# Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Size: px
Start display at page:

Download "Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)"

Transcription

1 Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement and its negation have opposite truth values* Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true) Disjunction is true when either one part or both parts of the statement is true. (P is true, q is false P\/q is true) Give the original statement p q Converse is formed by interchanging the hypothesis and conclusion. q p Inverse is formed by negating the hypothesis and conclusion. ~p ~q Contrapositive is formed by negating and switching the hypothesis and conclusion. ~q ~P *The conditional and its contrapositive are logically equivalent* Biconditional conjunction of a conditional and its converse (p q) ^ (q p) P q means (p q) ^ (q p) It is true when both p and q have the same truth value. *Tautology is a compound statement that is always true. Opposite of a Tautology is a Contradiction.* Ex. P q [p^(~p\/q)] (p^q) T T T T F T F T T F F T

2 Contradiction a compound statement that is always false Law of Detachment P q (true) p (true) :. q is also true (conclusion) Law of Modus Tollens P q (true) ~q (true) :. ~p (true) OR [(p à q) ^ ~q] à ~P Law of Syllogism p q q r :. p r Law of Detachment (Modus Ponens) p q p :. q Law of Modus Tollens p q ~q :. ~p

3 Line a set of points that extend indefinitely in both directions. Plane a set of points which form a flat surface and extend indefinitely in all directions. Collinear points points that are on the same line. Coplanar points points that are on the same plane. Line segment or segment a set of two points called endpoints and all the points between them. Ray part of a line that starts at one point (called the endpoint) and extends endlessly in one direction Basic Properties/Postulates Reflexive Property a quantity is equal to itself Symmetric Property an equality may be expressed in any other order Transitive Property if quantities are equal to the same quantity, then they are equal to each other Substitution Property a quantity may be substituted for its equal in any expression Midpoint a midpoint divides a segment into 2 congruent segments How to Interpret a Diagram Partition Postulate the whole is equal to the sum of its parts Median of a triangle a segment drawn from ant vertex of a triangle to the MIDPOINT of the opposite side Altitude of a triangle a segment drawn from any vertex of the triangle perpendicular to the line containing the opposite side Circle a set of points in a plane that are a given distance from a given point in that plane Radius a segment drawn from the center of a circle to any point on the circle Can Assume 1. Straight lines and angles. 2. Collinearity of points. 3. Between-ness of points. 4. Relative position of points Can t Assume 1. Right angles 2. Congruent segments. 3. Congruent angles. 4. Relative sizes of segments and angles (not drawn to scale) ALWAYS start off with the Postulate of the Excluded Middle in an indirect Proof Distance between two points is the length of the line segment connecting two points.

4 Distance from a point to a line is the length of the perpendicular segment from the point to the line. The triangle Inequality Postulate - In a triangle, the sum of two side lengths is greater than the length of the third side. Parallelogram a quadrilateral in which both pairs of opposite sides are parallel Each diagonal of a parallelogram splits it into two congruent triangles. Properties: 1. Both pairs of opposite sides are congruent. 2. Both pairs of opposite angles are congruent. 3. Consecutive angles are supplementary. 4. Diagonals bisect each other. Proving a Quadrilateral is a parallelogram 1. Show that both pairs of opposite sides are parallel 2. Show that one pair of opposite sides are both parallel and congruent 3. Show that both pairs of opposite sides are congruent 4. Show that both pairs of opposite angles are congruent 5. Show that diagonals bisect each other 6. An angle is supplementary to both of its consecutive angles Rectangle a parallelogram in which at least one angle is a right angle. Properties 1. Equiangular 2. All the properties of a parallelogram 3. Diagonals are congruent Proving a Quadrilateral is a Rectangle 1. A parallelogram with at least one right angle 2. A parallelogram with congruent diagonals 3. Equiangular

