Geometry B Exam Review


 Erin Sparks
 7 years ago
 Views:
Transcription
1 Semester Eam Review Geometr B Eam Review Notes to the student: This review prepares ou for the semester B Geometr Eam. The eam will cover units 3, 4, and 5 of the Geometr curriculum. The eam consists of two parts. Part 1 is 15 selected response items each worth points. The second part is 15 etended response items worth varing numbers of points for a total of 70 points. A calculator ma be used on both parts of the eam. Man answers will be in terms of or in radical form. You ma leave answers in that form or approimate as a decimal to two places past the decimal point. For most accurate approimations use the ke on our calculator. Do not use 3.14 for. n the net two pages ou will find the formulas that will be available to ou in the eam booklet. FIGURES ARE NT DRAWN T SCALE!!!!! MCPS Page 1
2 Semester Eam Review Area/Circumference Triangle: 1 A bh Rectangle: A bh 1 A b1 b h Trapezoid: Parallelogram: A bh Regular Polgon: 1 A apothem perimeter Circle Area: A r Circle Circumference: C r d Volume Prism/Clinder: V Bh area of base height Pramid/Cone: Sphere: V V 1 1 Bh area of base height r 3 3 Densit Formula Densit = Mass Volume Coordinate Geometr 1 Slope: Midpoint:, Distance: 1 1 MCPS Page
3 Semester Eam Review Conic Sections Equation of a circle with center at hk, and radius r: h k r Equations of a parabola with verte at the origin, with p the distance from the verte to the focus and verte to directri: 1 4p or ; opens up if p 0, opens down if p 0 4 p 1 4p or ; opens right if p 0, opens left if p 0 4 p Circles Arc Length (degrees): S r Sector Area (degrees): A r Arc Length (radians): S r 360 Sector Area (radians): A r 360 Angle and Arc Formulas J B F K E N L A D G H C M 1 1 ma mbc 1 mgde mge mfh mj mmn mlk radian = degrees 1 degree = radians 180 MCPS Page 3
4 Semester Eam Review Unit 3 1. Which pairs of figures have the same volume? a. b. 5 r Bases are squares For items and 3, find the volume if each figure is revolved about the dashed line Name the cross section that is formed in each case. a. A cone, cut b a plane parallel to the base, not through the ape (top). b. A cone. cut b a plane perpendicular to the base, through the ape (top). c. A rectangular pramid, cut b a plane parallel to the base, not through the ape (top). d. A square pramid, cut b a plane parallel to the base, not through the ape (top). e. A clinder, cut b a plane parallel to the base. f. A clinder, cut b a plane perpendicular to the base. MCPS Page 4
5 Semester Eam Review 5. What is the relationship between the volumes of a cone and a clinder if the cone and clinder have the same radii and heights? 6. What is the relationship between the volumes of a pramid and a prism, if the pramid and prism have the same base areas and heights? 7. A scoop of ice cream is in the shape of a sphere with radius 3 cm is placed in a cone that has a radius of cm and a height of 9 cm. If the ice cream melts into the cone, will the ice cream overflow the cone? Show how ou determined our answer. 8. The scoop of ice cream in item 8 has a mass of 14 grams. What is the densit (in g/cm 3 ) of the ice cream? 9. A movie theater sells popcorn in pramidshaped boes whose base is a square of side 15 centimeters and a height of 5 centimeters. a. What is the volume of the popcorn bo? b. The densit of popcorn is 0.03 grams per cubic centimeter. What is the mass of the popcorn in the bo? c. When popcorn is popped, it is stored in a cube that is 45 centimeters on each side. How man boes of popcorn can be filled from this container? MCPS Page 5
6 Semester Eam Review 10. The three figures below have the same volume. Find the missing height in each case. a. b h h 4 h = h = For items 11 through 13, find the volume of each solid described. 11. A sphere with radius 6 cm. 1. A cone with radius 5 cm and height 9 cm. 13. A square pramid with base of side 8 cm and height 3 cm. MCPS Page 6
7 Semester Eam Review 14. A compan is producing a special part for a machine. The part consists of a clinder of tin (white) that is inside of another clinder made of copper (shaded). The part is shown below. Copper 6 mm 5 mm 4 mm 3 mm Tin a. What is the total volume of the entire part? You ma give our answer in terms of or to the nearest cubic millimeter. b. What is the volume of the tin used in the part? You ma give our answer in terms of or to the nearest cubic millimeter. c. What is the volume of copper used in the part? You ma give our answer in terms of or to the nearest cubic millimeter. MCPS Page 7
