Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.


 Fay Jordan
 4 years ago
 Views:
Transcription
1 Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction. Opposite rays are two rays that are part of the same line and share the same endpoint. XY and XZ are opposite rays. The figure formed by opposite rays is called a straight angle. Y X Z An angle is the figure formed when two rays share a common endpoint. Two parts are identified on an angle. The common endpoint is called the vertex and the two rays are called the sides. R side vertex S side T
2 Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. We can now give a formal definition for an angle. Definition of an Angle: An angle is a figure formed by two noncollinear rays that have a common endpoint. An angle can be named many ways. S 2 R RST TSR S 2 interior T Notice that the vertex letter is the middle letter in the first two names. exterior Be careful of naming angles by the vertex only if two or more angles share the same vertex. Bookwork: page 93; problems 926
3 Chapter 3.2 Angle Measure Learn how to measure and classify angles. In geometry angles are measured in units called degrees. Postulate 31 Angle Measure Postulate: For every angle, there is a unique positive number between 0 and 180 called the degree measure of the angle. The symbol for degree is m ABC = n and 0 < n < 180 A protractor can be used to measure and draw angles of a certain measure. Postulate 32 Protractor Postulate: On a plane, given AB and a number r between 0 and 180, there is exactly one ray with endpoint A extending on each side of AB such that the degree measure of the angle is r. r r A B This is stating that for any degree measure r, there are only two rays, one on each side of AB, that can create an angle that measures r.
4 Chapter 3.2 Angle Measure Learn how to measure and classify angles. Once the measure of an angle is known, it can be classified based on that measure. Right Angle: A right angle is an angle with a measure of 90 degrees. Acute Angle: An acute angle is an angle with a measure less than 90 degrees. Obtuse Angle: An obtuse angle is an angle with a measure greater than 90 degrees. Drawing Congruent Angles HandsOn Geometry page 99 Bookwork: page 100; problems
5 Magical Midpoints The midpoints of a triangle, when connected, create four congruent triangles. The outer triangles of a quadrilateral, when connected inside the midpoint quadrilateral, create a congruent quadrilateral. See Chapter 3 Investigation on page 102.
6 Chapter 3.3 Angle Addition Postulate Learn that the sum of the measures of two smaller angles equal the measure of the larger angle. R If we draw an angle RST. Draw interior point X. Draw ray SX. This creates angles 1 and 2. S If we measured 1 and 2 and added them together, would their sum equal RST? Postulate 33 Angle Addition Postulate (AA Postulate): For any angle PQR, if A is in the interior of PQR, then m PQA + m AQR = m PQR. 1 2 T X If m 1 + m 2 = m 3, then m 1 = m 3 m 2, and m 2 = m 3 m 1.
7 Chapter 3.3 Angle Addition Postulate Learn that the sum of the measures of two smaller angles equal the measure of the larger angle. You have learned that a line segment has a midpoint that bisects the line segment. Just the same, every angle has a ray that bisects the angle. This ray is called an angle bisector. Definition of an Angle Bisector: The bisector of an angle is the ray with its endpoint at the vertex of the angle, extending into the interior of the angle. The bisector separates the angle into two angles of equal measure.??? This simply states that every angle has a bisector that separates the original angle into two equal angles. Handon Geometry Drawing an angle bisector page 107 Bookwork: page 108; problems
8 Chapter 3.4 Adjacent Angles and Linear Pairs of Angles Identify adjacent angles and linear pairs of angles. When you bisect an angle, you create two angles of equal measure. You also create two angles that share a common side. These angles are called adjacent angles. Definition of Adjacent Angles: Adjacent angles are angles that share a common side and have the same vertex, but have no common interior points in common. If the noncommon side of two adjacent angles form a straight line, then these angles are called a linear pair. Definition of Linear Pair: Two angles form a linear pair if and only if they are adjacent and their noncommon sides are opposite rays. Graphing Calculator Exploration page 112 Bookwork: page 113; problems 822
9 Identify complementary and supplementary angles. Chapter 3.5 Complementary and Supplementary Angles Complementary and Supplementary angles are special sets of angles. Definition of Complementary Angles: Two angles are complementary if and only if the sum of their degree measures is 90. If two angles are complementary, then each is said to be a complement of the other. Complementary angles do not have to share the same vertex or a common side. Meaning, complementary angles do not have to be adjacent. Definition of Supplementary Angles: Two angles are supplementary if and only if the sum of their degree measures is 180. If two angles are supplementary, then each is said to be a supplement of the other. Supplementary angles do not have to share the same vertex or a common side. Meaning, supplementary angles do not have to be adjacent. Postulate 34 Supplement Postulate: If two angles form a linear pair, then they are Bookwork: supplementary. page 120; problems 1331
