# Geometry Module 4 Unit 2 Practice Exam

Size: px
Start display at page:

Transcription

1 Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning and accurate labeling of an isoscles trapezoid in the coordinate plane? a. c. b. d. 1

2 Name: ID: A 2. Which diagram shows the most useful positioning of a rectangle in the first quadrant of a coordinate plane? a. c. b. d. Short Answer 3. Is TVS scalene, isosceles, or equilateral? The vertices are T(1,1), V(4,0), and S(2,4). 4. A quadrilateral has vertices ( 3, 1), (4, 5), ( 1, 5), and ( 3, 3). What special quadrilateral is formed by connecting the midpoints of the sides? 5. In the coordinate plane, three vertices of rectangle ABCD are A(0, 0), B(0, a), and D(b, 0). What are the coordinates of point C? 6. The vertices of the trapezoid are the origin along with A(4p, 4q), B(4r, 4q), and C(4s, 0). Find the midpoint of the midsegment of the trapezoid. 2

3 Name: ID: A 7. For the parallelogram, find coordinates for P without using any new variables. 8. For A( 1, 1), B(2, 1), and C(2, 1), find all locations of a fourth point, D, so that a parallelogram is formed using A, B, C, D in order as vertices. Plot each point D on a coordinate grid and draw the parallelogram. 9. The fact that the diagonals of a kite are perpendicular suggests a way to place a kite in the coordinate plane. Show this placement. Include labels for the kite vertices. 10. Show how to place a rhombus in the coordinate plane so that its diagonals lie along the axes. Label the vertices using as few variables as possible. 11. Find the lengths of the diagonals of this trapezoid. 12. In the coordinate plane, draw a square with sides 8n units long. Give coordinates for each vertex, and the coordinates of the point of intersection of the diagonals. 3

4 Name: ID: A Essay 13. Verify that parallelogram ABCD with vertices A( 5, 1), B( 9, 6), C( 1, 5), and D(3, 2) is a rhombus by showing that it is a parallelogram with perpendicular diagonals. 14. Find the midpoint of each side of the kite. Connect the midpoints. What is the most precise classification of the quadrilateral formed by connecting the midpoints of the sides of the kite? 15. Prove using coordinate geometry: The midpoints of the sides of a rhombus determine a rectangle. 16. Prove using coordinate geometry: If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. 17. Write a coordinate proof of the following theorem: If a parallelogram is a rectangle, then its diagonals are congruent. 4

5 Name: ID: A Other 18. In the coordinate plane, draw JKL with J(2, 3), K(10, 4), and L(8, 9). Classify JKL. Explain. 19. In the coordinate plane, draw parallelogram ABCD with A( 5, 0), B(1, 7), C(8, 1), and D(2, 6).Then demonstrate that ABCD is a rectangle. 20. AC is a segment in the coordinate plane. Explain why sometimes it is a good idea to give points A and C the coordinates (2a, 2b) and (2c, 2d). 21. If you want to prove that the diagonals of a parallelogram bisect each other using coordinate geometry, how would you place the parallelogram on the coordinate plane? Give the coordinates of the vertices for the placement you choose. 22. Write the Given and Prove statements for a proof of the following theorem: If a quadrilateral is a square, then its diagonals are perpendicular. Square FGHK and its diagonals have been drawn for you. 23. Write a coordinate proof of the following theorem: If a quadrilateral is a kite, then its diagonals are perpendicular. 5

6 Geometry Module 4 Unit 2 Practice Exam Answer Section MULTIPLE CHOICE 1. ANS: A PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 1 Naming Coordinates KEY: algebra coordinate plane isosceles trapezoid kite 2. ANS: A PTS: 1 DIF: L2 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 1 Naming Coordinates KEY: algebra coordinate plane rectangle square DOK: DOK 1 SHORT ANSWER 3. ANS: isosceles PTS: 1 DIF: L2 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 1 Classifying a Triangle KEY: triangle distance formula isosceles scalene 4. ANS: kite PTS: 1 DIF: L3 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 3 Classifying a Quadrilateral 5. ANS: (b, a) KEY: midpoint kite rectangle PTS: 1 DIF: L2 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 2 Using Variable Coordinates KEY: coordinate plane algebra rectangle 1

7 6. ANS: (p + r + s, 2q) PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 2 Using Variable Coordinates KEY: algebra coordinate plane isosceles trapezoid midsegment 7. ANS: (a + c, b) PTS: 1 DIF: L2 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 2 Using Variable Coordinates KEY: parallelogram coordinate plane algebra 2