8 Semester Eam Review Unit 4 Use the word bank to complete the following definitions. Words ma be used more than once. Word bank: center focus directri radius equidistant 15. A circle is the set of points in the plane that are from a given point, called the. The distance from the given point to ever point on the circle is called the. 16. A parabola is a set of points in the plane that are from a given point, called the, and a given line, called the. For items 17 and 18, sketch graphs of the following circles MCPS Page 8
9 Semester Eam Review For 19 and 0, write equations for the following circles and state the circumference and area of each circle Equation: Circumference: Area : Equation: Circumference: Area: 1. Is the point 5,3 on the circle whose equation is ou determined our answer. 3 65? Show how. For the equation of a circle 6 7, complete the square to put it in the form h k r, then give the center and the radius. MCPS Page 9
10 Semester Eam Review For items 3 through 5, sketch graphs of the following parabolas. For each graph, also graph the focus and directri For items 6 and 7, write the equation for the parabola F 0, F.5,0 MCPS Page 10
11 Semester Eam Review 8. Look at the parabola below. F Show that the point P 8,8 satisfies the definition of the parabola b showing that the distance between the focus and the point P 8,8 is equal to the distance from the point P 8,8 to the directri. MCPS Page 11
12 Semester Eam Review 9. How man points of intersection do the graphs of the circle parabola have? You ma use the grid below to help ou. 16 and the 30. How man points of intersection do the graphs of the circles 4 have? You ma use the grid below to help ou. 4 and MCPS Page 1
13 Semester Eam Review Look at the graph of line AB on the coordinate plane below. 10, 7 A B 10,8 31. What is the length of AB? 3. Point C is between points A and B and has coordinates,. What is the ratio AC: CB? 33. Determine the coordinates of point D so that the ratio AD : DB 1:4. MCPS Page 13
14 Semester Eam Review 34. Look at line k whose equation is 3 on the coordinate plane below. k Write equations for the following lines. a. Parallel to line k, passing through the point 0,. b. Perpendicular to line k, passing through 0, 5. MCPS Page 14
15 Semester Eam Review Items 35 through 38 (this item continues on the net page) uses the quadrilateral below. A 1, 4 D,0 B 5,1 C, 3 Kell thinks that the figure might be a square. Remembering her geometr she does the following. 35. Kell first needs to know if the figure is a parallelogram. Show that the figure is a parallelogram b showing that the slopes of opposite sides are equal. 36. Kell now wants to determine if the figure is a rectangle. There are two was to do this. a. Show, b using slopes, that one of the angles is a right angle, and therefore there are four right angles and the figure is a rectangle. b. Show that the diagonals of the parallelogram are congruent, and the figure is a rectangle. MCPS Page 15
16 Semester Eam Review 37. Now that Kell knows the figure is a rectangle. If she can show that it is a rhombus then it must be a square. Again there are two was to do this. a. Show that all four sides are the same length, and therefore the figure is a rhombus. b. Show, b using slope computations that the diagonals are perpendicular, and therefore the figure is a rhombus. 38. Kell also remembers a propert of parallelograms that the diagonals bisect each other. Show that this true b determining the midpoint of each diagonal and showing that each midpoint has the same coordinates. MCPS Page 16
17 Semester Eam Review For items 39 and 40, determine the area and perimeter of each shaded figure below. Each grid line represents 10 meters Area: Perimeter: Unit Area: Perimeter: For items 41 through 49, find the value of in each figure below C is the center o o 50 o C o 160 o 70 o MCPS Page 17
18 Semester Eam Review 60 o AB is a diameter 60 o o 8 o 85 o B o A o o o 50 o o 0 o 40 o 70 o o 35 o 50. Quadrilateral ABCD is inscribed in the circle below. A B D C a. mamc. Eplain our reasoning. b. If AC is a diameter, what is md or m B? Eplain our reasoning. MCPS Page 18
19 Semester Eam Review Look at the circle below. 140 o A 0 o 60 o B F E 4 o C Determine the following: D 51. mab 5. mef 53. mbc 54. m AFB 55. m FDB 56. m FEA MCPS Page 19
