# Geometry Module 4 Unit 2 Practice Exam

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning and accurate labeling of an isoscles trapezoid in the coordinate plane? a. c. b. d. 1

2 Name: ID: A 2. Which diagram shows the most useful positioning of a rectangle in the first quadrant of a coordinate plane? a. c. b. d. Short Answer 3. Is TVS scalene, isosceles, or equilateral? The vertices are T(1,1), V(4,0), and S(2,4). 4. A quadrilateral has vertices ( 3, 1), (4, 5), ( 1, 5), and ( 3, 3). What special quadrilateral is formed by connecting the midpoints of the sides? 5. In the coordinate plane, three vertices of rectangle ABCD are A(0, 0), B(0, a), and D(b, 0). What are the coordinates of point C? 6. The vertices of the trapezoid are the origin along with A(4p, 4q), B(4r, 4q), and C(4s, 0). Find the midpoint of the midsegment of the trapezoid. 2

3 Name: ID: A 7. For the parallelogram, find coordinates for P without using any new variables. 8. For A( 1, 1), B(2, 1), and C(2, 1), find all locations of a fourth point, D, so that a parallelogram is formed using A, B, C, D in order as vertices. Plot each point D on a coordinate grid and draw the parallelogram. 9. The fact that the diagonals of a kite are perpendicular suggests a way to place a kite in the coordinate plane. Show this placement. Include labels for the kite vertices. 10. Show how to place a rhombus in the coordinate plane so that its diagonals lie along the axes. Label the vertices using as few variables as possible. 11. Find the lengths of the diagonals of this trapezoid. 12. In the coordinate plane, draw a square with sides 8n units long. Give coordinates for each vertex, and the coordinates of the point of intersection of the diagonals. 3

4 Name: ID: A Essay 13. Verify that parallelogram ABCD with vertices A( 5, 1), B( 9, 6), C( 1, 5), and D(3, 2) is a rhombus by showing that it is a parallelogram with perpendicular diagonals. 14. Find the midpoint of each side of the kite. Connect the midpoints. What is the most precise classification of the quadrilateral formed by connecting the midpoints of the sides of the kite? 15. Prove using coordinate geometry: The midpoints of the sides of a rhombus determine a rectangle. 16. Prove using coordinate geometry: If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. 17. Write a coordinate proof of the following theorem: If a parallelogram is a rectangle, then its diagonals are congruent. 4

5 Name: ID: A Other 18. In the coordinate plane, draw JKL with J(2, 3), K(10, 4), and L(8, 9). Classify JKL. Explain. 19. In the coordinate plane, draw parallelogram ABCD with A( 5, 0), B(1, 7), C(8, 1), and D(2, 6).Then demonstrate that ABCD is a rectangle. 20. AC is a segment in the coordinate plane. Explain why sometimes it is a good idea to give points A and C the coordinates (2a, 2b) and (2c, 2d). 21. If you want to prove that the diagonals of a parallelogram bisect each other using coordinate geometry, how would you place the parallelogram on the coordinate plane? Give the coordinates of the vertices for the placement you choose. 22. Write the Given and Prove statements for a proof of the following theorem: If a quadrilateral is a square, then its diagonals are perpendicular. Square FGHK and its diagonals have been drawn for you. 23. Write a coordinate proof of the following theorem: If a quadrilateral is a kite, then its diagonals are perpendicular. 5

6 Geometry Module 4 Unit 2 Practice Exam Answer Section MULTIPLE CHOICE 1. ANS: A PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 1 Naming Coordinates KEY: algebra coordinate plane isosceles trapezoid kite 2. ANS: A PTS: 1 DIF: L2 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 1 Naming Coordinates KEY: algebra coordinate plane rectangle square DOK: DOK 1 SHORT ANSWER 3. ANS: isosceles PTS: 1 DIF: L2 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 1 Classifying a Triangle KEY: triangle distance formula isosceles scalene 4. ANS: kite PTS: 1 DIF: L3 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 3 Classifying a Quadrilateral 5. ANS: (b, a) KEY: midpoint kite rectangle PTS: 1 DIF: L2 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 2 Using Variable Coordinates KEY: coordinate plane algebra rectangle 1