8 8. ANS: PTS: 1 DIF: L4 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 3 Classifying a Quadrilateral KEY: coordinate plane graphing parallelogram opposite sides multi-part question DOK: DOK 3 3

9 9. ANS: Answers may vary. Sample: PTS: 1 DIF: L2 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 1 Naming Coordinates KEY: kite algebra coordinate plane 10. ANS: Answers may vary. Sample: PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 1 Naming Coordinates KEY: rhombus algebra coordinate plane 11. ANS: Each diagonal has length (a b) 2 c 2. PTS: 1 DIF: L4 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 2 Using Variable Coordinates KEY: algebra coordinate plane isosceles trapezoid trapezoid diagonal 4

10 12. ANS: PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 2 Using Variable Coordinates KEY: algebra coordinate plane square ESSAY 13. ANS: [4] Shows ABCD is a parallelogram (by any of several methods); then shows diagonals are perpendicular by computing slopes to be 3 2 and 2. Includes meaningful commentary 3 on what is occurring. [3] Shows ABCD is a parallelogram and shows diagonals are perpendicular, but presentation is not clear. [2] work complete and shows correct ideas, but contains errors [1] work incomplete, but shows some understanding of what to do PTS: 1 DIF: L3 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 2 Classifying a Parallelogram KEY: extended response rubric-based question reasoning writing in math rhombus 5

11 14. ANS: [4] midpoint of AB ( 3, 3) midpoint of BC (3, 3) midpoint of CD (3, 1) midpoint of DA ( 3, 1) The figure is a rectangle. [3] Shows correct midpoints and shape, but presentation is not clear. [2] work complete and shows correct ideas, but contains errors [1] work incomplete, but shows some understanding of what to do PTS: 1 DIF: L3 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 3 Classifying a Quadrilateral KEY: extended response rubric-based question reasoning writing in math rhombus square rectangle 6

12 15. ANS: [4] Proofs may vary. Sample: For rhombus in the coordinate plane, as shown, the quadrilateral determined by the midpoints (a, b), ( a, b), (a, b), and ( a, b) has one pair of opposite sides vertical (no slope) and the other pair horizontal (slope 0), so the quadrilateral is a parallelogram with perpendicular sides, or a rectangle. [3] shows good setup and idea for proof, but has some small inaccuracies [2] shows reasonable setup and idea for proof, but has significant math difficulties [1] shows reasonable setup for proof PTS: 1 DIF: L4 REF: 6-9 Proofs Using Coordinate Geometry OBJ: Prove theorems using figures in the coordinate plane TOP: 6-9 Problem 1 Writing a Coordinate Proof KEY: rhombus midpoint rectangle extended response rubric-based question coordinate plane algebra writing in math reasoning DOK: DOK 3 7

13 16. ANS: [4] Proofs may vary. Sample: Given: Line l is the perpendicular bisector of CD. Prove: Point R(a, b) is equidistant from points C and D. By the Distance Formula, CR (a 0) 2 (b 0) 2 a 2 b 2 DR (a 2a) 2 (b 0) 2 a 2 b 2 Because CR DR, point R on the perpendicular bisector of the segment is equidistant from the endpoints of the segment. [3] shows good setup and idea for proof, but has some small inaccuracies [2] shows reasonable setup and idea for proof, but has significant math difficulties [1] shows reasonable setup for proof PTS: 1 DIF: L4 REF: 6-9 Proofs Using Coordinate Geometry OBJ: Prove theorems using figures in the coordinate plane TOP: 6-9 Problem 1 Writing a Coordinate Proof KEY: rhombus midpoint rectangle extended response rubric-based question coordinate plane algebra writing in math reasoning DOK: DOK 3 8

14 17. ANS: [4] Proofs may vary. Sample: Answers may vary. Sample: Given: WY and XZ are diagonals of rectangle WXYZ. Prove: WY XZ Distance of XZ (a 0) 2 (0 b) 2 a 2 b 2 WY (a 0) 2 (b 0) 2 a 2 b 2 By the definition of congruency, diagonals XZ and WY of rectangle WXYZ are congruent. [3] shows good setup and idea for proof, but has some small inaccuracies [2] shows reasonable setup and idea for proof, but has significant math difficulties [1] shows reasonable setup for proof PTS: 1 DIF: L4 REF: 6-9 Proofs Using Coordinate Geometry OBJ: Prove theorems using figures in the coordinate plane TOP: 6-9 Problem 2 Writing a Coordinate Proof KEY: rhombus midpoint rectangle extended response rubric-based question coordinate plane algebra writing in math reasoning DOK: DOK 3 9