20 Semester Eam Review Look at circle P below. Line m is tangent to the circle at point R. PR 8, PS 10, UW TZ T m W X S U P R Z Complete the following. 57. mprs 58. SR 59. TU is congruent to which segment? 60. WTU is congruent to which angle? 61. TW is congruent to which arc? 6. SX 63. What part of the circumference of a circle is represented b arc whose measure is radians? 64. What part of the circumference of a circle is represented b an arc whose measure is 3 radians? MCPS Page 0
21 Semester Eam Review In items 65 and 66 below, find the radian measure of the central angle and the area of the sector cm F 6 cm C 8 cm D P 3 cm Q Radian measure of CD Radian measure of FPQ Area of sector CD Area of sector FPQ In items 67 and 68 below, find the length of arc and area of sector S R T 40 o 9 cm W X 10 o 3 cm Z Length of SU Area of sector STW Length of RZ Area of sector RXZ MCPS Page 1
Chapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter?
Chapter Quiz Section.1 Area and Initial Postulates (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? (.) TRUE or FALSE: If two plane
More informationConjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C2 Vertical Angles Conjecture If two angles are vertical
More informationPostulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 111: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
More informationCSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfdprep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
More informationNew York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
More informationAlgebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
More informationGeometry Enduring Understandings Students will understand 1. that all circles are similar.
High School  Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
More informationACT Math Vocabulary. Altitude The height of a triangle that makes a 90degree angle with the base of the triangle. Altitude
ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height
More informationMENSURATION. Definition
MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters
More informationArea of Parallelograms (pages 546 549)
A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationConjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
More informationCircle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
More informationGEOMETRY COMMON CORE STANDARDS
1st Nine Weeks Experiment with transformations in the plane GCO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,
More informationArea of Parallelograms, Triangles, and Trapezoids (pages 314 318)
Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base
More informationGeometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your
More informationArea. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
More informationGeometry Final Exam Review Worksheet
Geometry Final xam Review Worksheet (1) Find the area of an equilateral triangle if each side is 8. (2) Given the figure to the right, is tangent at, sides as marked, find the values of x, y, and z please.
More informationLesson 9.1 The Theorem of Pythagoras
Lesson 9.1 The Theorem of Pythagoras Give all answers rounded to the nearest 0.1 unit. 1. a. p. a 75 cm 14 cm p 6 7 cm 8 cm 1 cm 4 6 4. rea 9 in 5. Find the area. 6. Find the coordinates of h and the radius
More informationUnit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: lass: ate: I: Unit 3 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. The radius, diameter, or circumference of a circle is given. Find
More informationTHE PARABOLA 13.2. section
698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.
More information56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.
6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which
More informationSandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.
Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.
More informationGeometry Unit 6 Areas and Perimeters
Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose
More information9 Area, Perimeter and Volume
9 Area, Perimeter and Volume 9.1 2D Shapes The following table gives the names of some 2D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right
More informationPERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various twodimensional figures.
PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various twodimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the
More informationSURFACE AREA AND VOLUME
SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has
More informationPerimeter is the length of the boundary of a two dimensional figure.
Section 2.2: Perimeter and Area Perimeter is the length of the boundary of a two dimensional figure. The perimeter of a circle is called the circumference. The perimeter of any two dimensional figure whose
More informationChapter 8 Geometry We will discuss following concepts in this chapter.
Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles
More informationGeometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
More informationGeometry. Higher Mathematics Courses 69. Geometry
The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and
More informationGeorgia Online Formative Assessment Resource (GOFAR) AG geometry domain
AG geometry domain Name: Date: Copyright 2014 by Georgia Department of Education. Items shall not be used in a third party system or displayed publicly. Page: (1 of 36 ) 1. Amy drew a circle graph to represent
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
More informationGeometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
More informationCCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:
GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M91.G..1 Prove that all circles are similar. M91.G.. Identify and describe relationships
More information39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
More informationAngle  a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle  a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationAlgebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms  Trapezoids
Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms  Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?
More informationGEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
More informationUnit 3: Circles and Volume
Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,
More information2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
More information1. A plane passes through the apex (top point) of a cone and then through its base. What geometric figure will be formed from this intersection?
Student Name: Teacher: Date: District: Description: MiamiDade County Public Schools Geometry Topic 7: 3Dimensional Shapes 1. A plane passes through the apex (top point) of a cone and then through its
More informationYOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS  SIMPLE GEOMETRIC FIGURES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST
More informationComprehensive Benchmark Assessment Series
Test ID #1910631 Comprehensive Benchmark Assessment Series Instructions: It is time to begin. The scores of this test will help teachers plan lessons. Carefully, read each item in the test booklet. Select
More informationTeacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.
Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 91.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles
More informationDEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
More informationUnit 10 Geometry Circles. NAME Period
Unit 10 Geometry Circles NAME Period 1 Geometry Chapter 10 Circles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** 1. (101) Circles and Circumference
More informationSection 91. Basic Terms: Tangents, Arcs and Chords Homework Pages 330331: 118
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,
More informationXIV. Mathematics, Grade 8
XIV. Mathematics, Grade 8 Grade 8 Mathematics Test The spring 0 grade 8 Mathematics test was based on standards in the five domains for grade 8 in the Massachusetts Curriculum Framework for Mathematics
More information43 Perimeter and Area
43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study
More informationof surface, 569571, 576577, 578581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
More information2, 3 1, 3 3, 2 3, 2. 3 Exploring Geometry Construction: Copy &: Bisect Segments & Angles Measure & Classify Angles, Describe Angle Pair Relationship
Geometry Honors Semester McDougal 014015 Day Concepts Lesson Benchmark(s) Complexity Level 1 Identify Points, Lines, & Planes 11 MAFS.91.GCO.1.1 1 Use Segments & Congruence, Use Midpoint & 1/1 MAFS.91.GCO.1.1,
More informationAlgebra II. Administered May 2013 RELEASED
STAAR State of Teas Assessments of Academic Readiness Algebra II Administered Ma 0 RELEASED Copright 0, Teas Education Agenc. All rights reserved. Reproduction of all or portions of this work is prohibited
More informationSA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid
Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.
More informationChapter 11. Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem!