5 Rhombus A parallelogram in which at least two consecutive sides are congruent Properties 1. Equilateral 2. All the properties of a parallelogram 3. Diagonals are perpendicular 4. Each diagonal bisects a pair of opposite angles Proving a Quadrilateral is a Rhombus 1. A parallelogram with at least two adjacent sides congruent. 2. A parallelogram whose diagonals are perpendicular 3. A parallelogram whose diagonals bisect one angle of the parallelogram 4. Equilateral Square a parallelogram that is both a rhombus and a rectangle Properties 1. Equiangular 2. All the properties of a parallelogram 3. Diagonals are congruent 4. Equilateral 5. Diagonals are perpendicular 6. Each diagonal bisects a pair of opposite angles Proving a Quadrilateral is a Square 1. A rhombus with one right angle 2. A rectangle with two congruent adjacent sides Trapezoid a quadrilateral with exactly one pair of parallel sides Isosceles trapezoid a trapezoid in which the nonparallel sides are congruent Properties 1. Lower base angles are congruent 2. Upper base angles are congruent 3. Diagonals are congruent

6 Kite a quadrilateral with two disjoint pairs of consecutive sides are congruent Properties 1. One diagonal is the perpendicular bisector of the other. 2. One of the diagonals bisects a pair of opposite angles. 3. One pair of opposite angles are congruent. Ratio a quotient of two numbers Proportion an equation stating that two or more ratios are equal Mean Proportion a proportion in which the means are equal Ex. ½ = 2/4 = 3/6 Triangle Mid-segment Theorem - A segment joining the midpoints of two sides of a triangle is parallel to the third side and its length is ½ the length of the third side. Median (mid-segment) of a trapezoid the segment joining the midpoints of the nonparallel sides of a trapezoid Similar polygons (~Polygons) polygons in which 1. All pairs of corresponding angles are congruent 2. The ratios of the lengths of all pairs of corresponding sides are equal Proving triangles similar if there exists a correspondence between the vertices of two triangles such that (AA~ Theorem) Two angles of one triangle are congruent to the corresponding angles of the other then the triangles are similar. (SSS~ Theorem) the ratio of the measures of the corresponding sides are equal then the triangles are similar. (SAS~ Theorem) the ratios of the measures of two pairs of corresponding sides are equal and the included angles are congruent, then the triangles are similar. Side Splitter Theorem (Triangle Proportionality Theorem) if a line is parallel to one side of a triangle and intersects the other two sides, it divides those sides proportionally Theorem if an altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the given right triangle and to each other

7 Leg 1 Altitude Leg 2 Segment 1 Segment 2 Segment 1 = Altitude Altitude Segment 2 Hypotenuse = Leg 1 Leg 1 Segment 1 Altitude Rule The altitude to the hypotenuse of a right triangle is the mean proportional between the segments into which it divides the hypotenuse. Leg Rule Each leg of a right triangle is the mean proportional between the hypotenuse and the projection of the leg of the hypotenuse. Angle Side Measures 30 o 60 o 90 o 45 o 45 o 90 o 60 o 45 o 2x X x x 2 90 o 30 o x 3 90 o 45 o x

8 Areas Area of an Equilateral Triangle = (Side) 2 3/4 S Area of a Rhombus = d 1 d 2 /2 d 2 d 1 Scale factor = Ratio of Similitude s 1 /s 2 = P 1 /P 2 (s stands for Side, P stands for Perimeter) Area of a Square = (Side) 2 Area of a Rectangle = (Base)(Height) OR (Length)(Width) Area of a Triangle = ½(Base)(Height) Area of a Trapezoid = ½ (Base 1+Base 2)(Height) OR (Median)(Height) Area of a N-gon = ½ (Apothem)(Perimeter) Median Of a Trapezoid = (Base1+Base2)/2 Radius of a regular polygon is a segment joining the center to any vertex Apothem of a regular polygon is a segment joining the center to the midpoint of any side Lines Distance Formula Distance = (Δx) 2 +(Δy) 2 Midpoint Formula M AB = (x A +X B /2),(Y A +Y B /2) The midpoint is the Average of the two points you re finding the midpoint for. Slope is the rate of change in y-value for each unit of change in x-value. Parallel lines have equal slopes. Perpendicular lines have slopes whose product is -1. (Their slopes are negative reciprocals of each other.)

