THE normalized low-pass filter magnitude specifications

Size: px
Start display at page:

Download "THE normalized low-pass filter magnitude specifications"

Transcription

1 780 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 9, SEPTEMBER 2007 Optimal Use of Some Classical Approximations in Filter Design Hercules G. Dimopoulos Abstract The classical, and Elliptic (Cauer) low-pass filter approximations can be used in the design of analog and IIR digital filters in such a way as to obtain passband, stopband and transition band optimized filters at no order cost. The exact analytical relationships for such an optimal deployment of these approximations are developed and presented in this paper and their use is demonstrated through design examples. Index Terms, Cauer,, elliptic filters, equiripple filters, filter approximations, filter theory, filters. I. INTRODUCTION THE normalized low-pass filter magnitude specifications are given in terms of plain gain or logarithmic gain in decibels as shown in Fig. 1. is a reference level usually taken equal to 1 (i.e., db) out loss of generality and therefore filter requirements are determined by three numbers where or Fig. 1. Normalized LP filter specifications. (a) Plain gain. (b) Logarithmic gain in decibels The critical frequencies are given [1] by (3b) It is clear that only in the elliptic case the approximating function depends on the stopband edge frequency. The complete elliptic integral having a modulus and the Jacobi elliptic sine of modulus,, (see Appendix ) are responsible for the complexity of the mathematics of the elliptic filters. In all cases, is such that and the value, called the discrimination factor, is given by The gain specifications of the filter are approximated in the, and Elliptic cases using an approximating function in a gain expression of the form (1) Elliptic In the elliptic case, (4a) (4b) (4c) can be calculated [2] from The function is well defined in all cases Elliptic (2a) (2b) (2c) is the polynomial of order and ) is the elliptic (or ) rational function defined as for even (3a) Manuscript received March 11, This paper was recommended by Associate Editor A. B. da Silva. The author is the Department of Electronics, Technological Education Institute of Piraeus, Egaleo, Greece ( hdimop@teipir.gr). Digital Object Identifier /TCSII for even. (5) Given the specifications, the order equation for each approximation family gives, in general, a non-integer value which is rounded up to the next integer value. Traditionally, the filter of order is then designed using, a choice that ensures exact satisfaction of the passband requirement and improved stopband performance, as a trade-off of the increase of the order from to. This traditional design is shown in Fig. 2(I) and is referred to as stopband edge gain optimized. The difference allows for trade-offs in requirements so that the filter can be optimized for the given order [3]. For example, the specifications can also be satisfied in a manner shown in Fig. 2(II) minimum passband tolerance to, a value that depends on and. Furthermore, in the elliptic case, due to the dependence of the /$ IEEE

2 DIMOPOULOS: OPTIMAL USE OF SOME CLASSICAL APPROXIMATIONS 781 Fig. 3. Optimization for: (a) stopband edge gain and (b) passband gain. or equivalently (7) (8) Fig. 2. The optimization cases (I) Stopband edge gain (II) Passband tolerance (III) Transition band (IV) Stopband attenuation. approximating function on the stopband edge frequency, two more optimizations are available. The transition band and the stopband attenuation optimizations, shown in Fig. 2 (III) and (IV), respectively. In the transition band optimization of Fig. 2(III), a new stopband edge frequency, is calculated from and, that leads to stopband gain tolerance equal to the specified. In the stopband attenuation optimization of Fig. 2(IV), a new stopband edge frequency, can be calculated from and, that leads to stopband gain tolerance equal to the specified (i.e., the gain at ) but much higher attenuation (lower gain ) for. In all cases, when the optimized requirements are used in the order equation, the result will be exactly the integer, i.e., In [3], a method is developed using nomographs and the band edge selectivity (BES) concept to calculate approximately,, and for the optimized designs. In this paper the exact equations are presented for the most common types of approximation and the results of an example design are compared to those presented in [3]. For given and, (8) relates the three filter requirements that can be exactly realized order. This means that if we specify two of them the third can be calculated solving (8). A. Stopband Edge Gain Optimized Filter In this case, and are specified and solution of (8) for gives the minimum value required order Design of the filter leads to the stopband edge gain optimized filter of order [Fig. 3(a)]. This in fact is the standard procedure leading to a filter designed from which actually realizes. B. Passband Tolerance Optimized Filter In this case, and are specified and solution of (8) for gives the maximum value that can be required order. (9) II. DESIGN EQUATIONS AND OPTIMIZATION Given, the integer order can be calculated from the order equation of each approximation case. If we require full exploitation of both passband and stopband tolerances for given integer order we must satisfy the following two design equations: (6a) (6b) (10) Design of the filter leads to the passband tolerance optimized filter of order [Fig. 3(b)]. The pole positions of the transfer function are different from those of the stopband edge gain optimized filter. It should be noticed however that in the elliptic case the transmission zeros do not change since the elliptic rational function depends only on the order and the stopband edge frequency, parameters that are common in both cases.

