notices that the box the game is stored in is a lot like the prism he learned about

More information

Unit 6 Grade 7 Geometry

Unit 6 Grade 7 Geometry Unit 6 Grade 7 Geometry Lesson Outline BIG PICTURE Students will: investigate geometric properties of triangles, quadrilaterals, and prisms; develop an understanding of similarity and congruence. Day Lesson

More information

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433 Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

More information

100 Math Facts 6 th Grade

100 Math Facts 6 th Grade 100 Math Facts 6 th Grade Name 1. SUM: What is the answer to an addition problem called? (N. 2.1) 2. DIFFERENCE: What is the answer to a subtraction problem called? (N. 2.1) 3. PRODUCT: What is the answer

More information

MA.7.G.4.2 Predict the results of transformations and draw transformed figures with and without the coordinate plane.

MA.7.G.4.2 Predict the results of transformations and draw transformed figures with and without the coordinate plane. MA.7.G.4.2 Predict the results of transformations and draw transformed figures with and without the coordinate plane. Symmetry When you can fold a figure in half, with both sides congruent, the fold line

More information

A factor is a whole number that. Name 6 different quadrilaterals. The radius of a circle. What is an axis or a line of symmetry in a 2-D shape?

A factor is a whole number that. Name 6 different quadrilaterals. The radius of a circle. What is an axis or a line of symmetry in a 2-D shape? BOND HOW TO DO 11+ MATHS MATHS FACTS CARDS 1 2 3 4 A factor is a whole number that Name 6 different quadrilaterals. The radius of a circle is What is an axis or a line of symmetry in a 2-D shape? 5 6 7

More information

Geometry Unit 11 Notes Transformational Geometry

Geometry Unit 11 Notes Transformational Geometry Geometry Unit 11 Notes Transformational Geometry Preimage the original figure in the transformation of a figure in a plane. Image the new figure that results from the transformation of a figure in a plane.

More information

MATH 139 FINAL EXAM REVIEW PROBLEMS

MATH 139 FINAL EXAM REVIEW PROBLEMS MTH 139 FINL EXM REVIEW PROLEMS ring a protractor, compass and ruler. Note: This is NOT a practice exam. It is a collection of problems to help you review some of the material for the exam and to practice

More information

SOLIDS, NETS, AND CROSS SECTIONS

SOLIDS, NETS, AND CROSS SECTIONS SOLIDS, NETS, AND CROSS SECTIONS Polyhedra In this section, we will examine various three-dimensional figures, known as solids. We begin with a discussion of polyhedra. Polyhedron A polyhedron is a three-dimensional

More information

0810ge. Geometry Regents Exam 0810

0810ge. Geometry Regents Exam 0810 0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

More information

Study Guide and Review

Study Guide and Review Fill in the blank in each sentence with the vocabulary term that best completes the sentence. 1. A is a flat surface made up of points that extends infinitely in all directions. A plane is a flat surface

More information

Geometry Module 4 Unit 2 Practice Exam

Geometry Module 4 Unit 2 Practice Exam Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

More information

Unit 8. Quadrilaterals. Academic Geometry Spring Name Teacher Period

Unit 8. Quadrilaterals. Academic Geometry Spring Name Teacher Period Unit 8 Quadrilaterals Academic Geometry Spring 2014 Name Teacher Period 1 2 3 Unit 8 at a glance Quadrilaterals This unit focuses on revisiting prior knowledge of polygons and extends to formulate, test,

More information

Math 311 Test III, Spring 2013 (with solutions)

Math 311 Test III, Spring 2013 (with solutions) Math 311 Test III, Spring 2013 (with solutions) Dr Holmes April 25, 2013 It is extremely likely that there are mistakes in the solutions given! Please call them to my attention if you find them. This exam

More information

PROPERTIES OF TRIANGLES AND QUADRILATERALS

PROPERTIES OF TRIANGLES AND QUADRILATERALS Mathematics Revision Guides Properties of Triangles, Quadrilaterals and Polygons Page 1 of 21 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier PROPERTIES OF TRIANGLES AND QUADRILATERALS

More information

INFORMATION FOR TEACHERS

INFORMATION FOR TEACHERS INFORMATION FOR TEACHERS The math behind DragonBox Elements - explore the elements of geometry - Includes exercises and topics for discussion General information DragonBox Elements Teaches geometry through

More information