Size: px
Start display at page:

## Transcription

1 dvanced Euclidean Geometry

2 What is the center of a triangle? ut what if the triangle is not equilateral??

3 Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line segment iff they are equally far from the endpoints. I II I II (SS) P = P P P I II I II (Hyp-Leg) Q = Q Q

4 Circumcenter Thm 4.1 : The perpendicular bisectors of the sides of a triangle are concurrent at a point called the circumcenter (O). Draw two perpendicular bisectors of the sides. Label the point where they meet O (why must they meet?) O C Now, O = O, and O = OC (why?) so O = OC and O is on the perpendicular bisector of side C. The circle with center O, radius O passes through all the vertices and is called the circumscribed circle of the triangle.

5 Examples: Circumcenter (O)

6 Orthocenter The triangle formed by joining the midpoints of the sides of C is called the medial triangle of C. C The sides of the medial triangle are parallel to the original sides of the triangle. line drawn from a vertex to the opposite side of a triangle and perpendicular to it is an altitude. Note that in the medial triangle the perp. bisectors are altitudes. Thm 4.2: The altitudes of a triangle are concurrent at a point called the orthocenter (H).

7 Orthocenter (H) Thm 4.2: The altitudes of a triangle are concurrent at a point called the orthocenter (H). H The circumcenter of the blue triangle is the orthocenter of the original triangle.

8 Examples: Orthocenter (H)

9 Equally far from the sides? C Incenter Points which are equally far from the sides of an angle are on the angle bisector. I II P C I II (S) P = PC I II P I II (leg-hypotenuse) P CP C

10 Incenter (I) Thm 4.3 : The internal bisectors of the angles of a triangle meet at a point called the incenter (I). C' Draw two internal angle bisectors, let I ' be the point of their intersection (why does I exist?) I Drop perpendiculars from I to the ' three sides of the triangle. I' = IC' and I' = IC' so I' = I' and C I is on the angle bisector at C. The incenter is the center of the inscribed circle, the circle tangent to each of the sides of the triangle.

11 Examples: Incenter (I)

12 Centroid (G) How about the center of gravity? median of a triangle is a line segment joining a vertex to the midpoint of the opposite side of the triangle. Examples: Thm 4.4 : The medians of a triangle meet at a point called the centroid (G). We can give an ugly proof now or a pretty proof later.

13 Internal isectors Thm 4.5: The internal bisector of an angle of a triangle divides the opposite side into two segments proportional to the sides of the triangle adjacent to the angle. E Draw parallel to D through C, extend to E. D = EC (corr. angles of lines) EC = CD (alt. int. angles of 's) so E = C (isoceles triangle) C D D ~ EC () E = D DC D C = DC D

14 Excenter Thm 4.6: The external bisectors of two angles of a triangle meet the internal bisector of the third angle at a point called the excenter. There are 3 excenters of a triangle. E n excenter is the center of an excircle, which is a circle exterior to the triangle that is tangent to the three sides of the triangle. C t a vertex, the internal angle bisector is perpendicular to the external angle bisector.

15 Circle Theorem Thm 4.9: The product of the lengths of the segments from an exterior point to the points of intersection of a secant with a circle is equal to the square of the length of a tangent to the circle from that point. C P PC C since both are measured by ½ arc C. PC ~ P () PC P = P P P 2 = PC P.

16 rea Formulas a h c = ½ bh b Heron's formula for the area of a triangle. = s s a s b s c, where s= a b c 2 the semiperimeter rahmagupta's formula for the area of a cyclic quadrilateral. = s a s b s c s d

17 Directed Segments The next few theorems involve the lengths of line segment and we want to permit directed lengths (positive and negative). y convention we assign to each line an independent direction. Each length measured in the same direction as the assigned one is positive and those in the opposite direction are negative. positive, negative negative, positive With this convention, internal ratios are always positive and external ratios are always negative. C C C C 0 C C 0

18 Menelaus' Theorem Thm 4.10 : Menelaus's Theorem. If three points, one on each side of a triangle are collinear, then the product of the ratios of the division of the sides by the points is -1. (lexandria, ~ 100 D) D E C F D D F FC CE E = 1

19 Menelaus' Theorem I ' D II ' III E IV C C' V Thus F F CF D D I ~ ΙΙ, ΙΙΙ ΙV, and V ~ F' D D = ' ' CE E = CC ' ' = ' F so CC ' FC = ' CC ' F CE FC E = ' CC ' ' ' ' CC ' = 1.