9 Of parallel lines share a point, they are non-distinct. Ways to Write a Line Eqauation Point Slope Formula 1. ax+by=c 2. y-y 1 =x-x 1 (m) 3. y=mx+b Ways to Solve Linear Equations 1. Graphical Line a 2. Substitution (x,y) Line b 3x+5y=10 x-7y=12 Given equations 3x+5y=10 X=12+7y Find point of intersection of these two lines. 3(12+7y)+5y=10 x=12+7y Point of intersection: (5,-1) 36+21y+5y=10 x=12+7(-1) 26y=-26 x=5 Y=-1 3. Elimination 10x+3y=2 70x+21y=14 10x+3y=2 Point of Intersection: (-1/4,3/2) 6x-7y= x-21y=-36 10(-1/4) +3y=2 88x = -22-5/2+3y= y=9/2 X=-1/4 y=3/2

10 Quadratic Equations Quadratic equations can be written in the form y=ax 2 +bx+c Axis of Symmetry Vertical Line given by x OR x= -b/2a Vertex; min; max; turning point Vertex found by Substitution of x=-b/2a into quadratic equation. To find the y intercept, set x=0 Steps for Graphing Parabolas 1. Find Axis of Symmetry (x=-b/2a) 2. Use #1 to find Vertex. 3. Plot 2-3 points on one side of Axis of Symmetry. (y intercept is an easy one, it s simply c in y=ax 2 +bx+c) 4. Reflect each point across axis of symmetry. 5. Sketch an expanding u-shape with arrows. Circle Equation R 2 =(x-h) 2 +(y-k) 2 At a glance, you can see that (h, k) is the center of the circle. This is in Center Radius form. Completing the Square Ex. x 2 +y 2 +6x-8y-24 = 0 x 2 +6x+ +y 2-8y+ =24 To complete the square, halve the linear coefficient for x and y, then add its square to both sides of the equation. (x+3)(x+3) (y-4)(y+4) These satisfy the given equation. x 2 +6x+9+y 2-8y+16= (x+3) 2 + (y-4) 2 = 49 Center of the circle = (-3, 4) Radius = 7

11 Graphs Solve algebraically, check graphically. 3 Scenarios of Graphs 1. One intersection 2. Two intersections 3. Nothing, no slope Circular Geometry Two or more coplanar circles with the same center are called concentric circles. Two circles are congruent/ equal if they have congruent/equal radii. A point is in the interior of a circle if its distance from the center is less than the radius. A point is in the exterior of a circle if its distance from the center is larger than the radius. A point is on a circle if its distance from the center is equal to the radius. A chord of a circle is a segment joining any 2 points on the circle. A diameter of a circle is a segment (chord) that passes through the center of the circle. The distance from the center of a circle to a chord is the measure of the perpendicular segment from the center to the chord. The circumference of a circle is its perimeter. Sector of a circle is a region bounded by two radii and their intercepted arc denoted by 3 letters: center and two endpoints of the arc. Locus Locus a set of points satisfying a given equation Usual Loci a. All points equidistant from a fixed distant, d It is a circle with center d. b. All points equidistant from 2 points A&B The perpendicular bisector of line AB c. All points fixed distance d, from line l Two lines, each parallel to line l, d units to either side of line l d. All points equidistant from 2 parallel lines m & n One line parallel to m & n equidistant from each line