7 6. ANS: (p + r + s, 2q) PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 2 Using Variable Coordinates KEY: algebra coordinate plane isosceles trapezoid midsegment 7. ANS: (a + c, b) PTS: 1 DIF: L2 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 2 Using Variable Coordinates KEY: parallelogram coordinate plane algebra 2

8 8. ANS: PTS: 1 DIF: L4 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 3 Classifying a Quadrilateral KEY: coordinate plane graphing parallelogram opposite sides multi-part question DOK: DOK 3 3

9 9. ANS: Answers may vary. Sample: PTS: 1 DIF: L2 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 1 Naming Coordinates KEY: kite algebra coordinate plane 10. ANS: Answers may vary. Sample: PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 1 Naming Coordinates KEY: rhombus algebra coordinate plane 11. ANS: Each diagonal has length (a b) 2 c 2. PTS: 1 DIF: L4 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 2 Using Variable Coordinates KEY: algebra coordinate plane isosceles trapezoid trapezoid diagonal 4

10 12. ANS: PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 2 Using Variable Coordinates KEY: algebra coordinate plane square ESSAY 13. ANS: [4] Shows ABCD is a parallelogram (by any of several methods); then shows diagonals are perpendicular by computing slopes to be 3 2 and 2. Includes meaningful commentary 3 on what is occurring. [3] Shows ABCD is a parallelogram and shows diagonals are perpendicular, but presentation is not clear. [2] work complete and shows correct ideas, but contains errors [1] work incomplete, but shows some understanding of what to do PTS: 1 DIF: L3 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 2 Classifying a Parallelogram KEY: extended response rubric-based question reasoning writing in math rhombus 5

11 14. ANS: [4] midpoint of AB ( 3, 3) midpoint of BC (3, 3) midpoint of CD (3, 1) midpoint of DA ( 3, 1) The figure is a rectangle. [3] Shows correct midpoints and shape, but presentation is not clear. [2] work complete and shows correct ideas, but contains errors [1] work incomplete, but shows some understanding of what to do PTS: 1 DIF: L3 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 3 Classifying a Quadrilateral KEY: extended response rubric-based question reasoning writing in math rhombus square rectangle 6

12 15. ANS: [4] Proofs may vary. Sample: For rhombus in the coordinate plane, as shown, the quadrilateral determined by the midpoints (a, b), ( a, b), (a, b), and ( a, b) has one pair of opposite sides vertical (no slope) and the other pair horizontal (slope 0), so the quadrilateral is a parallelogram with perpendicular sides, or a rectangle. [3] shows good setup and idea for proof, but has some small inaccuracies [2] shows reasonable setup and idea for proof, but has significant math difficulties [1] shows reasonable setup for proof PTS: 1 DIF: L4 REF: 6-9 Proofs Using Coordinate Geometry OBJ: Prove theorems using figures in the coordinate plane TOP: 6-9 Problem 1 Writing a Coordinate Proof KEY: rhombus midpoint rectangle extended response rubric-based question coordinate plane algebra writing in math reasoning DOK: DOK 3 7

13 16. ANS: [4] Proofs may vary. Sample: Given: Line l is the perpendicular bisector of CD. Prove: Point R(a, b) is equidistant from points C and D. By the Distance Formula, CR (a 0) 2 (b 0) 2 a 2 b 2 DR (a 2a) 2 (b 0) 2 a 2 b 2 Because CR DR, point R on the perpendicular bisector of the segment is equidistant from the endpoints of the segment. [3] shows good setup and idea for proof, but has some small inaccuracies [2] shows reasonable setup and idea for proof, but has significant math difficulties [1] shows reasonable setup for proof PTS: 1 DIF: L4 REF: 6-9 Proofs Using Coordinate Geometry OBJ: Prove theorems using figures in the coordinate plane TOP: 6-9 Problem 1 Writing a Coordinate Proof KEY: rhombus midpoint rectangle extended response rubric-based question coordinate plane algebra writing in math reasoning DOK: DOK 3 8