20 Converse of Menelaus Thm 4.11 : Converse of Menelaus's Theorem. If the product of the ratios of division of the sides by three points, one on each side of a triangle, extended if necessary, is -1, then the three points are collinear. Pf: F C D D' E We assume that D DC CF F E E = 1 Join E and F by a line which intersects C at D'. We will show that D' = D, proving the theorem. y Menelaus we have: D' CF E = 1, so D' C F E D' CF E D' C F E = D CF E DC F E D' D ' C = D DC D' D' C 1 = D DC 1 D' D ' C = D DC C D' C DC D' C = C DC Thus, D ' C = DC so D '=D.

21 Ceva's Theorem Thm 4.13 : Ceva's Theorem. Three lines joining vertices to points on the opposite sides of a triangle are concurrent if and only if the product of the ratios of the division of the sides is 1. (Italy, 1678) D F, E and CD are concurrent at K iff K E D D F FC CE E = 1. F C

22 Ceva's Theorem D K F E C ssume the lines meet at K. pply Menelaus to FC: K KF F C CE E = 1 pply Menelaus to F: D D C CF FK K = 1 Now multiply, cancel and be careful with sign changes to get: D D F FC CE E = 1.

23 Ceva's Theorem Note that the text does not provide a proof of the converse of Ceva's theorem (although it is given as an iff statement). This converse is proved in a manner very similar to that used for the proof of the converse of Menelaus' theorem. I think this is a very good exercise to do, so consider it a homework assignment. This converse is often used to give very elegant proofs that certain lines in a triangle are concurrent. We will now give two examples of this.

24 Centroid gain Thm 4.4 : The medians of a triangle meet at a point called the centroid (G). Pf: ' Since ', ' and C' are midpoints, we have ' = 'C, C' = ' and C' = C'. Thus, C C' ' ' C C' ' C ' C ' = = 1 ' So, by the converse of Ceva's theorem, ', ' and CC' (the medians) are concurrent.

25 Gergonne Point Thm 4.14: The lines from the points of tangency of the incircle to the vertices of a triangle are concurrent (Gergonne point). C ' ' C' Pf: Since the sides of the triangle are tangents to the incircle, ' = C', C' = ', and C' = C'. So, ' ' C C' ' C ' C ' = 1 So, by the converse of Ceva's theorem, the lines are concurrent.

26 Simson Line Thm 4.15: The three perpendiculars from a point on the circumcircle to the sides of a triangle meet those sides in collinear points. The line is called the Simson line. (No proof) C

27 Miquel Point Thm 4.19 : If three points are chosen, one on each side of a triangle then the three circles determined by a vertex and the two points on the adjacent sides meet at a point called the Miquel point. Example:

28 Miquel Point Pf: C E J H G F D I In circle J, EGD + C = π. In circle I, FGD + = π. Since EGF + FGD + EGD C = 2π + π, by subtracting we get EGF + = π and so,e,g and F are concyclic (on the same circle).

29 Feuerbach's Circle Thm 4.16 : The midpoints of the sides of a triangle, the feet of the altitudes and the midpoints of the segments joining the orthocenter and the vertices all lie on a circle called the nine-point circle. Example:

30 The 9-Point Circle Worksheet We will start by recalling some high school geometry facts. 1. The line joining the midpoints of two sides of a triangle is parallel to the third side and measures 1/2 the length of the third side of the triangle. a) Why is the ratio of side D to side 1:2? b) In the diagram, DE is similar to C because... Since similar triangles have congruent angles, we have that DE C. c) Line DE is parallel to C because... d) Since the ratio of corresponding sides of similar triangles is constant, what is the ratio of side DE to side C?

31 The 9-Point Circle Worksheet 2. Four points, forming the vertices of a quadrilateral, lie on a circle if and only if the sum of the opposite angles in the quadrilateral is 180 o. e) n angle inscribed in a circle has measure equal to 1/2 the measure of the arc it subtends. In the diagram above, what arc does the D subtend? What arc does the opposite CD subtend? f) Since the total number of degrees of the arc of the full circle is 360 o, what is the sum of the measures of D and CD?