12 e. All points equidistant from 2 intersecting lines. Two lines bisecting angles formed by two given lines f. All points equidistant from sides of an angle. An angle bisector of that angle The perpendicular bisectors of a triangle are concurrent at a point equidistant from the vertices. This point is called the circumcenter. The angle bisectors of a triangle are concurrent at a point equidistant from the sides of the triangle. This point is the incenter. The lines containing the Altitudes of a triangle are concurrent at a point called the orthocenter. The medians of a triangle are concurrent at a point 2/3 of the way from any vertex to its opposite sides. This point is the centroid. Line Symmetry A figure has line symmetry if a line can be drawn such that each side is a mirror image of the other. Transformation change in position, size, or orientation of a figure Line Reflection - transformation that produces a mirror image of a figure on opposite side of the given line r y-axis (x, y) = (-x, y) r x-axis (x, y) = (x, -y) r y=x (x, y) = (y, x) r y=c (x, y) = (x, 2c-y) r x=c (x, y) = (2c-x, y) R o (x, y) = (-x, -y) A figure has point symmetry if it is its own image under a reflection in a point. R o, 90 (x, y) = (y, -x) R o, 180 (x, y) = (-x, -y) R o, 270 (x, y) = (y, x) R y=-x (x, y) = (-y, -x) If you can rotate your figure 180 o about the point in question, and it is still what it used to be, then it has point symmetry. T 3, -2 (x, y) = (x+3, y-2)

13 D k (x, y) = (kx, ky) Isometry a transformation that preserves distance Direct isometry is one that preserves order (orientation) Opposite isometry is one that changes order, or orientation, from clockwise to counterclockwise, or vice-versa. To reflect an equation in y=x, switch x and y then solve for y. Space Geometry Which of these determine a PLANE? 1 point No Two points No Three collinear points Three noncollinear points A line and a point not on the line Two intersecting lines Two parallel lines No Yes Yes Yes Yes Lateral Area & Total Area Lateral Area of a Cylinder = 2πrh Total Area of a Cylinder = 2πrh + 2πr 2

14 Lateral Area of a Cone = πrl Slant Height (l ) Total Area of a Cone = πrl + πr 2 Total Area of a Sphere = 4πr 2 Volume Volume of a Cylinder = πr 2 h Volume of a Prism = l w h Volume of a Cone = 1/3 πr 2 h Volume of a Regular Pyramid = 1/3 (Area of the base)(height) Volume of a Sphere = 4/3 πr 3 Altitude and Slant Height are different Altitude goes from the tip of the cone to the bottom. Sites you d want to visit. You should also check out the back of your text book, it has all the theorems/postulates. C: GOOD LUCK ON THE REGENTS!! ---Navida Rukhsha c:

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### 56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### Area. Area Overview. Define: Area:

Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.

### of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### abscissa The horizontal or x-coordinate of a two-dimensional coordinate system.

NYS Mathematics Glossary* Geometry (*This glossary has been amended from the full SED ommencement Level Glossary of Mathematical Terms (available at http://www.emsc.nysed.gov/ciai/mst/math/glossary/home.html)

### 2, 3 1, 3 3, 2 3, 2. 3 Exploring Geometry Construction: Copy &: Bisect Segments & Angles Measure & Classify Angles, Describe Angle Pair Relationship

Geometry Honors Semester McDougal 014-015 Day Concepts Lesson Benchmark(s) Complexity Level 1 Identify Points, Lines, & Planes 1-1 MAFS.91.G-CO.1.1 1 Use Segments & Congruence, Use Midpoint & 1-/1- MAFS.91.G-CO.1.1,

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length

### Geometry Unit 6 Areas and Perimeters

Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

### /27 Intro to Geometry Review

/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

### Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

### GEOMETRY COMMON CORE STANDARDS

1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### Solutions to Practice Problems

Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

### Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

### Final Review Geometry A Fall Semester

Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

### Math 366 Definitions and Theorems

Math 366 Definitions and Theorems Chapter 11 In geometry, a line has no thickness, and it extends forever in two directions. It is determined by two points. Collinear points are points on the same line.