3 782 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 9, SEPTEMBER 2007 Fig. 4. Elliptic transition band optimized filter. C. Transition Band Optimized Filter If and are specified, solution of (8) for gives the minimum value of the stopband edge frequency that can be used order to exactly satisfy the gain requirements and.in this case, only can be directly calculated from (8) where and (11) Fig. 5. (a) Typical. (b) Stopband attenuation optimized. D. Stopband Attenuation Optimized Filter In the elliptic case more space for optimization exists due to the dependence of the approximating elliptic rational function on the stopband edge frequency and a fourth design is therefore of special interest. Fig. 5(a) shows the gain response of an elliptic filter designed. According to (9), the gain at the stopband edge frequency is. It is obvious that increasing the value of the stopband edge frequency, a value exists at which as shown in Fig. 5(b). Referring to Fig. 5, and are related (11) as follows: In fact (11) gives the relationship of and the gain requirements which can be exactly satisfied. Calculation of from is straightforward for the and cases using (4a) and (4b) respectively. Since is the minimum value of the stopband edge frequency that satisfies exactly the gain requirements, is denoted as From which we get (14a) (14b) (12a) The following equation yields : (12b) For the elliptic case, Huber in [2] has shown that since the relation of and (when ), is given by (11) as, is given in terms of by (13) or equivalently equation (15a) Since the elliptic rational function depends on and so do the poles and zeros of the transfer function [4], requiring in the specifications instead of. This leads to a completely different filter of the same order that exactly satisfies the stopband and passband specifications and. This filter is referred to as the transition band optimized filter [Figs. 2 (III) and 4]. In the and cases, the poles of the transfer function do not depend on the stopband edge frequency [4], [5]. Thus, requiring instead of in the design procedure does not produce a different filter as in the elliptic case, thereby making simply the frequency at which. (15b) This means that the elliptic rational function must be determined for the unknown stopband edge frequency the additional condition that its value for must be. This could not been done analytically, given the inherent difficulty in determining even for known and an algorithmic approach is inevitable. This is embodied in the software in [6]. The algorithms calculate the elliptic rational function for and any stopband edge frequency. The gain specified

4 DIMOPOULOS: OPTIMAL USE OF SOME CLASSICAL APPROXIMATIONS 783 Fig. 7. Passband responses of the example design. Fig. 6. example (N =5). is calculated for stopband edge frequencies from upwards, until it becomes equal to the specified. III. DESIGN EXAMPLES For a filter specifications,, and, the order was found. From (4b) we find and from (9), (10) and (12b) respectively,, and. The transfer function [5] of the typical and the passband tolerance optimized designs are Fig. 8. Stopband responses of the example design. B. Passband Tolerance Optimized Filter The discrimination factor is again. From (10) we find or db ( db in [3]). The parameters of the transfer function in this case will be and. Fig. 6 shows the responses of the typical design (stopband edge gain optimized filter) and of the passband tolerance optimized filter. As mentioned, in this case is simply the frequency at which the gain becomes equal to. As a second example, an elliptic filter transfer function specifications will be designed and optimized. The order of the filter is calculated from (19):. The transfer function of the fourth-order elliptic filter will be of the form and parameters and are calculated for all for optimization cases. A. Stopband Edge Gain Optimized Filter From (5) we find. From (9) we get or db. The corresponding transfer function can be calculated [6], where db db C. Transition Band Optimized Filter From (13) in combination (5) we find ( in [3] ). From (5),. The parameters of the transfer function in this case are D. Stopband Attenuation Optimized Filter Using our algorithm as embodied in [6] we find ( in [3] ). Using (5) we find and from (14a) we find or db ( db in [1] ). The parameters of the transfer function are Figs. 7 and 8 show the passband and stopband details of the four designs. IV. CONCLUSION The classical approximations are traditionally used in analog and IIR digital filter design in such a way as to satisfy the specified passband tolerance in an exact way minimum gain at the stopband edge frequency [Fig. 2(I)]. It is shown in this paper that filters, and elliptic response can be designed optimum passband behaviour [i.e., lower gain tolerance, Fig. 2 (II)] at no order cost and that the dependence of the approximating elliptic rational function, on the stopband edge frequency, allows two more designs: one optimized transition band [Fig. 2(III)] and one optimized stopband attenuation [Fig. 2(IV)]. In contrast to other relevant