32 9-Point Circle Worksheet Three points, not on a line, determine a unique circle. Suppose we have four points, no three on a line. We can pick any three of these four and construct the circle that contains them. The fourth point will either lie inside, on or outside of this circle. Let's say that the three points determining the circle are, and C. Call the fourth point D. We have already seen that if D lies on the circle, then m( DC) + m( C) = 180 o. g) What can you say about the size of DC if D lies inside the circle? What is then true about m( DC) + m( C)? h) What can you say about the size of DC if D lies outside the circle? What is then true about m( DC) + m( C)?

33 9-Point Circle Worksheet trapezoid is a quadrilateral with two parallel sides. n isosceles trapezoid is one whose non-parallel sides are congruent. 3. The vertices of an isosceles trapezoid all lie on a circle. Consider the isosceles trapezoid CD below, and draw the line through which is parallel to C. This line meets CD in a point that we label E. i) What kind of quadrilateral is CE? j) What does this say about the sides E and C? k) DE is what kind of triangle?

34 9-Points Circle Worksheet ecause E is parallel to C, CE ED (corresponding angles of parallel lines). nd so, by k) this means that CD DE. l) Show that D C. This means that the sums of the opposite angles of the isosceles trapezoid are equal. m) Show that the sums of the opposite angles of an isosceles trapezoid are 180 o.

35 9-Points Circle Worksheet 4. In a right triangle, the line joining the right angle to the midpoint of the hypotenuse has length equal to 1/2 the hypotenuse. Draw the circumscribed circle O about the right triangle C with right angle. n) What is the measure of the arc subtended by angle? o) What kind of line is C with respect to this circle? p) Where is the center of the circle? q) Prove the theorem.

36 9-Points Circle Worksheet We are now ready to discuss the Feuerbach circle. For an arbitrary triangle, the 3 midpoints of the sides, the 3 feet of the altitudes and the 3 points which are the midpoints of the segments joining the orthocenter to the vertices of the triangle all lie on a circle, called the nine-points circle. There is a circle passing through the 3 midpoints of the sides of the triangle, ', ' and C'. We shall show that the other 6 points are on this circle also. Let D be the foot of the altitude from. Consider the quadrilateral 'D'C'. We claim that this is an isoceles trapezoid. r) Why is 'D parallel to 'C'? s) Why is D' equal in length to 1/2 C? t) Why is 'C' equal in length to 1/2 C?

37 9-Points Circle Worksheet Since 'D'C' is an isosceles trapezoid, D must be on the same circle as ', ' and C'. The other altitude feet (E and F) are dealt with similarly. u) Determine the isosceles trapezoid that contains E and the one that contains F. Now consider J, the midpoint of the segment joining the orthocenter H to the vertex. Draw the circle that has 'J as its diameter. v) Why is '' parallel to the side? w) Why is J' parallel to the altitude CF? x) Show that '' is perpendicular to J'.

38 9-Points Circle Worksheet ngle J'' is thus a right angle and so, ' must be on the circle with diameter 'J. y) In an analogous manner, prove that C' is on the circle with diameter 'J. We therefore have J, ', ' and C' all on the same circle, which is the circle we started with. y repeating this argument starting with the circles having diameters K' and LC', we can show that K and L are also on this circle.

39 9-point Circle Thm 4.17: The centroid of a triangle trisects the segment joining the circumcenter and the orthocenter. [Euler line] M Draw circumcircle and extend radius CO to diameter COM. C H ' O CM ~ C'O so O' = ½M Drop altitude from, find orthocenter H. MH is a parallelogram, so H = M = 2O'.

40 9-point Circle Thm 4.17: The centroid of a triangle trisects the segment joining the circumcenter and the orthocenter. [Euler line] Draw centroid G on median ', 2/3 of the way from. H G O HG ~ O'G because H = 2O' G = 2G' and HG O'G C ' thus HG OG', and so H,G, and O are collinear with HG = 2 GO.