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### Florida Geometry EOC Assessment Study Guide

Florida Geometry EOC Assessment Study Guide The Florida Geometry End of Course Assessment is computer-based. During testing students will have access to the Algebra I/Geometry EOC Assessments Reference

### 2006 Geometry Form A Page 1

2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

### PUBLIC SCHOOLS OF EDISON TOWNSHIP OFFICE OF CURRICULUM AND INSTRUCTION GEOMETRY HONORS. Middle School and High School

PUBLIC SCHOOLS OF EDISON TOWNSHIP OFFICE OF CURRICULUM AND INSTRUCTION GEOMETRY HONORS Length of Course: Elective/Required: Schools: Term Required Middle School and High School Eligibility: Grades 8-12

### After your registration is complete and your proctor has been approved, you may take the Credit by Examination for GEOM 1B.

GEOM 1B Geometry I, Second Semester #PR-109, BK-1030 (v.3.0) To the Student: After your registration is complete and your proctor has been approved, you may take the Credit by Examination for GEOM 1B.

### Geometry and Measurement

The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

### Glossary. 134 GLOSSARY Discovering Geometry Teaching and Worksheet Masters 2003 Key Curriculum Press

Glossary acute angle An angle whose measure is less than 90. (Lesson 1.3) acute triangle A triangle with three acute angles. (Lesson 1.5) adjacent angles Two non-overlapping angles with a common vertex

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

### Mathematics Georgia Performance Standards

Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by

### Chapter 8 Geometry We will discuss following concepts in this chapter.

Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

### SAT Subject Math Level 2 Facts & Formulas

Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

### Math 531, Exam 1 Information.

Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

### Incenter Circumcenter

TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

### 5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

### PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the

### Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

### alternate interior angles

alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate

### Name Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem

Name Period 10/22 11/1 Vocabulary Terms: Acute Triangle Right Triangle Obtuse Triangle Scalene Isosceles Equilateral Equiangular Interior Angle Exterior Angle 10/22 Classify and Triangle Angle Theorems

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your

### Geometry EOC Practice Test #2

Class: Date: Geometry EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rebecca is loading medical supply boxes into a crate. Each supply

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### Lesson 3.1 Duplicating Segments and Angles

Lesson 3.1 Duplicating Segments and ngles In Exercises 1 3, use the segments and angles below. Q R S 1. Using only a compass and straightedge, duplicate each segment and angle. There is an arc in each

### Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in

### Geometry Module 4 Unit 2 Practice Exam

Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

### MENSURATION. Definition

MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters

Geometry Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:

GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships

### Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

### Geometry Final Exam Review Worksheet

Geometry Final xam Review Worksheet (1) Find the area of an equilateral triangle if each side is 8. (2) Given the figure to the right, is tangent at, sides as marked, find the values of x, y, and z please.

### Cumulative Test. 161 Holt Geometry. Name Date Class

Choose the best answer. 1. P, W, and K are collinear, and W is between P and K. PW 10x, WK 2x 7, and PW WK 6x 11. What is PK? A 2 C 90 B 6 D 11 2. RM bisects VRQ. If mmrq 2, what is mvrm? F 41 H 9 G 2

### A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

### 11.3 Curves, Polygons and Symmetry

11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon

### High School Geometry Test Sampler Math Common Core Sampler Test

High School Geometry Test Sampler Math Common Core Sampler Test Our High School Geometry sampler covers the twenty most common questions that we see targeted for this level. For complete tests and break

### Geometry of 2D Shapes

Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles

### http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4

of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the

### Unit 3: Circles and Volume

Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,

### 2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of

### SAT Subject Math Level 1 Facts & Formulas

Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

### Chapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter?

Chapter Quiz Section.1 Area and Initial Postulates (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? (.) TRUE or FALSE: If two plane

### Geometry 8-1 Angles of Polygons

. Sum of Measures of Interior ngles Geometry 8-1 ngles of Polygons 1. Interior angles - The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.

### Shape Dictionary YR to Y6

Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### 37 Basic Geometric Shapes and Figures

37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars

### Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will

Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

### Comprehensive Benchmark Assessment Series

Test ID #1910631 Comprehensive Benchmark Assessment Series Instructions: It is time to begin. The scores of this test will help teachers plan lessons. Carefully, read each item in the test booklet. Select