15 OTHER 18. ANS: Answers may vary. Sample: JKL is scalene. All three sides have different lengths. PTS: 1 DIF: L3 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 1 Classifying a Triangle KEY: scalene isosceles triangle distance formula 10

16 19. ANS: Answers may vary. Sample: slope of AB is 7 6 slope of BC is 6 7 slope of CD is 7 6 slope of AD is 6 7 AB CD and BC AD, so ABCD is a parallelogram. AB BC, BC CD, CD AD, and AB AD. ABC, BCD, CDA, BAD are right angles. ABCD is a rectangle. PTS: 1 DIF: L4 REF: 6-7 Polygons in the Coordinate Plane OBJ: Classify polygons in the coordinate plane STA: MA.912.G.1.1 MA.912.G.2.6 MA.912.G.3.1 MA.912.G.3.3 MA.912.G.4.1 MA.912.G.4.8 TOP: 6-7 Problem 2 Classifying a Parallelogram KEY: coordinate plane proof reasoning rectangle slope multi-part question 20. ANS: Answers may vary. Sample: Using a factor of 2 in each coordinate simplifies what you find for the coordinates of the midpoint of AB, namely (a + c, b + d). PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 1 Naming Coordinates KEY: algebra coordinate plane graphing reasoning writing in math 11

17 21. ANS: Answers may vary. Sample: PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 3 Planning a Coordinate Proof KEY: diagonal parallelogram algebra coordinate plane writing in math reasoning DOK: DOK ANS: Answers may vary. Sample: Given: FH and GK are diagonals of square FGHK. Prove: FH GK PTS: 1 DIF: L3 REF: 6-8 Applying Coordinate Geometry TOP: 6-8 Problem 3 Planning a Coordinate Proof KEY: diagonal parallelogram algebra coordinate plane writing in math reasoning DOK: DOK 3 12

18 23. ANS: 4] Proofs may vary. Sample: Given: AC and BD are diagonals of kite ABCD. Prove: AC BD Slope of DB 3b 3b 2a 0 0 Slope of AC 4b 0 a a 4b 0 = undefined A line with a zero slope is perpendicular to a line with an undefined slope, so the diagonals of the kite are perpendicular. [3] shows good setup and idea for proof, but has some small inaccuracies [2] shows reasonable setup and idea for proof, but has significant math difficulties [1] shows reasonable setup for proof PTS: 1 DIF: L3 REF: 6-9 Proofs Using Coordinate Geometry OBJ: Prove theorems using figures in the coordinate plane TOP: 6-9 Problem 2 Writing a Coordinate Proof KEY: diagonal kite algebra coordinate plane writing in math reasoning DOK: DOK 3 13

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Situation: Proving Quadrilaterals in the Coordinate Plane

Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### /27 Intro to Geometry Review

/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### 5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

### 11.3 Curves, Polygons and Symmetry

11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4

of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the

### Target To know the properties of a rectangle

Target To know the properties of a rectangle (1) A rectangle is a 3-D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles

### Geometry of 2D Shapes

Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles

Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Geometry Chapter 2 Study Guide

Geometry Chapter 2 Study Guide Short Answer ( 2 Points Each) 1. (1 point) Name the Property of Equality that justifies the statement: If g = h, then. 2. (1 point) Name the Property of Congruence that justifies

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### Estimating Angle Measures

1 Estimating Angle Measures Compare and estimate angle measures. You will need a protractor. 1. Estimate the size of each angle. a) c) You can estimate the size of an angle by comparing it to an angle

### TIgeometry.com. Geometry. Angle Bisectors in a Triangle

Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

### Final Review Geometry A Fall Semester

Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

### 37 Basic Geometric Shapes and Figures

37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### Geometry EOC Practice Test #2

Class: Date: Geometry EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rebecca is loading medical supply boxes into a crate. Each supply

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### 2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of

### Geometry 8-1 Angles of Polygons

. Sum of Measures of Interior ngles Geometry 8-1 ngles of Polygons 1. Interior angles - The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.

