Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle."

Transcription

1 Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction. Opposite rays are two rays that are part of the same line and share the same endpoint. XY and XZ are opposite rays. The figure formed by opposite rays is called a straight angle. Y X Z An angle is the figure formed when two rays share a common endpoint. Two parts are identified on an angle. The common endpoint is called the vertex and the two rays are called the sides. R side vertex S side T

2 Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. We can now give a formal definition for an angle. Definition of an Angle: An angle is a figure formed by two noncollinear rays that have a common endpoint. An angle can be named many ways. S 2 R RST TSR S 2 interior T Notice that the vertex letter is the middle letter in the first two names. exterior Be careful of naming angles by the vertex only if two or more angles share the same vertex. Bookwork: page 93; problems 9-26

3 Chapter 3.2 Angle Measure Learn how to measure and classify angles. In geometry angles are measured in units called degrees. Postulate 3-1 Angle Measure Postulate: For every angle, there is a unique positive number between 0 and 180 called the degree measure of the angle. The symbol for degree is m ABC = n and 0 < n < 180 A protractor can be used to measure and draw angles of a certain measure. Postulate 3-2 Protractor Postulate: On a plane, given AB and a number r between 0 and 180, there is exactly one ray with endpoint A extending on each side of AB such that the degree measure of the angle is r. r r A B This is stating that for any degree measure r, there are only two rays, one on each side of AB, that can create an angle that measures r.

4 Chapter 3.2 Angle Measure Learn how to measure and classify angles. Once the measure of an angle is known, it can be classified based on that measure. Right Angle: A right angle is an angle with a measure of 90 degrees. Acute Angle: An acute angle is an angle with a measure less than 90 degrees. Obtuse Angle: An obtuse angle is an angle with a measure greater than 90 degrees. Drawing Congruent Angles Hands-On Geometry page 99 Bookwork: page 100; problems

5 Magical Midpoints The midpoints of a triangle, when connected, create four congruent triangles. The outer triangles of a quadrilateral, when connected inside the midpoint quadrilateral, create a congruent quadrilateral. See Chapter 3 Investigation on page 102.

6 Chapter 3.3 Angle Addition Postulate Learn that the sum of the measures of two smaller angles equal the measure of the larger angle. R If we draw an angle RST. Draw interior point X. Draw ray SX. This creates angles 1 and 2. S If we measured 1 and 2 and added them together, would their sum equal RST? Postulate 3-3 Angle Addition Postulate (A-A Postulate): For any angle PQR, if A is in the interior of PQR, then m PQA + m AQR = m PQR. 1 2 T X If m 1 + m 2 = m 3, then m 1 = m 3 m 2, and m 2 = m 3 m 1.

7 Chapter 3.3 Angle Addition Postulate Learn that the sum of the measures of two smaller angles equal the measure of the larger angle. You have learned that a line segment has a midpoint that bisects the line segment. Just the same, every angle has a ray that bisects the angle. This ray is called an angle bisector. Definition of an Angle Bisector: The bisector of an angle is the ray with its endpoint at the vertex of the angle, extending into the interior of the angle. The bisector separates the angle into two angles of equal measure.??? This simply states that every angle has a bisector that separates the original angle into two equal angles. Hand-on Geometry Drawing an angle bisector page 107 Bookwork: page 108; problems

8 Chapter 3.4 Adjacent Angles and Linear Pairs of Angles Identify adjacent angles and linear pairs of angles. When you bisect an angle, you create two angles of equal measure. You also create two angles that share a common side. These angles are called adjacent angles. Definition of Adjacent Angles: Adjacent angles are angles that share a common side and have the same vertex, but have no common interior points in common. If the noncommon side of two adjacent angles form a straight line, then these angles are called a linear pair. Definition of Linear Pair: Two angles form a linear pair if and only if they are adjacent and their noncommon sides are opposite rays. Graphing Calculator Exploration page 112 Bookwork: page 113; problems 8-22

9 Identify complementary and supplementary angles. Chapter 3.5 Complementary and Supplementary Angles Complementary and Supplementary angles are special sets of angles. Definition of Complementary Angles: Two angles are complementary if and only if the sum of their degree measures is 90. If two angles are complementary, then each is said to be a complement of the other. Complementary angles do not have to share the same vertex or a common side. Meaning, complementary angles do not have to be adjacent. Definition of Supplementary Angles: Two angles are supplementary if and only if the sum of their degree measures is 180. If two angles are supplementary, then each is said to be a supplement of the other. Supplementary angles do not have to share the same vertex or a common side. Meaning, supplementary angles do not have to be adjacent. Postulate 3-4 Supplement Postulate: If two angles form a linear pair, then they are Bookwork: supplementary. page 120; problems 13-31