10 Chapter 3.6 Congruent Angles Identify and use congruent and vertical angles. Recall that congruent segments have the same measure. Congruent angles also have the same measure. Definition of Congruent Angles: Two angles are congruent if and only if they have the same degree measure. When indicating two angles are congruent, an arc is used to show which angles are congruent. m 1 = m 2; When two lines intersect, four angles are formed. There are two pairs of nonadjacent angles. These pairs are called vertical angles and 3 are vertical angles 4 2 and 4 are vertical angles
11 Bookwork: page 126; problems 923 Geometry Chapter 3.6 Congruent Angles Identify and use congruent and vertical angles. Theorem 31 Vertical Angle Theorem: Vertical angles are congruent If two angles are congruent, what do you think is true about their complementary and supplementary angles? Theorem 32: If two angles are congruent, then their complements are also congruent. Theorem 33: If two angles are congruent, then their supplements are also congruent. Theorem 34: If two angles are complementary to the same angle, then they are congruent. Theorem 35: If two angles are supplementary to the same angle, then they are congruent. Theorem 36: If two angles are congruent and supplementary, then each is a right angle. Theorem 37: All right angles are congruent.
12 Chapter 3.7 Perpendicular Lines Identify and use perpendicular lines. Lines that intersect at 90 degrees are perpendicular lines. The square symbol where two lines intersect indicate that the lines are perpendicular. Notice that four right angles are formed from the intersection. Four pairs of adjacent angles are supplementary. These adjacent angles are also linear pairs because they are opposite rays Definition of Perpendicular Lines: Perpendicular lines are lines that intersect to form a right angle. Look at preparing for proof, top of page 129. Theorem 38: If two lines are perpendicular, then they form four right angles.
13 Chapter 3.7 Perpendicular Lines Identify and use perpendicular lines. If we draw a line m. How lines can be drawn that are perpendicular to line m? If we draw a point T on line m, how many lines can be drawn through point T? How many of those lines through point T are perpendicular to line m? Theorem 39: If a line m is in a plane and T is a point on m, then there exists exactly one line in that plane that is perpendicular to m at T. Bookwork: page 132; problems 828.
Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
More information1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
More informationGeometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
More informationA summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:
summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of midpoint and segment bisector M If a line intersects another line segment
More informationChapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
More informationChapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
More informationDefinitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
More informationFinal Review Geometry A Fall Semester
Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over
More informationPOTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
More informationGeometry Review Flash Cards
point is like a star in the night sky. However, unlike stars, geometric points have no size. Think of them as being so small that they take up zero amount of space. point may be represented by a dot on
More informationChapter 5.1 and 5.2 Triangles
Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three noncollinear points are connected by segments. Each
More informationDEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
More informationChapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
More informationGEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:
GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 14 Lesson 1.2: SWBAT: Use
More informationThis is a tentative schedule, date may change. Please be sure to write down homework assignments daily.
Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (11) Points, Lines, & Planes Topic: (12) Segment Measure Quiz
More informationIncenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
More informationCircle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
More informationTerminology: When one line intersects each of two given lines, we call that line a transversal.
Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal.