Chapter 11 Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem! Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret
More informationGeometry Module 4 Unit 2 Practice Exam
Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More informationGEOMETRY (Common Core)
GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Thursday, January 28, 2016 9:15 a.m. to 12:15 p.m., only Student Name: School Name:
More informationChapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
More informationChapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
More informationGeometry of 2D Shapes
Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles
More information2nd Semester Geometry Final Exam Review
Class: Date: 2nd Semester Geometry Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of an amusement park created a circular
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationDefinitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
More informationShape, Space and Measure
Name: Shape, Space and Measure Prep for Paper 2 Including Pythagoras Trigonometry: SOHCAHTOA Sine Rule Cosine Rule Area using 12 ab sin C Transforming Trig Graphs 3D PythagTrig Plans and Elevations Area
More informationCHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS
CHAPTER 9 VOLUMES AND SURFACE AREAS OF COMMON EXERCISE 14 Page 9 SOLIDS 1. Change a volume of 1 00 000 cm to cubic metres. 1m = 10 cm or 1cm = 10 6m 6 Hence, 1 00 000 cm = 1 00 000 10 6m = 1. m. Change
More informationMath 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:059:55. Exam 1 will be based on: Sections 1A  1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
More informationName Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion
Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent
More informationCircumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice.
Name: Period GPreAP UNIT 14: PERIMETER AND AREA I can define, identify and illustrate the following terms: Perimeter Area Base Height Diameter Radius Circumference Pi Regular polygon Apothem Composite
More informationax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )
SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as
More informationCircles  Past Edexcel Exam Questions
ircles  Past Edecel Eam Questions 1. The points A and B have coordinates (5,1) and (13,11) respectivel. (a) find the coordinates of the midpoint of AB. [2] Given that AB is a diameter of the circle,
More informationLesson 1.1 Building Blocks of Geometry
Lesson 1.1 Building Blocks of Geometry For Exercises 1 7, complete each statement. S 3 cm. 1. The midpoint of Q is. N S Q 2. NQ. 3. nother name for NS is. 4. S is the of SQ. 5. is the midpoint of. 6. NS.
More informationShow that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.
Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional
More informationTallahassee Community College PERIMETER
Tallahassee Community College 47 PERIMETER The perimeter of a plane figure is the distance around it. Perimeter is measured in linear units because we are finding the total of the lengths of the sides
More informationGeometry Notes VOLUME AND SURFACE AREA
Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate
More informationLesson 18 Pythagorean Triples & Special Right Triangles
Student Name: Date: Contact Person Name: Phone Number: Teas Assessment of Knowledge and Skills Eit Level Math Review Lesson 18 Pythagorean Triples & Special Right Triangles TAKS Objective 6 Demonstrate
More informationConjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence  a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
More information121 Representations of ThreeDimensional Figures
Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 121 Representations of ThreeDimensional Figures Use isometric dot paper to sketch each prism. 1. triangular
More informationGeometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
More information2. Complete the table to identify the effect tripling the radius of a cylinder s base has on its volume. Cylinder Height (cm) h
Name: Period: Date: K. Williams ID: A 8th Grade Chapter 14 TEST REVIEW 1. Determine the volume of the cylinder. Use 3.14 for. 2. Complete the table to identify the effect tripling the radius of a cylinder
More informationSituation: Proving Quadrilaterals in the Coordinate Plane
Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra
More information" Angles ABCand DEFare congruent
Collinear points a) determine a plane d) are vertices of a triangle b) are points of a circle c) are coplanar 2. Different angles that share a common vertex point cannot a) share a common angle side! b)
More information12 Surface Area and Volume
12 Surface Area and Volume 12.1 ThreeDimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids
More informationThe Distance Formula and the Circle
10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,
More informationNumber Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
More informationGeometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
More informationCurriculum Map by Block Geometry Mapping for Math Block Testing 20072008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 20072008 Pre s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
More informationAssessment For The California Mathematics Standards Grade 4
Introduction: Summary of Goals GRADE FOUR By the end of grade four, students understand large numbers and addition, subtraction, multiplication, and division of whole numbers. They describe and compare
More informationWeek 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test
Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan
More informationAdditional Topics in Math
Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are
More informationTangent Properties. Line m is a tangent to circle O. Point T is the point of tangency.
CONDENSED LESSON 6.1 Tangent Properties In this lesson you will Review terms associated with circles Discover how a tangent to a circle and the radius to the point of tangency are related Make a conjecture
More informationhttp://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4
of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the
More information