10 Chapter 3.6 Congruent Angles Identify and use congruent and vertical angles. Recall that congruent segments have the same measure. Congruent angles also have the same measure. Definition of Congruent Angles: Two angles are congruent if and only if they have the same degree measure. When indicating two angles are congruent, an arc is used to show which angles are congruent. m 1 = m 2; When two lines intersect, four angles are formed. There are two pairs of nonadjacent angles. These pairs are called vertical angles and 3 are vertical angles 4 2 and 4 are vertical angles

11 Bookwork: page 126; problems 9-23 Geometry Chapter 3.6 Congruent Angles Identify and use congruent and vertical angles. Theorem 3-1 Vertical Angle Theorem: Vertical angles are congruent If two angles are congruent, what do you think is true about their complementary and supplementary angles? Theorem 3-2: If two angles are congruent, then their complements are also congruent. Theorem 3-3: If two angles are congruent, then their supplements are also congruent. Theorem 3-4: If two angles are complementary to the same angle, then they are congruent. Theorem 3-5: If two angles are supplementary to the same angle, then they are congruent. Theorem 3-6: If two angles are congruent and supplementary, then each is a right angle. Theorem 3-7: All right angles are congruent.

12 Chapter 3.7 Perpendicular Lines Identify and use perpendicular lines. Lines that intersect at 90 degrees are perpendicular lines. The square symbol where two lines intersect indicate that the lines are perpendicular. Notice that four right angles are formed from the intersection. Four pairs of adjacent angles are supplementary. These adjacent angles are also linear pairs because they are opposite rays Definition of Perpendicular Lines: Perpendicular lines are lines that intersect to form a right angle. Look at preparing for proof, top of page 129. Theorem 3-8: If two lines are perpendicular, then they form four right angles.

13 Chapter 3.7 Perpendicular Lines Identify and use perpendicular lines. If we draw a line m. How lines can be drawn that are perpendicular to line m? If we draw a point T on line m, how many lines can be drawn through point T? How many of those lines through point T are perpendicular to line m? Theorem 3-9: If a line m is in a plane and T is a point on m, then there exists exactly one line in that plane that is perpendicular to m at T. Bookwork: page 132; problems 8-28.

Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

More information

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above? 1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

More information

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures. Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

More information

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

More information

Chapter 6 Notes: Circles

Chapter 6 Notes: Circles Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

More information

Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

Final Review Geometry A Fall Semester

Final Review Geometry A Fall Semester Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

More information

POTENTIAL REASONS: Definition of Congruence:

POTENTIAL REASONS: Definition of Congruence: Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

More information

Geometry Review Flash Cards

Geometry Review Flash Cards point is like a star in the night sky. However, unlike stars, geometric points have no size. Think of them as being so small that they take up zero amount of space. point may be represented by a dot on

More information

Chapter 5.1 and 5.2 Triangles

Chapter 5.1 and 5.2 Triangles Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each

More information

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle. DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:

GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd: GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 1-4 Lesson 1.2: SWBAT: Use

More information

This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.

This is a tentative schedule, date may change. Please be sure to write down homework assignments daily. Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (1-1) Points, Lines, & Planes Topic: (1-2) Segment Measure Quiz

More information

Incenter Circumcenter

Incenter Circumcenter TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

More information

Circle Name: Radius: Diameter: Chord: Secant:

Circle Name: Radius: Diameter: Chord: Secant: 12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

More information

Terminology: When one line intersects each of two given lines, we call that line a transversal.

Terminology: When one line intersects each of two given lines, we call that line a transversal. Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal.

More information

Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item 2) (MAT 360) Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

More information

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs

More information

1.1 Identify Points, Lines, and Planes

1.1 Identify Points, Lines, and Planes 1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms - These words do not have formal definitions, but there is agreement aboutwhat they mean.

More information

CHAPTER 6 LINES AND ANGLES. 6.1 Introduction

CHAPTER 6 LINES AND ANGLES. 6.1 Introduction CHAPTER 6 LINES AND ANGLES 6.1 Introduction In Chapter 5, you have studied that a minimum of two points are required to draw a line. You have also studied some axioms and, with the help of these axioms,

More information

Angles that are between parallel lines, but on opposite sides of a transversal.