41 9-point Circle Thm 4.18: The center of the nine-point circle bisects the segment of the Euler line joining the orthocenter and the circumcenter of a triangle. Recall from the last proof that H = 2O'. Since J is the midpoint of H, we have JH = O'. Thus, JO'H is a parallelogram. H J ' O ut J' is a diameter of the 9-point circle, and also a diagonal of this parallelogram (HO being the other diagonal). Since the diagonals of a parallelogram bisect each other we have the conclusion. C

42 Morley's Theorem Thm 4.26: (Morley's Theorem) The adjacent trisectors of the angles of a triangle are concurrent by pairs at the vertices of an equilateral triangle.

43 Symmedian In a triangle, lines through a vertex that are symmetrically placed around the angle bisector of that vertex are called isogonal lines. One of these lines is called the isogonal conjugate of the other. Note that the angle bisector is also the angle bisector of the angle formed by a pair of isogonal lines. symmedian is the isogonal conjugate of a median. Median ngle bisector Symmedian

44 LeMoine Point The symmedians of a triangle are concurrent at the LeMoine point (also called the symmedian point). This is a consequence of a more general result, namely: Theorem: The isogonal conjugates of a set of concurrent segments from the vertices to the opposite sides of a triangle are also concurrent. To prove this theorem we should recall the Law of Sines for a triangle.

45 c Law of Sines b a sin = b sin = c sin C a C c h b C c Sin () = h = b Sin (C)

46 Theorem Theorem: The isogonal conjugates of a set of concurrent segments from the vertices to the opposite sides of a triangle are also concurrent. F Pf: ssume G is point of E concurrency of, and G C CC. Let D, E and CF be the isogonal conjugates of G these lines. The Law of Sines says that in triangle C, C D C' ' sin C' ' = or C' ' = C sin C' ' Csin C' ' sin C' '

47 Theorem Theorem: The isogonal conjugates of a set of concurrent segments from the vertices to the opposite sides of a triangle are also concurrent. Pf (cont): Similarly, in triangle, the law of sines leads to ' ' = sin ' ' sin ' ' Using the fact that supplementary angles C and have the same sine, we can write. C' ' Csin C' ' = ' ' sin ' '. Repeating this for the other ratios of divisions leads to the trigonometric form of Ceva's theorem (and its converse):

48 Theorem Theorem: The isogonal conjugates of a set of concurrent segments from the vertices to the opposite sides of a triangle are also concurrent. Pf (cont): sin C' ' CC ' ' ' ' sin sin sin ' ' sin CC ' ' sin C ' ' =1. Due to the isogonal conjugates we have the following equalities amongst the angles, = CD, CC = CF and C = E. lso, C = D, CC = CF, and = CE. So, sin D CF CE sin sin sin CD sin CF sin E =1, showing that D, E and CF are concurrent.

49 Morley's Theorem The incenter I of triangle C lies on the angle bisector of angle at a point where IC = 90 o + ½. a a a + b b b I a + c c c C a + b + a + c = a + b + c + a = ½(180 o ) + a = 90 o + a

50 Morley's Theorem direct proof of Morley's Theorem is difficult, so we will give an indirect proof which essentially works backwards. Start with an equilateral PQR and C construct on its sides isosceles triangles with base angles a, b and c, each less than 60 o and with a + b + c = 120 o. R' c a P b c Q' Extend the sides of isosceles triangles below their bases until they meet again at points, and C. Since a + b + c + 60 = 180, we can calculate some other angles in the figure. b Q a c b P' c a b a R

51 Morley's Theorem C Draw the sides of C and note the marked angles. Note the angles at Q and Q'. Claim: Q is the incenter of CQ'. QQ' is the perpendicular bisector of PR and so is the angle bisector at Q'. The angle at Q is = 90 o + ½ Q' and this means that Q is the incenter. 60-a R' b Q 180-b c a c b a P P' c b c 60-c b a a 180-2b Q' R Thus, QC and Q are angle bisectors in this triangle, so QC = 60-a and QC = 60-c.

