# Angles that are between parallel lines, but on opposite sides of a transversal.

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Download "Angles that are between parallel lines, but on opposite sides of a transversal."

## Transcription

1 GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines, but on opposite sides of a transversal. alternate angles transversal Angle (p) When lines, line segments or rays intersect they form angles. (See size of an angle) A B angle pbac C p q s four angles: p, q, r and s r Angle Bisector The line that divides an angle into two equal parts. angle bisector Apex Arc The point where the triangular sides of a pyramid meet. The point at the tip of a cone. (See pyramid or cone for illustration) The curved path from one point on a circle (or part of a circle) to another. (See circle for illustration) The lines made by a compass during a construction. Appendix A - 1

2 Appendix A GLOSSARY Axis of Symmetry Bilateral Symmetry Bisect Chord Circle radius center See Line of Symmetry. See Reflective Symmetry. Bisect means to cut in half. This can be used with line segments or Angles. (See angle bisector and right bisector) A line segment whose end points lie on a circle or an ellipse. (See circle for illustration) A closed curve, that lies in a plane, with all its points the same distance (radius) from a fixed point (center). sector arc circle diameter center chord segment Circumcircle The circle that passes through the three vertices of a triangle. circumradius circumcircle circumcenter Circumcenter Circumradius Circumference The center of the circumcircle (See circumcircle for illustration) The radius of the circumcircle (See circumcircle for illustration) The perimeter of a circle. The circumference is the path around the circle or the length of that path. perimeter Appendix A - 2

3 GLOSSARY Appendix A Complementary Angles that add to 90. Angles Cone A solid with a circle as a base and a smooth side that ends in a point. The point is called the apex. apex Congruent ( ) Corresponding Angles Two shapes are congruent when all the sides and angles of one shape exactly match those of the other shape. Four pairs of angles formed at parallel lines on the same side of a transversal and in the same relative position with respect to the parallel lines (both angles are either above or below the parallel lines). b a f e a = c b = d d c h g e = g f = h Cube A solid shape which has six congruent squares for its faces. The faces and edges are perpendicular to each other. A cube has 8 vertices and 12 edges. vertex face edge Appendix A - 3

4 Appendix A GLOSSARY Cylinder A solid shape with two identical parallel circular faces and a smooth surface that joins the circular faces. If that surface were flattened out, it would form a rectangle. If the circular faces are perpendicular to the surface joining the ends, it is called a right circular cylinder. right circular cylinder circular cylinder Decagon Diagonal A ten sided polygon. A regular decagon has ten equal sides and ten equal angles. (See polygon for illustration) A line segment drawn from a vertex of a quadrilateral to the opposite vertex. diagonal diagonal Diameter A chord that passes through the center of the circle. It can also mean the length of the diameter. (See circle for illustration) 1 Degree(s) ( ) A unit used to measure the size of an angle. Each degree is of 360 a full turn. The math symbol for degree is shown in brackets. Edges The line segments where faces meet on a solid shape (see cube for illustration). Appendix A - 4

5 GLOSSARY Appendix A Ellipse The smooth closed curve that is formed when a circle is stretched uniformly in two opposite directions. ellipse original circle major axis minor axis Endpoints The end points of a line segment. Equilateral A triangle that has three sides of equal length and Triangle each interior angle is Exterior Angle An angle between the side of a triangle and an extended side of a triangle. For a polygon, it is an angle between a side and an adjacent extended side. Appendix A - 5

6 Appendix A GLOSSARY Faces The surfaces that enclose a solid shape (see cube for illustration). Full Turn A 360 angle. A rotation through an angle of 360 (sometimes called a full rotation). 360 the start and end of a full rotation Half Turn A 180 angle. A rotation through an angle of 180. the end of a half rotation 180 the start of a half rotation Heptagon Hexagon Hypotenuse A seven-sided polygon. A regular heptagon has seven equal sides and seven equal angles. (See polygon for illustration) A six-sided polygon. A regular hexagon has six equal sides and six equal angles. (See polygon for illustration) In a right triangle, the hypotenuse is the side opposite the right angle. hypotenuse Image A shape after it has undergone a transformation. pre-image image Appendix A - 6

7 GLOSSARY Appendix A Incircle The circle that just touches the three sides of a triangle (sometimes called the inscribed circle) incircle incenter inradius Incenter Inradius Interior Angles The center of the incircle. (See incircle for illustration) The radius of the incircle. (See incircle for illustration) The angles that are between parallel lines but on the same side of a transversal. The angles inside a triangle or polygon. interior angles interior angles interior angles Isosceles Triangle A triangle that has two sides of equal length. Line A line is a straight path that passes through any two points and goes forever in two directions. line AB A B Appendix A - 7