14 17. ANS: [4] Proofs may vary. Sample: Answers may vary. Sample: Given: WY and XZ are diagonals of rectangle WXYZ. Prove: WY XZ Distance of XZ (a 0) 2 (0 b) 2 a 2 b 2 WY (a 0) 2 (b 0) 2 a 2 b 2 By the definition of congruency, diagonals XZ and WY of rectangle WXYZ are congruent. [3] shows good setup and idea for proof, but has some small inaccuracies [2] shows reasonable setup and idea for proof, but has significant math difficulties [1] shows reasonable setup for proof PTS: 1 DIF: L4 REF: 6-9 Proofs Using Coordinate Geometry OBJ: Prove theorems using figures in the coordinate plane TOP: 6-9 Problem 2 Writing a Coordinate Proof KEY: rhombus midpoint rectangle extended response rubric-based question coordinate plane algebra writing in math reasoning DOK: DOK 3 9

15 OTHER 18. ANS: Answers may vary. Sample: JKL is scalene. All three sides have different lengths. PTS: 1 DIF: L3 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 1 Classifying a Triangle KEY: scalene isosceles triangle distance formula 10

16 19. ANS: Answers may vary. Sample: slope of AB is 7 6 slope of BC is 6 7 slope of CD is 7 6 slope of AD is 6 7 AB CD and BC AD, so ABCD is a parallelogram. AB BC, BC CD, CD AD, and AB AD. ABC, BCD, CDA, BAD are right angles. ABCD is a rectangle. PTS: 1 DIF: L4 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 2 Classifying a Parallelogram KEY: coordinate plane proof reasoning rectangle slope multi-part question 20. ANS: Answers may vary. Sample: Using a factor of 2 in each coordinate simplifies what you find for the coordinates of the midpoint of AB, namely (a + c, b + d). PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 1 Naming Coordinates KEY: algebra coordinate plane graphing reasoning writing in math 11

17 21. ANS: Answers may vary. Sample: PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 3 Planning a Coordinate Proof KEY: diagonal parallelogram algebra coordinate plane writing in math reasoning DOK: DOK ANS: Answers may vary. Sample: Given: FH and GK are diagonals of square FGHK. Prove: FH GK PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 3 Planning a Coordinate Proof KEY: diagonal parallelogram algebra coordinate plane writing in math reasoning DOK: DOK 3 12

18 23. ANS: 4] Proofs may vary. Sample: Given: AC and BD are diagonals of kite ABCD. Prove: AC BD Slope of DB 3b 3b 2a 0 0 Slope of AC 4b 0 a a 4b 0 = undefined A line with a zero slope is perpendicular to a line with an undefined slope, so the diagonals of the kite are perpendicular. [3] shows good setup and idea for proof, but has some small inaccuracies [2] shows reasonable setup and idea for proof, but has significant math difficulties [1] shows reasonable setup for proof PTS: 1 DIF: L3 REF: 6-9 Proofs Using Coordinate Geometry OBJ: Prove theorems using figures in the coordinate plane TOP: 6-9 Problem 2 Writing a Coordinate Proof KEY: diagonal kite algebra coordinate plane writing in math reasoning DOK: DOK 3 13

Name: Class: Date: Quadrilaterals Unit Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. ( points) In which polygon does the sum of the measures of

### Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Grade level: 10 Prerequisite knowledge: Students have studied triangle congruences, perpendicular lines,

### Name: 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work

Name: _ 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work 1. An equilateral triangle always has three 60 interior angles. 2. A line segment