52 Morley's Theorem Similarly, P is the incenter of P'C and R is the incenter of R'. Thus,... C 60-a 60-a 60-a R' c a P b c Q' The angles at, and C are trisected. We then have: a = 60 o 1/3 C b = 60 o 1/3 Β and c = 60 o 1/3 Now, start with an arbitrary C. Determine a, b and c from above and carry out the construction. The resulting triangle will be similar to the original and the statement of the theorem will be true for it. Q b a 60-c c b P' 60-c b c a a R 60-c

### Cevians, Symmedians, and Excircles. MA 341 Topics in Geometry Lecture 16

Cevians, Symmedians, and Excircles MA 341 Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### Three Lemmas in Geometry

Winter amp 2010 Three Lemmas in Geometry Yufei Zhao Three Lemmas in Geometry Yufei Zhao Massachusetts Institute of Technology yufei.zhao@gmail.com 1 iameter of incircle T Lemma 1. Let the incircle of triangle

### IMO Training 2008 Circles Yufei Zhao. Circles. Yufei Zhao.

ircles Yufei Zhao yufeiz@mit.edu 1 Warm up problems 1. Let and be two segments, and let lines and meet at X. Let the circumcircles of X and X meet again at O. Prove that triangles O and O are similar.

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### Lesson 5-3: Concurrent Lines, Medians and Altitudes

Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### Solutions to Practice Problems

Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

### CHAPTER 1 CEVA S THEOREM AND MENELAUS S THEOREM

HTR 1 V S THOR N NLUS S THOR The purpose of this chapter is to develop a few results that may be used in later chapters. We will begin with a simple but useful theorem concerning the area ratio of two

### Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will

### Chapter 1. The Medial Triangle

Chapter 1. The Medial Triangle 2 The triangle formed by joining the midpoints of the sides of a given triangle is called the medial triangle. Let A 1 B 1 C 1 be the medial triangle of the triangle ABC

### Math 531, Exam 1 Information.

Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

### San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors

### 11 th Annual Harvard-MIT Mathematics Tournament

11 th nnual Harvard-MIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

### Lesson 3.1 Duplicating Segments and Angles

Lesson 3.1 Duplicating Segments and ngles In Exercises 1 3, use the segments and angles below. Q R S 1. Using only a compass and straightedge, duplicate each segment and angle. There is an arc in each

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### Conic Construction of a Triangle from the Feet of Its Angle Bisectors

onic onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu bstract. We study an extension of the problem of construction of a triangle from the feet of its internal angle bisectors. Given

### Collinearity and concurrence

Collinearity and concurrence Po-Shen Loh 23 June 2008 1 Warm-up 1. Let I be the incenter of ABC. Let A be the midpoint of the arc BC of the circumcircle of ABC which does not contain A. Prove that the

### Area. Area Overview. Define: Area:

Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.

### Duplicating Segments and Angles

CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty

### Incenter Circumcenter

TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### Ceva s Theorem. Ceva s Theorem. Ceva s Theorem 9/20/2011. MA 341 Topics in Geometry Lecture 11

MA 341 Topics in Geometry Lecture 11 The three lines containing the vertices A, B, and C of ABC and intersecting opposite sides at points L, M, and N, respectively, are concurrent if and only if 2 3 1

### Triangle Centers MOP 2007, Black Group

Triangle Centers MOP 2007, Black Group Zachary Abel June 21, 2007 1 A Few Useful Centers 1.1 Symmedian / Lemmoine Point The Symmedian point K is defined as the isogonal conjugate of the centroid G. Problem

### SIMSON S THEOREM MARY RIEGEL

SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given

### Exercise Set 3. Similar triangles. Parallel lines

Exercise Set 3. Similar triangles Parallel lines Note: The exercises marked with are more difficult and go beyond the course/examination requirements. (1) Let ABC be a triangle with AB = AC. Let D be an

### A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

### 2006 Geometry Form A Page 1

2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

### Geometry Final Exam Review Worksheet

Geometry Final xam Review Worksheet (1) Find the area of an equilateral triangle if each side is 8. (2) Given the figure to the right, is tangent at, sides as marked, find the values of x, y, and z please.