8 Appendix A GLOSSARY Line of Symmetry The mirror line used in a reflection that reflects a shape exactly on top of itself (sometimes called the axis of symmetry). line of symmetry Line Segment The part of a line that is between two points called endpoints. line segment AB A B Magnification A transformation that changes only the size of a shape (sometimes magnifications are called dilations). magnification Magnification Factor Major Axis Midpoint The number that all the lengths of a pre-image shape are multiplied by to get the image shape during a magnification. If it is greater than 1, the image is larger than the pre-image. If it is smaller than 1, the image is smaller than the pre-image. The longest chord in an ellipse that passes through its exact center. (See ellipse for illustration) The point in the middle of a line segment. B A midpoint of line segment AB Appendix A - 8

9 GLOSSARY Appendix A Minor Axis Mirror The shortest chord in an ellipse that passes through its exact center. (See ellipse for illustration) The line used in the reflection transformation. mirror Net Nonagon A pattern that can be cut out and folded to form a model of a solid. A nine-sided polygon. A regular nonagon has nine equal sides and nine equal angles. (See polygon for illustration) Obtuse Angle An angle that measures more than 90 but less than 180. Obtuse Triangle Octagon Opposite Angles A triangle that has one obtuse angle. An eight-sided polygon. A regular octagon has eight equal sides and eight equal angles. (See polygon for illustration) Angles that are on opposite corners at an intersection (sometimes called vertically opposite angles). Orientation Clockwise or counterclockwise direction as you travel around the perimeter of a plane shape. clockwise A A counterclockwise C B C B Appendix A - 9

10 Appendix A GLOSSARY Parallel Lines Lines that do not intersect. Indicated with small arrows on the ( ) lines. The math symbol for parallel line is shown in brackets. AB CD A C D B Parallelepiped A solid shape which has six parallelograms for its faces. Parallelogram A quadrilateral that has two pairs of parallel sides. Pentagon Perimeter Perpendicular Perpendicular Lines ( z ) Plane Point A five-sided polygon. A regular pentagon has five equal sides and five equal angles. (See polygon for illustration) The path around a closed shape or the length of that path. A line that is at right angles to another line. Lines that intersect at right angles. The math symbol for perpendicular line is shown in brackets. An infinitely large flat surface. A point is a location. A point has no size, length or width. Appendix A - 10

11 GLOSSARY Appendix A Polygon A closed shape formed by five or more line segments. Sometimes quadrilaterals and triangles are considered to be a polygons. pentagon (5 sides) hexagon (6 sides) heptagon (7 sides) octagon (8 sides) nonagon (9 sides) decagon (10 sides) Polyhedron (pl. Polyhedra) Pre-image Prism Solid shapes which have surfaces made from triangles, quadrilaterals and polygons. A point or shape before it has undergone a transformation. (See image for illustration) A solid that has two parallel polygonal ends and rectangular sides joining the polygons. The ends can also be triangles or quadrilaterals. Proof Protractor A logically reasoned explanation of why something is true. A tool for measuring the size of an angle. Appendix A - 11

12 Appendix A GLOSSARY Pyramid A solid shape that has a polygonal base and sides that are triangles. The triangular sides meet at a point called the apex. The base of a polygon can be any polygon but most often is either a triangle or a quadrilateral. apex Quadrilateral A closed shape formed by four line segments. Radius (pl. Radii) Radius of an Arc Ray The line segment from the center of a circle to the circle. The line segment from the center of a sphere to the surface of the sphere. Radius can also mean the length of a radius. The distance from the center of an arc to the arc itself. A ray is the part of a straight line that starts at a point and goes in one direction forever.. Rectangle A parallelogram that has four right angles. Its opposite sides have equal lengths. Appendix A - 12

13 GLOSSARY Appendix A Rectangular Parallelepiped A solid shape formed with 6 faces that are rectangles or squares. It is a parallelepiped in which the faces meet at right angles. Reflection A transformation that moves a point to another point that is an equal distance on the other side of a line. The line is called the mirror. The mirror is the right bisector of the line joining a pre-image point to its image. mirror Reflective Symmetry A shape has reflective symmetry if it can be reflected onto an exact copy of itself and is in the same position. The mirror is called the line of symmetry. Reflective symmetry is sometimes called bilateral symmetry or line symmetry. line of symmetry Reflex Angle An angle that measures more than 180. Regular Polygon A polygon which has equal angles and equal sides. (See polygon for illustration) Appendix A - 13