### Most popular response to

Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles

### Math 531, Exam 1 Information.

Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### TImath.com. Geometry. Points on a Perpendicular Bisector

Points on a Perpendicular Bisector ID: 8868 Time required 40 minutes Activity Overview In this activity, students will explore the relationship between a line segment and its perpendicular bisector. Once

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

### Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

### Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### GEOMETRY COMMON CORE STANDARDS

1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

### CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

### Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

### Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical

### Area. Area Overview. Define: Area:

Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

Geometry Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes

### Solutions to Practice Problems

Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

### 56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

### CHAPTER 8 QUADRILATERALS. 8.1 Introduction

CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is

### 2, 3 1, 3 3, 2 3, 2. 3 Exploring Geometry Construction: Copy &: Bisect Segments & Angles Measure & Classify Angles, Describe Angle Pair Relationship

Geometry Honors Semester McDougal 014-015 Day Concepts Lesson Benchmark(s) Complexity Level 1 Identify Points, Lines, & Planes 1-1 MAFS.91.G-CO.1.1 1 Use Segments & Congruence, Use Midpoint & 1-/1- MAFS.91.G-CO.1.1,

### QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results

CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of

### Set 4: Special Congruent Triangles Instruction

Instruction Goal: To provide opportunities for students to develop concepts and skills related to proving right, isosceles, and equilateral triangles congruent using real-world problems Common Core Standards

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### 4.3 Congruent Triangles Quiz

Name: Class: Date: ID: A 4.3 Congruent Triangles Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given: ABC MNO Identify all pairs of congruent corresponding

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### Geometry: Classifying, Identifying, and Constructing Triangles

Geometry: Classifying, Identifying, and Constructing Triangles Lesson Objectives Teacher's Notes Lesson Notes 1) Identify acute, right, and obtuse triangles. 2) Identify scalene, isosceles, equilateral

### Unit 2 - Triangles. Equilateral Triangles

Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics

### Geo, Chap 4 Practice Test, EV Ver 1

Class: Date: Geo, Chap 4 Practice Test, EV Ver 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (4-3) In each pair of triangles, parts are congruent as

### Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

### Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### www.sakshieducation.com

LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

### Lesson 3.1 Duplicating Segments and Angles

Lesson 3.1 Duplicating Segments and ngles In Exercises 1 3, use the segments and angles below. Q R S 1. Using only a compass and straightedge, duplicate each segment and angle. There is an arc in each

E XPLORING QUADRILATERALS E 1 Geometry State Goal 9: Use geometric methods to analyze, categorize and draw conclusions about points, lines, planes and space. Statement of Purpose: The activities in this

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

Lecture 24: Saccheri Quadrilaterals 24.1 Saccheri Quadrilaterals Definition In a protractor geometry, we call a quadrilateral ABCD a Saccheri quadrilateral, denoted S ABCD, if A and D are right angles

### The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology

### D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

### 1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.

1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides

### Three-Dimensional Figures or Space Figures. Rectangular Prism Cylinder Cone Sphere. Two-Dimensional Figures or Plane Figures

SHAPE NAMES Three-Dimensional Figures or Space Figures Rectangular Prism Cylinder Cone Sphere Two-Dimensional Figures or Plane Figures Square Rectangle Triangle Circle Name each shape. [triangle] [cone]

### Grade 3 Core Standard III Assessment

Grade 3 Core Standard III Assessment Geometry and Measurement Name: Date: 3.3.1 Identify right angles in two-dimensional shapes and determine if angles are greater than or less than a right angle (obtuse

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications

### http://jsuniltutorial.weebly.com/ Page 1

Parallelogram solved Worksheet/ Questions Paper 1.Q. Name each of the following parallelograms. (i) The diagonals are equal and the adjacent sides are unequal. (ii) The diagonals are equal and the adjacent

### Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,

### Chapter 8 Geometry We will discuss following concepts in this chapter.

Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

### 3.1 Triangles, Congruence Relations, SAS Hypothesis

Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)

### COORDINATE GEOMETRY Mathematics 1 MM1G1a,b,c,d,e

Student Learning Map Unit 6 COORDINATE GEOMETRY Mathematics 1 MM1G1a,b,c,d,e Key Learning(s): Unit Essential Question(s): 1. Algebraic formulas can be used to find measures of distance on the coordinate

### Cumulative Test. 161 Holt Geometry. Name Date Class

Choose the best answer. 1. P, W, and K are collinear, and W is between P and K. PW 10x, WK 2x 7, and PW WK 6x 11. What is PK? A 2 C 90 B 6 D 11 2. RM bisects VRQ. If mmrq 2, what is mvrm? F 41 H 9 G 2

### 1.1 Identify Points, Lines, and Planes

1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms - These words do not have formal definitions, but there is agreement aboutwhat they mean.

### Geometry and Measurement

The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

### MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

### Name Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem

Name Period 10/22 11/1 Vocabulary Terms: Acute Triangle Right Triangle Obtuse Triangle Scalene Isosceles Equilateral Equiangular Interior Angle Exterior Angle 10/22 Classify and Triangle Angle Theorems