Angles that are between parallel lines, but on opposite sides of a transversal. GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

More information

Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1. Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

More information

3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs

3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs SUGGESTED LEARNING STRATEGIES: Think/Pair/Share, Use Manipulatives Two rays with a common endpoint form an angle. The common endpoint is called the vertex. You can use a protractor to draw and measure

More information

/27 Intro to Geometry Review

/27 Intro to Geometry Review /27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question. Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,

More information

Geometry Module 4 Unit 2 Practice Exam

Geometry Module 4 Unit 2 Practice Exam Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

More information

GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY. Constructions OBJECTIVE #: G.CO.12 GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

More information

TIgeometry.com. Geometry. Angle Bisectors in a Triangle

TIgeometry.com. Geometry. Angle Bisectors in a Triangle Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

More information

Name: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester

Name: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester Name: Chapter 4 Guided Notes: Congruent Triangles Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester CH. 4 Guided Notes, page 2 4.1 Apply Triangle Sum Properties triangle polygon

More information

Angle: An angle is the union of two line segments (or two rays) with a common endpoint, called a vertex.

Angle: An angle is the union of two line segments (or two rays) with a common endpoint, called a vertex. MATH 008: Angles Angle: An angle is the union of two line segents (or two rays) with a coon endpoint, called a vertex. A B C α Adjacent angles: Adjacent angles are two angles that share a vertex, have

More information

alternate interior angles

alternate interior angles alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18 Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

More information

2006 Geometry Form A Page 1

2006 Geometry Form A Page 1 2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

More information

Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

More information

GEOMETRIC FIGURES, AREAS, AND VOLUMES

GEOMETRIC FIGURES, AREAS, AND VOLUMES HPTER GEOMETRI FIGURES, RES, N VOLUMES carpenter is building a deck on the back of a house. s he works, he follows a plan that he made in the form of a drawing or blueprint. His blueprint is a model of

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true) Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement

More information

Math 531, Exam 1 Information.

Math 531, Exam 1 Information. Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

More information

Geometry Chapter 10 Study Guide Name

Geometry Chapter 10 Study Guide Name eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.

More information

11.3 Curves, Polygons and Symmetry

11.3 Curves, Polygons and Symmetry 11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon

More information

Lesson 2: Circles, Chords, Diameters, and Their Relationships

Lesson 2: Circles, Chords, Diameters, and Their Relationships Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

More information

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about. Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,

More information

The Triangle and its Properties

The Triangle and its Properties THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three

More information

5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof 5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

More information

Geometry 8-1 Angles of Polygons

Geometry 8-1 Angles of Polygons . Sum of Measures of Interior ngles Geometry 8-1 ngles of Polygons 1. Interior angles - The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.

More information

Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion

Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent

More information

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades. Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

More information

Duplicating Segments and Angles

Duplicating Segments and Angles CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty

More information

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE? MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of

More information

Analytical Geometry (4)

Analytical Geometry (4) Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line

More information

POTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector:

POTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector: Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point

More information

BLoCK 1 ~ LInes And AngLes

BLoCK 1 ~ LInes And AngLes BLoCK ~ LInes And AngLes angle pairs Lesson MeasUring and naming angles -------------------------------------- 3 Lesson classifying angles -------------------------------------------------- 8 Explore!

More information

Mathematics Geometry Unit 1 (SAMPLE)

Mathematics Geometry Unit 1 (SAMPLE) Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

GEOMETRY - QUARTER 1 BENCHMARK

GEOMETRY - QUARTER 1 BENCHMARK Name: Class: _ Date: _ GEOMETRY - QUARTER 1 BENCHMARK Multiple Choice Identify the choice that best completes the statement or answers the question. Refer to Figure 1. Figure 1 1. What is another name

More information

Lesson 5-3: Concurrent Lines, Medians and Altitudes

Lesson 5-3: Concurrent Lines, Medians and Altitudes Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special

More information

Lesson 18: Looking More Carefully at Parallel Lines

Lesson 18: Looking More Carefully at Parallel Lines Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

More information

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles... Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

More information

1 Solution of Homework

1 Solution of Homework Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

More information

NAME DATE PERIOD. Study Guide and Intervention

NAME DATE PERIOD. Study Guide and Intervention opyright Glencoe/McGraw-Hill, a division of he McGraw-Hill ompanies, Inc. 5-1 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector

More information

Cumulative Test. 161 Holt Geometry. Name Date Class

Cumulative Test. 161 Holt Geometry. Name Date Class Choose the best answer. 1. P, W, and K are collinear, and W is between P and K. PW 10x, WK 2x 7, and PW WK 6x 11. What is PK? A 2 C 90 B 6 D 11 2. RM bisects VRQ. If mmrq 2, what is mvrm? F 41 H 9 G 2

More information

For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.