14 Appendix A GLOSSARY Rhombus (pl. Rhombi) A parallelogram that has four sides of equal length. Right Angle An angle that measures 90. Right Bisector Right Circular Cylinder Right Triangle A line that is perpendicular to a line segment and passes through the midpoint of that line segment. Right bisector is sometimes called perpendicular bisector. A cylinder whose circular ends are perpendicular to the curved faces. A triangle that has one right angle. Rotation A transformation that moves points and shapes by turning them around a fixed point through a fixed angle. The fixed point is called the center of rotation. The fixed angle is called the angle of rotation. image center of rotation angle of rotation pre-image Rotational Symmetry A shape has rotational symmetry if it can be rotated onto an exact copy of itself and is in the same position. The center of rotation is called the center of symmetry. center of symmetry Appendix A - 14

15 GLOSSARY Appendix A Scalene Triangle A triangle that has three sides of different length. B A C Sector Segment Similar A region inside a circle enclosed by an arc of the circle and the radii to the ends of the arc. (See circle for illustration) A region inside a circle enclosed by an arc and a chord. (See circle for illustration) Two shapes are similar when all the angles of one shape match the angles of the other shape. Size of an Angle ( Ê ) How much you have to turn one line of an angle so that it lies on top of the other line of the angle. The size of an angle is measured in degrees (360 = 1 full turn). (Sometimes called the measure of an angle) Sphere A solid shape whose surface is formed from all points that are a fixed distance (radius) from a fixed point (center). center radius Square A quadrilateral with four right angles and four equal sides. Straight Angle An angle that measures 180. Supplementary Angles Angles that add to 180. Symmetry Tessellation A shape has symmetry if it can be transformed into a congruent shape that lies on top of itself. (See reflective symmetry or rotational symmetry for illustrations) A pattern created by completely covering a surface with similar shapes. Appendix A - 15

16 Appendix A GLOSSARY Theorem Tiles Transformation Translation Transversal Trapezoid A statement of a mathematical fact that can be proved. (See proof) The shapes used to make a tessellation. A transformation is a rule or method of changing a shape. Rotations, reflections, translations and magnifications are examples of transformations. A transformation that moves one shape to a different place without rotation or reflection. (Sometimes called a glide or a shift ) A line that intersects parallel lines. A quadrilateral that has only one pair of parallel sides. This is called a trapezium depending on whether or not it has reflective symmetry. trapezoid trapezium Triangle ( ) Vertex (pl. Vertices ) A closed shape formed by three line segments. The line segments meet at three points called vertices. The point where the lines that form an angle meet. A point where the sides of a triangle or sides of a polygon meet. The point where edges of a solid shape meet. The points where the corners of tiles in a tessellation meet a vertex vertices vertices vertices Appendix A - 16

### Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in

### BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

### Centroid: The point of intersection of the three medians of a triangle. Centroid

Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

Geometry Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes

### Geometry Concepts. Figures that lie in a plane are called plane figures. These are all plane figures. Triangle 3

Geometry Concepts Figures that lie in a plane are called plane figures. These are all plane figures. Polygon No. of Sides Drawing Triangle 3 A polygon is a plane closed figure determined by three or more

### Begin recognition in EYFS Age related expectation at Y1 (secure use of language)

For more information - http://www.mathsisfun.com/geometry Begin recognition in EYFS Age related expectation at Y1 (secure use of language) shape, flat, curved, straight, round, hollow, solid, vertexvertices

### Geometry Vocabulary Booklet

Geometry Vocabulary Booklet Geometry Vocabulary Word Everyday Expression Example Acute An angle less than 90 degrees. Adjacent Lying next to each other. Array Numbers, letter or shapes arranged in a rectangular

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### Geometry Vocabulary. Created by Dani Krejci referencing:

Geometry Vocabulary Created by Dani Krejci referencing: http://mrsdell.org/geometry/vocabulary.html point An exact location in space, usually represented by a dot. A This is point A. line A straight path

### Shape Dictionary YR to Y6

Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use

### 11.3 Curves, Polygons and Symmetry

11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon

### 2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of

### LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable.

Name LEVEL G, SKILL 1 Class Be sure to show all work.. Leave answers in terms of ϖ where applicable. 1. What is the area of a triangle with a base of 4 cm and a height of 6 cm? 2. What is the sum of the

### Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

# 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

### Chapter 8 Geometry We will discuss following concepts in this chapter.

Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Line. A straight path that continues forever in both directions.