### 5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

### Projective Geometry - Part 2

Projective Geometry - Part 2 Alexander Remorov alexanderrem@gmail.com Review Four collinear points A, B, C, D form a harmonic bundle (A, C; B, D) when CA : DA CB DB = 1. A pencil P (A, B, C, D) is the

### A Nice Theorem on Mixtilinear Incircles

A Nice Theorem on Mixtilinear Incircles Khakimboy Egamberganov Abstract There are three mixtilinear incircles and three mixtilinear excircles in an arbitrary triangle. In this paper, we will present many

### CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:

GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships

### 1 Solution of Homework

Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

### The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.

efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

### Name Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem

Name Period 10/22 11/1 Vocabulary Terms: Acute Triangle Right Triangle Obtuse Triangle Scalene Isosceles Equilateral Equiangular Interior Angle Exterior Angle 10/22 Classify and Triangle Angle Theorems

### 1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.

1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides

### Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer

### The Euler Line in Hyperbolic Geometry

The Euler Line in Hyperbolic Geometry Jeffrey R. Klus Abstract- In Euclidean geometry, the most commonly known system of geometry, a very interesting property has been proven to be common among all triangles.

### Situation: Proving Quadrilaterals in the Coordinate Plane

Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

### 56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

### Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

### Unit 3: Circles and Volume

Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,

### Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement

### Geometry Chapter 10 Study Guide Name

eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.

### The Inversion Transformation

The Inversion Transformation A non-linear transformation The transformations of the Euclidean plane that we have studied so far have all had the property that lines have been mapped to lines. Transformations

### Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### On Mixtilinear Incircles and Excircles

Forum Geometricorum Volume 6 (2006) 1 16. FORUM GEOM ISSN 1534-1178 On Mixtilinear Incircles and Excircles Khoa Lu Nguyen and Juan arlos Salazar bstract. mixtilinear incircle (respectively excircle) of

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency.

CONDENSED LESSON 6.1 Tangent Properties In this lesson you will Review terms associated with circles Discover how a tangent to a circle and the radius to the point of tangency are related Make a conjecture

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### Chapter 8 Geometry We will discuss following concepts in this chapter.

Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.

Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.

### QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results

CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of

### IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition:

IMO Geomety Problems (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector

### Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,

### MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014

EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle

### 15. Appendix 1: List of Definitions

page 321 15. Appendix 1: List of Definitions Definition 1: Interpretation of an axiom system (page 12) Suppose that an axiom system consists of the following four things an undefined object of one type,

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

### ON THE SIMSON WALLACE THEOREM

South Bohemia Mathematical Letters Volume 21, (2013), No. 1, 59 66. ON THE SIMSON WALLACE THEOREM PAVEL PECH 1, EMIL SKŘÍŠOVSKÝ2 Abstract. The paper deals with the well-known Simson Wallace theorem and

### Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.

### CHAPTER 8 QUADRILATERALS. 8.1 Introduction

CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is

### GEOMETRY COMMON CORE STANDARDS

1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

### Intro to Circles Formulas Area: Circumference: Circle:

Intro to ircles Formulas rea: ircumference: ircle: Key oncepts ll radii are congruent If radii or diameter of 2 circles are congruent, then circles are congruent. Points with respect to ircle Interior

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion

Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### /27 Intro to Geometry Review

/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Geometry Notes PERIMETER AND AREA

Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

### Unit 2 - Triangles. Equilateral Triangles

Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### Warm-up Theorems about triangles. Geometry. Theorems about triangles. Misha Lavrov. ARML Practice 12/15/2013

ARML Practice 12/15/2013 Problem Solution Warm-up problem Lunes of Hippocrates In the diagram below, the blue triangle is a right triangle with side lengths 3, 4, and 5. What is the total area of the green

### arxiv:1404.6042v1 [math.dg] 24 Apr 2014

Angle Bisectors of a Triangle in Lorentzian Plane arxiv:1404.604v1 [math.dg] 4 Apr 014 Joseph Cho August 5, 013 Abstract In Lorentzian geometry, limited definition of angles restricts the use of angle

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Geometry Module 4 Unit 2 Practice Exam

Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

### CK-12 Geometry: Parts of Circles and Tangent Lines

CK-12 Geometry: Parts of Circles and Tangent Lines Learning Objectives Define circle, center, radius, diameter, chord, tangent, and secant of a circle. Explore the properties of tangent lines and circles.