For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE. efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center

More information

The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word

More information

Geometry Progress Ladder

Geometry Progress Ladder Geometry Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes

More information

39 Symmetry of Plane Figures

39 Symmetry of Plane Figures 39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

More information

3.1 Triangles, Congruence Relations, SAS Hypothesis

3.1 Triangles, Congruence Relations, SAS Hypothesis Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)

More information

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Geometry Enduring Understandings Students will understand 1. that all circles are similar. High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

More information

Show all work for credit. Attach paper as needed to keep work neat & organized.

Show all work for credit. Attach paper as needed to keep work neat & organized. Geometry Semester 1 Review Part 2 Name Show all work for credit. Attach paper as needed to keep work neat & organized. Determine the reflectional (# of lines and draw them in) and rotational symmetry (order

More information

MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014

MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle

More information

Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture. CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion

More information

SIMSON S THEOREM MARY RIEGEL

SIMSON S THEOREM MARY RIEGEL SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given

More information

2.1. Inductive Reasoning EXAMPLE A

2.1. Inductive Reasoning EXAMPLE A CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

More information

Special Segments in Triangles

Special Segments in Triangles HPTER 10 Special Segments in Triangles c GOL Identify the altitudes, medians, and angle bisectors in a triangle. You will need a protractor a ruler Learn about the Math Every triangle has three bases and

More information

12. Parallels. Then there exists a line through P parallel to l.

12. Parallels. Then there exists a line through P parallel to l. 12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails

More information

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

More information

MATH STUDENT BOOK. 8th Grade Unit 6

MATH STUDENT BOOK. 8th Grade Unit 6 MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular

More information

Lesson 17. Introduction to Geometry. Objectives

Lesson 17. Introduction to Geometry. Objectives Student Name: Date: Contact Person Name: Phone Number: Lesson 17 Introduction to Geometry Objectives Understand the definitions of points, lines, rays, line segments Classify angles and certain relationships

More information

New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

More information

37 Basic Geometric Shapes and Figures

37 Basic Geometric Shapes and Figures 37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars

More information

Geometry. Relationships in Triangles. Unit 5. Name:

Geometry. Relationships in Triangles. Unit 5. Name: Geometry Unit 5 Relationships in Triangles Name: 1 Geometry Chapter 5 Relationships in Triangles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK.

More information

Geometry Regents Review

Geometry Regents Review Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

More information

GEOMETRY COMMON CORE STANDARDS

GEOMETRY COMMON CORE STANDARDS 1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points. 6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

More information

Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1) Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer

More information

Most popular response to

Most popular response to Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles

More information

TImath.com. Geometry. Points on a Perpendicular Bisector

TImath.com. Geometry. Points on a Perpendicular Bisector Points on a Perpendicular Bisector ID: 8868 Time required 40 minutes Activity Overview In this activity, students will explore the relationship between a line segment and its perpendicular bisector. Once

More information

Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle.

Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle. Geometry Unit 0 Notes ircles Syllabus Objective: 0. - The student will differentiate among the terms relating to a circle. ircle the set of all points in a plane that are equidistant from a given point,

More information

Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will

More information

CHAPTER 8 QUADRILATERALS. 8.1 Introduction

CHAPTER 8 QUADRILATERALS. 8.1 Introduction CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is

More information

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.

More information

Angle Vocabulary, Complementary & Supplementary Angles

Angle Vocabulary, Complementary & Supplementary Angles ngle Vocabulary, omplementary & Supplementary ngles Review 1 1. What is the definition of an acute angle? 2. Name the angle shown. 3. What is the definition of complimentary angles? 4. What is the definition

More information

Solutions to Practice Problems

Solutions to Practice Problems Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

More information

Quadrilaterals GETTING READY FOR INSTRUCTION

Quadrilaterals GETTING READY FOR INSTRUCTION Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper

More information