Geometry Vocabulary Line A straight path that continues forever in both directions. Endpoint A point that STOPS a line from continuing forever, it is a point at the end of a line segment or ray. Ray A

### Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular)

MA.912.G.2 Geometry: Standard 2: Polygons - Students identify and describe polygons (triangles, quadrilaterals, pentagons, hexagons, etc.), using terms such as regular, convex, and concave. They find measures

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### SHAPE, SPACE AND MEASURES

SHAPE, SPACE AND MEASURES Pupils should be taught to: Use accurately the vocabulary, notation and labelling conventions for lines, angles and shapes; distinguish between conventions, facts, definitions

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### Geometry. Unit 6. Quadrilaterals. Unit 6

Geometry Quadrilaterals Properties of Polygons Formed by three or more consecutive segments. The segments form the sides of the polygon. Each side intersects two other sides at its endpoints. The intersections

### 56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

### 19. [Shapes] less than. The angle appears greater than 90. Check by placing the corner of a Maths Mate page inside the angle.

19. [Shapes] Skill 19.1 Comparing angles to a right angle. Place the corner of a page (which is a right angle) at the corner (vertex) of the angle. Align the base of the page with one line of the angle.

### of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent.

2901 Clint Moore Road #319, Boca Raton, FL 33496 Office: (561) 459-2058 Mobile: (949) 510-8153 Email: HappyFunMathTutor@gmail.com www.happyfunmathtutor.com GEOMETRY THEORUMS AND POSTULATES GEOMETRY POSTULATES:

### CONJECTURES - Discovering Geometry. Chapter 2

CONJECTURES - Discovering Geometry Chapter C-1 Linear Pair Conjecture - If two angles form a linear pair, then the measures of the angles add up to 180. C- Vertical Angles Conjecture - If two angles are

### INFORMATION FOR TEACHERS

INFORMATION FOR TEACHERS The math behind DragonBox Elements - explore the elements of geometry - Includes exercises and topics for discussion General information DragonBox Elements Teaches geometry through

### Upper Elementary Geometry

Upper Elementary Geometry Geometry Task Cards Answer Key The unlicensed photocopying, reproduction, display, or projection of the material, contained or accompanying this publication, is expressly prohibited

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### Name Geometry Exam Review #1: Constructions and Vocab

Name Geometry Exam Review #1: Constructions and Vocab Copy an angle: 1. Place your compass on A, make any arc. Label the intersections of the arc and the sides of the angle B and C. 2. Compass on A, make

### Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### Target To know the properties of a rectangle

Target To know the properties of a rectangle (1) A rectangle is a 3-D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### Line AB (no Endpoints) Ray with Endpoint A. Line Segments with Endpoints A and B. Angle is formed by TWO Rays with a common Endpoint.

Section 8 1 Lines and Angles Point is a specific location in space.. Line is a straight path (infinite number of points). Line Segment is part of a line between TWO points. Ray is part of the line that

### parallel lines perpendicular lines intersecting lines vertices lines that stay same distance from each other forever and never intersect

parallel lines lines that stay same distance from each other forever and never intersect perpendicular lines lines that cross at a point and form 90 angles intersecting lines vertices lines that cross

### 1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area?

1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? (a) 20 ft x 19 ft (b) 21 ft x 18 ft (c) 22 ft x 17 ft 2. Which conditional

### Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

### Maths Toolkit Teacher s notes

Angles turtle Year 7 Identify parallel and perpendicular lines; know the sum of angles at a point, on a straight line and in a triangle; recognise vertically opposite angles. Use a ruler and protractor

### Math Dictionary Terms for Grades 4-5:

Math Dictionary Terms for Grades 4-5: A Acute - an angle less than 90 Addend - one of the numbers being added in an addition problem Addition - combining quantities Algebra - a strand of mathematics in

### *1. Understand the concept of a constant number like pi. Know the formula for the circumference and area of a circle.