### Sum of the interior angles of a n-sided Polygon = (n-2) 180

5.1 Interior angles of a polygon Sides 3 4 5 6 n Number of Triangles 1 Sum of interiorangles 180 Sum of the interior angles of a n-sided Polygon = (n-2) 180 What you need to know: How to use the formula

### Situation: Proving Quadrilaterals in the Coordinate Plane

Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra

### Geometry. Unit 6. Quadrilaterals. Unit 6

Geometry Quadrilaterals Properties of Polygons Formed by three or more consecutive segments. The segments form the sides of the polygon. Each side intersects two other sides at its endpoints. The intersections

### 1. An isosceles trapezoid does not have perpendicular diagonals, and a rectangle and a rhombus are both parallelograms.

Quadrilaterals - Answers 1. A 2. C 3. A 4. C 5. C 6. B 7. B 8. B 9. B 10. C 11. D 12. B 13. A 14. C 15. D Quadrilaterals - Explanations 1. An isosceles trapezoid does not have perpendicular diagonals,

1. Determine whether each quadrilateral is a Justify your answer. 3. KITES Charmaine is building the kite shown below. She wants to be sure that the string around her frame forms a parallelogram before

### Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors

Isosceles triangles Lesson Summary: Students will investigate the properties of isosceles triangles. Angle bisectors, perpendicular bisectors, midpoints, and medians are also examined in this lesson. A

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### 6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 1. If, find. A rhombus is a parallelogram with all four sides congruent. So, Then, is an isosceles triangle. Therefore, If a parallelogram

### SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses

CHAPTER SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY For the review sessions, I will try to post some of the solved homework since I find that at this age both taking notes and proofs are still a burgeoning

### You can use the postulates below to prove several theorems.

Using Area Formulas You can use the postulates below to prove several theorems. AREA POSTULATES Postulate Area of a Square Postulate The area of a square is the square of the length of its side, or s.

### 0810ge. Geometry Regents Exam 0810

0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

### 8.1 Find Angle Measures in Polygons

8.1 Find Angle Measures in Polygons Obj.: To find angle measures in polygons. Key Vocabulary Diagonal - A diagonal of a polygon is a segment that joins two nonconsecutive vertices. Polygon ABCDE has two

### /27 Intro to Geometry Review

/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

### STRAIGHT LINE COORDINATE GEOMETRY

STRAIGHT LINE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) The points P and Q have coordinates ( 7,3 ) and ( 5,0), respectively. a) Determine an equation for the straight line PQ, giving the answer

### **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.

Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:

### Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

### Coordinate Coplanar Distance Formula Midpoint Formula

G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the oneand two-dimensional coordinate systems to

### Honors Packet on. Polygons, Quadrilaterals, and Special Parallelograms

Honors Packet on Polygons, Quadrilaterals, and Special Parallelograms Table of Contents DAY 1: (Ch. 6-1) SWBAT: Find measures of interior and exterior angles of polygons Pgs: #1 6 in packet HW: Pages 386

### Properties of Special Parallelograms

Properties of Special Parallelograms Lab Summary: This lab consists of four activities that lead students through the construction of a parallelogram, a rectangle, a square, and a rhombus. Students then

### Polygons in the Coordinate Plane. isosceles 2. X 2 4

Name lass ate 6-7 Practice Form G Polgons in the oordinate Plane etermine whether k is scalene, isosceles, or equilateral. 1. isosceles. scalene 3. scalene. isosceles What is the most precise classification

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### Line. A straight path that continues forever in both directions.