More informationSelected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
More informationGeometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
More informationIntermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
More informationMathematics 3301001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3
Mathematics 3301001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs
More information1.1 Identify Points, Lines, and Planes
1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms  These words do not have formal definitions, but there is agreement aboutwhat they mean.
More informationCHAPTER 6 LINES AND ANGLES. 6.1 Introduction
CHAPTER 6 LINES AND ANGLES 6.1 Introduction In Chapter 5, you have studied that a minimum of two points are required to draw a line. You have also studied some axioms and, with the help of these axioms,
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More informationGeometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
More information3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs
SUGGESTED LEARNING STRATEGIES: Think/Pair/Share, Use Manipulatives Two rays with a common endpoint form an angle. The common endpoint is called the vertex. You can use a protractor to draw and measure
More information/27 Intro to Geometry Review
/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the
More informationConjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C2 Vertical Angles Conjecture If two angles are vertical
More informationSemester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.
Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,
More informationGeometry Module 4 Unit 2 Practice Exam
Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning
More informationGEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
More informationTIgeometry.com. Geometry. Angle Bisectors in a Triangle
Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.
More informationName: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester
Name: Chapter 4 Guided Notes: Congruent Triangles Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester CH. 4 Guided Notes, page 2 4.1 Apply Triangle Sum Properties triangle polygon
More informationAngle: An angle is the union of two line segments (or two rays) with a common endpoint, called a vertex.
MATH 008: Angles Angle: An angle is the union of two line segents (or two rays) with a coon endpoint, called a vertex. A B C α Adjacent angles: Adjacent angles are two angles that share a vertex, have
More informationalternate interior angles
alternate interior angles two nonadjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate
More informationGEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
More informationSection 91. Basic Terms: Tangents, Arcs and Chords Homework Pages 330331: 118
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,
More information2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
More informationConjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
More informationGEOMETRIC FIGURES, AREAS, AND VOLUMES
HPTER GEOMETRI FIGURES, RES, N VOLUMES carpenter is building a deck on the back of a house. s he works, he follows a plan that he made in the form of a drawing or blueprint. His blueprint is a model of
More informationAlgebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
More informationConjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence  a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
More informationMath 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:059:55. Exam 1 will be based on: Sections 1A  1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
More informationGeometry Chapter 10 Study Guide Name
eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.
More information11.3 Curves, Polygons and Symmetry
11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon
More informationLesson 2: Circles, Chords, Diameters, and Their Relationships
Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct
More informationCircle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.
Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,
More informationThe Triangle and its Properties
THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three
More information5.1 Midsegment Theorem and Coordinate Proof
5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle  A midsegment of a triangle is a segment that connects
More informationGeometry 81 Angles of Polygons
. Sum of Measures of Interior ngles Geometry 81 ngles of Polygons 1. Interior angles  The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.
More informationName Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion
Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent
More informationCurriculum Map by Block Geometry Mapping for Math Block Testing 20072008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 20072008 Pre s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
More informationDuplicating Segments and Angles
CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty
More information2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?
MATH 206  Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of
More informationAnalytical Geometry (4)
Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line
More informationPOTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector:
Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point
More informationBLoCK 1 ~ LInes And AngLes
BLoCK ~ LInes And AngLes angle pairs Lesson MeasUring and naming angles  3 Lesson classifying angles  8 Explore!
More informationMathematics Geometry Unit 1 (SAMPLE)
Review the Geometry sample yearlong scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationGEOMETRY  QUARTER 1 BENCHMARK
Name: Class: _ Date: _ GEOMETRY  QUARTER 1 BENCHMARK Multiple Choice Identify the choice that best completes the statement or answers the question. Refer to Figure 1. Figure 1 1. What is another name
More informationLesson 53: Concurrent Lines, Medians and Altitudes
Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special
More informationLesson 18: Looking More Carefully at Parallel Lines
Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using
More informationContents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
More information1 Solution of Homework
Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,
More informationNAME DATE PERIOD. Study Guide and Intervention
opyright Glencoe/McGrawHill, a division of he McGrawHill ompanies, Inc. 51 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector
More informationCumulative Test. 161 Holt Geometry. Name Date Class
Choose the best answer. 1. P, W, and K are collinear, and W is between P and K. PW 10x, WK 2x 7, and PW WK 6x 11. What is PK? A 2 C 90 B 6 D 11 2. RM bisects VRQ. If mmrq 2, what is mvrm? F 41 H 9 G 2
More informationFor the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.
efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center
More informationThe Geometry of Piles of Salt Thinking Deeply About Simple Things
The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word
More informationGeometry Progress Ladder
Geometry Progress Ladder Maths Makes Sense Foundation Endofyear objectives page 2 Maths Makes Sense 1 2 Endofblock objectives page 3 Maths Makes Sense 3 4 Endofblock objectives page 4 Maths Makes
More information39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
More information3.1 Triangles, Congruence Relations, SAS Hypothesis
Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)
More informationGeometry Enduring Understandings Students will understand 1. that all circles are similar.
High School  Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
More informationShow all work for credit. Attach paper as needed to keep work neat & organized.
Geometry Semester 1 Review Part 2 Name Show all work for credit. Attach paper as needed to keep work neat & organized. Determine the reflectional (# of lines and draw them in) and rotational symmetry (order
More informationMATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014
EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle
More informationVocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.
CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion
More informationSIMSON S THEOREM MARY RIEGEL
SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given
More information2.1. Inductive Reasoning EXAMPLE A
CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers
More informationSpecial Segments in Triangles
HPTER 10 Special Segments in Triangles c GOL Identify the altitudes, medians, and angle bisectors in a triangle. You will need a protractor a ruler Learn about the Math Every triangle has three bases and
More information12. Parallels. Then there exists a line through P parallel to l.
12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails
More informationAlgebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms  Trapezoids
Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms  Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?
More informationMATH STUDENT BOOK. 8th Grade Unit 6
MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular
More informationLesson 17. Introduction to Geometry. Objectives
Student Name: Date: Contact Person Name: Phone Number: Lesson 17 Introduction to Geometry Objectives Understand the definitions of points, lines, rays, line segments Classify angles and certain relationships
More informationNew York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
More information37 Basic Geometric Shapes and Figures
37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars
More informationGeometry. Relationships in Triangles. Unit 5. Name:
Geometry Unit 5 Relationships in Triangles Name: 1 Geometry Chapter 5 Relationships in Triangles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK.
More informationGeometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
More informationGEOMETRY COMMON CORE STANDARDS
1st Nine Weeks Experiment with transformations in the plane GCO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,
More informationParallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
More information56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.
6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which
More informationInversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)
Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer
More informationMost popular response to
Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles
More informationTImath.com. Geometry. Points on a Perpendicular Bisector
Points on a Perpendicular Bisector ID: 8868 Time required 40 minutes Activity Overview In this activity, students will explore the relationship between a line segment and its perpendicular bisector. Once
More informationGeometry Unit 10 Notes Circles. Syllabus Objective: 10.1  The student will differentiate among the terms relating to a circle.
Geometry Unit 0 Notes ircles Syllabus Objective: 0.  The student will differentiate among the terms relating to a circle. ircle the set of all points in a plane that are equidistant from a given point,
More informationVisualizing Triangle Centers Using Geogebra
Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will
More informationCHAPTER 8 QUADRILATERALS. 8.1 Introduction
CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three noncollinear points in pairs, the figure so obtained is
More informationGeometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
More informationAngle Vocabulary, Complementary & Supplementary Angles
ngle Vocabulary, omplementary & Supplementary ngles Review 1 1. What is the definition of an acute angle? 2. Name the angle shown. 3. What is the definition of complimentary angles? 4. What is the definition
More informationSolutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 57:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
More informationQuadrilaterals GETTING READY FOR INSTRUCTION
Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper
More information