Students: 1. Students deepen their understanding of measurement of plane and solid shapes and use this understanding to solve problems. *1. Understand the concept of a constant number like pi. Know the

### Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### An arrangement that shows objects in rows and columns Example:

1. acute angle : An angle that measures less than a right angle (90 ). 2. addend : Any of the numbers that are added 2 + 3 = 5 The addends are 2 and 3. 3. angle : A figure formed by two rays that meet

### acute angle acute triangle Cartesian coordinate system concave polygon congruent figures

acute angle acute triangle Cartesian coordinate system concave polygon congruent figures convex polygon coordinate grid coordinates dilatation equilateral triangle horizontal axis intersecting lines isosceles

### 2006 Geometry Form A Page 1

2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

### Activity Set 4. Trainer Guide

Geometry and Measurement of Plane Figures Activity Set 4 Trainer Guide Int_PGe_04_TG GEOMETRY AND MEASUREMENT OF PLANE FIGURES Activity Set #4 NGSSS 3.G.3.1 NGSSS 3.G.3.3 NGSSS 4.G.5.1 NGSSS 5.G.3.1 Amazing

### 1) Perpendicular bisector 2) Angle bisector of a line segment

1) Perpendicular bisector 2) ngle bisector of a line segment 3) line parallel to a given line through a point not on the line by copying a corresponding angle. 1 line perpendicular to a given line through

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### A factor is a whole number that. Name 6 different quadrilaterals. The radius of a circle. What is an axis or a line of symmetry in a 2-D shape?

BOND HOW TO DO 11+ MATHS MATHS FACTS CARDS 1 2 3 4 A factor is a whole number that Name 6 different quadrilaterals. The radius of a circle is What is an axis or a line of symmetry in a 2-D shape? 5 6 7

### II. Geometry and Measurement

II. Geometry and Measurement The Praxis II Middle School Content Examination emphasizes your ability to apply mathematical procedures and algorithms to solve a variety of problems that span multiple mathematics

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### A convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.

hapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.

### Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

### Working in 2 & 3 dimensions Revision Guide

Tips for Revising Working in 2 & 3 dimensions Make sure you know what you will be tested on. The main topics are listed below. The examples show you what to do. List the topics and plan a revision timetable.

### (a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

### Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### 10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres. 10.4 Day 1 Warm-up

10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres 10.4 Day 1 Warm-up 1. Which identifies the figure? A rectangular pyramid B rectangular prism C cube D square pyramid 3. A polyhedron

### Grade 4 - Module 4: Angle Measure and Plane Figures

Grade 4 - Module 4: Angle Measure and Plane Figures Acute angle (angle with a measure of less than 90 degrees) Angle (union of two different rays sharing a common vertex) Complementary angles (two angles

### UNCORRECTED PROOF. Unit objectives. Website links Opener Online angle puzzles 2.5 Geometry resources, including interactive explanations

21.1 Sequences Get in line Unit objectives Understand a proof that the angle sum of a triangle is 180 and of a quadrilateral is 360 ; and the exterior angle of a triangle is equal to the sum of the two

### GEOMETRY FINAL EXAM REVIEW

GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.

### 2 feet Opposite sides of a rectangle are equal. All sides of a square are equal. 2 X 3 = 6 meters = 18 meters

GEOMETRY Vocabulary 1. Adjacent: Next to each other. Side by side. 2. Angle: A figure formed by two straight line sides that have a common end point. A. Acute angle: Angle that is less than 90 degree.

### Math Dictionary Terms for Grades K-1:

Math Dictionary Terms for Grades K-1: A Addend - one of the numbers being added in an addition problem Addition - combining quantities And - 1) combine, 2) shared attributes, 3) represents decimal point

COURSE OVERVIEW The geometry course is centered on the beliefs that The ability to construct a valid argument is the basis of logical communication, in both mathematics and the real-world. There is a need

### *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.

Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review

### PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES NCERT

UNIT 12 PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES (A) Main Concepts and Results Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines,

### ABC is the triangle with vertices at points A, B and C

Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

### of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### ENGINEERING DRAWING. UNIT I - Part A

ENGINEERING DRAWING UNIT I - Part A 1. Solid Geometry is the study of graphic representation of solids of --------- dimensions on plane surfaces of ------- dimensions. 2. In the orthographic projection,

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.

Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:

### FS Geometry EOC Review

MAFS.912.G-C.1.1 Dilation of a Line: Center on the Line In the figure, points A, B, and C are collinear. http://www.cpalms.org/public/previewresource/preview/72776 1. Graph the images of points A, B, and

### 1 of 69 Boardworks Ltd 2004

1 of 69 2 of 69 Intersecting lines 3 of 69 Vertically opposite angles When two lines intersect, two pairs of vertically opposite angles are formed. a d b c a = c and b = d Vertically opposite angles are

### 2006 ACTM STATE GEOMETRY EXAM

2006 TM STT GOMTRY XM In each of the following you are to choose the best (most correct) answer and mark the corresponding letter on the answer sheet provided. The figures are not necessarily drawn to

### Teaching Mathematics Vocabulary Using Hands-On Activities From an MSP Grant Summer Institute

Teaching Mathematics Vocabulary Using Hands-On Activities From an MSP Grant Summer Institute Dr. Carroll G. Wells (Co-authors: Dr. Randy Bouldin, Dr. Ben Hutchinson, Dr. Candice McQueen) Department of

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### MATHEMATICS GRADE LEVEL VOCABULARY DRAWN FROM SBAC ITEM SPECIFICATIONS VERSION 1.1 JUNE 18, 2014

VERSION 1.1 JUNE 18, 2014 MATHEMATICS GRADE LEVEL VOCABULARY DRAWN FROM SBAC ITEM SPECIFICATIONS PRESENTED BY: WASHINGTON STATE REGIONAL MATH COORDINATORS Smarter Balanced Vocabulary - From SBAC test/item

### 17.1 Cross Sections and Solids of Rotation

Name Class Date 17.1 Cross Sections and Solids of Rotation Essential Question: What tools can you use to visualize solid figures accurately? Explore G.10.A Identify the shapes of two-dimensional cross-sections

### Alabama Course of Study Mathematics Geometry

A Correlation of Prentice Hall to the Alabama Course of Study Mathematics Prentice Hall, Correlated to the Alabama Course of Study Mathematics - GEOMETRY CONGRUENCE Experiment with transformations in the

### Geometry Credit Recovery

Geometry Credit Recovery COURSE DESCRIPTION: This is a comprehensive course featuring geometric terms and processes, logic, and problem solving. Topics include parallel line and planes, congruent triangles,

### NCERT. In examples 1 and 2, write the correct answer from the given four options.

MTHEMTIS UNIT 2 GEOMETRY () Main oncepts and Results line segment corresponds to the shortest distance between two points. The line segment joining points and is denoted as or as. ray with initial point

### Glossary. 134 GLOSSARY Discovering Geometry Teaching and Worksheet Masters 2003 Key Curriculum Press

Glossary acute angle An angle whose measure is less than 90. (Lesson 1.3) acute triangle A triangle with three acute angles. (Lesson 1.5) adjacent angles Two non-overlapping angles with a common vertex

### 3. Lengths and areas associated with the circle including such questions as: (i) What happens to the circumference if the radius length is doubled?

1.06 Circle Connections Plan The first two pages of this document show a suggested sequence of teaching to emphasise the connections between synthetic geometry, co-ordinate geometry (which connects algebra

### 0810ge. Geometry Regents Exam 0810

0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

### abscissa The horizontal or x-coordinate of a two-dimensional coordinate system.

NYS Mathematics Glossary* Geometry (*This glossary has been amended from the full SED ommencement Level Glossary of Mathematical Terms (available at http://www.emsc.nysed.gov/ciai/mst/math/glossary/home.html)

### GEOMETRY COMMON CORE STANDARDS

1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

### Math 366 Definitions and Theorems

Math 366 Definitions and Theorems Chapter 11 In geometry, a line has no thickness, and it extends forever in two directions. It is determined by two points. Collinear points are points on the same line.

### Sum of the interior angles of a n-sided Polygon = (n-2) 180

5.1 Interior angles of a polygon Sides 3 4 5 6 n Number of Triangles 1 Sum of interiorangles 180 Sum of the interior angles of a n-sided Polygon = (n-2) 180 What you need to know: How to use the formula

### Mensuration Introduction

Mensuration Introduction Mensuration is the process of measuring and calculating with measurements. Mensuration deals with the determination of length, area, or volume Measurement Types The basic measurement

### Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement

### Integrated Math Concepts Module 10. Properties of Polygons. Second Edition. Integrated Math Concepts. Solve Problems. Organize. Analyze. Model.

Solve Problems Analyze Organize Reason Integrated Math Concepts Model Measure Compute Communicate Integrated Math Concepts Module 1 Properties of Polygons Second Edition National PASS Center 26 National

### Identifying Triangles 5.5

Identifying Triangles 5.5 Name Date Directions: Identify the name of each triangle below. If the triangle has more than one name, use all names. 1. 5. 2. 6. 3. 7. 4. 8. 47 Answer Key Pages 19 and 20 Name