Geometry Vocabulary Line A straight path that continues forever in both directions. Endpoint A point that STOPS a line from continuing forever, it is a point at the end of a line segment or ray. Ray A

### 6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 3. PROOF Write a two-column proof to prove that if ABCD is a rhombus with diagonal. 1. If, find. A rhombus is a parallelogram with all

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Higher Geometry Problems

Higher Geometry Problems ( Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

Unit 8 Quadrilaterals Academic Geometry Spring 2014 Name Teacher Period 1 2 3 Unit 8 at a glance Quadrilaterals This unit focuses on revisiting prior knowledge of polygons and extends to formulate, test,

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### 5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

### Name Geometry Exam Review #1: Constructions and Vocab

Name Geometry Exam Review #1: Constructions and Vocab Copy an angle: 1. Place your compass on A, make any arc. Label the intersections of the arc and the sides of the angle B and C. 2. Compass on A, make

### CHAPTER 6. Polygons, Quadrilaterals, and Special Parallelograms

CHAPTER 6 Polygons, Quadrilaterals, and Special Parallelograms Table of Contents DAY 1: (Ch. 6-1) SWBAT: Find measures of interior and exterior angles of polygons Pgs: 1-7 HW: Pgs: 8-10 DAY 2: (6-2) Pgs:

### Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

### 11-2 Areas of Trapezoids, Rhombi, and Kites. Find the area of each trapezoid, rhombus, or kite. 1. SOLUTION: 2. SOLUTION: 3.

Find the area of each trapezoid, rhombus, or kite. 1. 2. 3. esolutions Manual - Powered by Cognero Page 1 4. OPEN ENDED Suki is doing fashion design at 4-H Club. Her first project is to make a simple A-line

### Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

### Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

### http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4

of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Winter 2016 Math 213 Final Exam. Points Possible. Subtotal 100. Total 100

Winter 2016 Math 213 Final Exam Name Instructions: Show ALL work. Simplify wherever possible. Clearly indicate your final answer. Problem Number Points Possible Score 1 25 2 25 3 25 4 25 Subtotal 100 Extra

### 116 Chapter 6 Transformations and the Coordinate Plane

116 Chapter 6 Transformations and the Coordinate Plane Chapter 6-1 The Coordinates of a Point in a Plane Section Quiz [20 points] PART I Answer all questions in this part. Each correct answer will receive

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

### Estimating Angle Measures

1 Estimating Angle Measures Compare and estimate angle measures. You will need a protractor. 1. Estimate the size of each angle. a) c) You can estimate the size of an angle by comparing it to an angle

### ABC is the triangle with vertices at points A, B and C

Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper

### TIgeometry.com. Geometry. Angle Bisectors in a Triangle

Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

### 11.3 Curves, Polygons and Symmetry

11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon

### C1: Coordinate geometry of straight lines

B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

### Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

### Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is

### Date: Period: Symmetry

Name: Date: Period: Symmetry 1) Line Symmetry: A line of symmetry not only cuts a figure in, it creates a mirror image. In order to determine if a figure has line symmetry, a figure can be divided into

### (a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

### Geometry Chapter 2 Study Guide

Geometry Chapter 2 Study Guide Short Answer ( 2 Points Each) 1. (1 point) Name the Property of Equality that justifies the statement: If g = h, then. 2. (1 point) Name the Property of Congruence that justifies

### Centroid: The point of intersection of the three medians of a triangle. Centroid

Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

### Geometry of 2D Shapes

Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 19, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Final Review Geometry A Fall Semester

Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

### Target To know the properties of a rectangle

Target To know the properties of a rectangle (1) A rectangle is a 3-D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles

### A. 3y = -2x + 1. y = x + 3. y = x - 3. D. 2y = 3x + 3

Name: Geometry Regents Prep Spring 2010 Assignment 1. Which is an equation of the line that passes through the point (1, 4) and has a slope of 3? A. y = 3x + 4 B. y = x + 4 C. y = 3x - 1 D. y = 3x + 1

### PROPERTIES OF TRIANGLES AND QUADRILATERALS

Mathematics Revision Guides Properties of Triangles, Quadrilaterals and Polygons Page 1 of 21 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier PROPERTIES OF TRIANGLES AND QUADRILATERALS

### GEOMETRY WHAT S INSIDE: CASIO Education Workbook Series. with the CASIO fx-9750gii

CASIO Education Workbook Series GEOMETRY with the CASIO fx-9750gii WHAT S INSIDE: Distance Slope Pythagorean Theorem Properties of Triangles Reflections Rotations Translations Properties of Parallelogramsams

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### Geometry EOC Practice Test #2

Class: Date: Geometry EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rebecca is loading medical supply boxes into a crate. Each supply

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### 37 Basic Geometric Shapes and Figures

37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars

### 4-1 Classifying Triangles. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240.

ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning.

### GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT!

GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! FINDING THE DISTANCE BETWEEN TWO POINTS DISTANCE FORMULA- (x₂-x₁)²+(y₂-y₁)² Find the distance between the points ( -3,2) and

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Math 311 Test III, Spring 2013 (with solutions)

Math 311 Test III, Spring 2013 (with solutions) Dr Holmes April 25, 2013 It is extremely likely that there are mistakes in the solutions given! Please call them to my attention if you find them. This exam

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### 1.1. Building Blocks of Geometry EXAMPLE. Solution a. P is the midpoint of both AB and CD. Q is the midpoint of GH. CONDENSED

CONDENSED LESSON 1.1 Building Blocks of Geometry In this lesson you will Learn about points, lines, and planes and how to represent them Learn definitions of collinear, coplanar, line segment, congruent

### Geometry, Final Review Packet

Name: Geometry, Final Review Packet I. Vocabulary match each word on the left to its definition on the right. Word Letter Definition Acute angle A. Meeting at a point Angle bisector B. An angle with a

### Lesson 13: Proofs in Geometry

211 Lesson 13: Proofs in Geometry Beginning with this lesson and continuing for the next few lessons, we will explore the role of proofs and counterexamples in geometry. To begin, recall the Pythagorean

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular)

MA.912.G.2 Geometry: Standard 2: Polygons - Students identify and describe polygons (triangles, quadrilaterals, pentagons, hexagons, etc.), using terms such as regular, convex, and concave. They find measures

### UNCORRECTED PROOF. Unit objectives. Website links Opener Online angle puzzles 2.5 Geometry resources, including interactive explanations

21.1 Sequences Get in line Unit objectives Understand a proof that the angle sum of a triangle is 180 and of a quadrilateral is 360 ; and the exterior angle of a triangle is equal to the sum of the two

### Most popular response to

Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

Overview of Mathematics Task Arcs: Mathematics Task Arcs A task arc is a set of related lessons which consists of eight tasks and their associated lesson guides. The lessons are focused on a small number

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your

### Geometry 8-1 Angles of Polygons

. Sum of Measures of Interior ngles Geometry 8-1 ngles of Polygons 1. Interior angles - The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.

### Finding Parallelogram Vertices

About Illustrations: Illustrations of the Standards for Mathematical Practice (SMP) consist of several pieces, including a mathematics task, student dialogue, mathematical overview, teacher reflection

### 7. 6 Justifying Constructions

31 7. 6 Justifying Constructions A Solidify Understanding Task CC BY THOR https://flic.kr/p/9qkxv Compass and straightedge constructions can be justified using such tools as: the definitions and properties

### *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.

Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review

### acute angle acute triangle Cartesian coordinate system concave polygon congruent figures

acute angle acute triangle Cartesian coordinate system concave polygon congruent figures convex polygon coordinate grid coordinates dilatation equilateral triangle horizontal axis intersecting lines isosceles

### M 1312 Section Trapezoids

M 1312 Section 4.4 1 Trapezoids Definition: trapezoid is a quadrilateral with exactly two parallel sides. Parts of a trapezoid: Base Leg Leg Leg Base Base Base Leg Isosceles Trapezoid: Every trapezoid

### Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning.

ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. One angle of the triangle measures 90, so it is a right angle. Since the triangle has a

### Geometry. Kellenberg Memorial High School

2015-2016 Geometry Kellenberg Memorial High School Undefined Terms and Basic Definitions 1 Click here for Chapter 1 Student Notes Section 1 Undefined Terms 1.1: Undefined Terms (we accept these as true)