5 784 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 9, SEPTEMBER 2007 work, for the first three optimized designs, exact analytic relationships of all necessary parameters are given and the results of a design example were found much more accurate as compared to those of the nomographic technique proposed in [3]. The analytic solution of (15b) of the stopband attenuation optimized elliptic filter is a subject for further research and it is shown that can be calculated using a small computer program [6]. The proposed method, in conjunction to the computationally simplified expressions of the involved elliptic functions given in the Appendix, can be easily programmed in any computer or programmable calculator language, even in those out inherent advanced mathematical features. APPENDIX Complete Elliptic Integral and the AGM: If the arithmetic and the geometric mean values of two positive numbers and are calculated and then proceed to find the arithmetic and geometric means of these two values and so on, then both sequences of mean values converge very rapidly to the same value defined as the arithmetic geometric mean (AGM) of and [7]. The AGM algorithm can be programmed very easily and converges uniformly quadratically [7]. In fact for the range of and encountered in elliptic filter design, less than ten iterations are required for very high precision. The complete elliptic integral of the first kind modulus,defined as it is necessary to calculate the elliptic parameters modular constants or Jacobi s Nome,defined as, called (20) Elliptic Sine and Theta Functions: The elliptic sine, can be calculated via the Jacobi theta functions and [1], [7] as (21) The theta functions are expressed as fast converging series [1], [7] calculated high accuracy using a few terms (22) Calculation of the Discrimination Factor: Combining (5), (20) (22), we find (16) is connected to the easily calculated arithmetic-geometric mean by a straightforward relationship [7] when (17) Under (17), the awkward order equation for elliptic filters [1], [8] given by (18) is transformed into an easily computed expression requiring only calculation of four arithmetic geometric means (19) This is of course possible because the moduli of all involved in elliptic filter design,. In elliptic filter design, (23) for even This is an expression that can be easily programmed in any computer or programmable calculator language. In fact a function to calculate the AGM of two numbers is required and a function to calculate the theta series. Even a few terms (e.g., 9 terms) very high accuracy is achieved. REFERENCES [1] M. D. Lutovac, Tosic, V. Dejan, and B. L. Evans, Filter Design for Signal Processing using MATLAB and Mathematica. Upper Saddle River, NJ: Prentice-Hall, 2001, pp [2] K. Huber, On the design of Cauer filters, AEÜ Int. J. Electron. Commun., vol. 58, no. 3, pp , May [3] C. A. Corral and C. S. Lindquist, Design for optimum classical filters, Proc. IEE Circuits Devices Syst., vol. 149, no. 5/6, pp , [4] S. Tantaratana, S. S. Lawson, and Y. C. Lim, IIR filters, in The Circuits and Filters Handbook, W.-K. Chen, Ed. Boca Raton, FL: CRC, 1995, ch. 83, pp [5] R. Schaumann and M. E. Van Valkenburg, Design of Analog Filters. Oxford, U.K.: Oxford University Press, 2001, p and [6] H. G. Dimopoulos, A small program to calculate optimized elliptic filters Technological Education Institute of Piraeus, Egaleo, Greece [Online]. Available: [7] J. M. Borwein and P. B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts. New York: Wiley, 1987, vol. 4, ch. 1 and 2. [8] P.-M. Lin, Single curve for determining the order of an elliptic filter, IEEE Trans. Circuits Syst., vol. 37, pp , 1990.

Simulation of Frequency Response Masking Approach for FIR Filter design

Simulation of Frequency Response Masking Approach for FIR Filter design Simulation of Frequency Response Masking Approach for FIR Filter design USMAN ALI, SHAHID A. KHAN Department of Electrical Engineering COMSATS Institute of Information Technology, Abbottabad (Pakistan)

More information

Filter Comparison. Match #1: Analog vs. Digital Filters

Filter Comparison. Match #1: Analog vs. Digital Filters CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a head-to-head competition between filters; we'll select

More information

Transition Bandwidth Analysis of Infinite Impulse Response Filters

Transition Bandwidth Analysis of Infinite Impulse Response Filters Transition Bandwidth Analysis of Infinite Impulse Response Filters Sujata Prabhakar Department of Electronics and Communication UCOE Punjabi University, Patiala Dr. Amandeep Singh Sappal Associate Professor

More information

Digital Signal Processing IIR Filter Design via Impulse Invariance

Digital Signal Processing IIR Filter Design via Impulse Invariance Digital Signal Processing IIR Filter Design via Impulse Invariance D. Richard Brown III D. Richard Brown III 1 / 11 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic

More information

First, we show how to use known design specifications to determine filter order and 3dB cut-off

First, we show how to use known design specifications to determine filter order and 3dB cut-off Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and

More information

IIR Half-band Filter Design with TMS320VC33 DSP

IIR Half-band Filter Design with TMS320VC33 DSP IIR Half-band Filter Design with TMS320VC33 DSP Ottó Nyári, Tibor Szakáll, Péter Odry Polytechnical Engineering College, Marka Oreskovica 16, Subotica, Serbia and Montenegro nyario@vts.su.ac.yu, tibi@vts.su.ac.yu,

More information

Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek

Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek Design of Efficient Digital Interpolation Filters for Integer Upsampling by Daniel B. Turek Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

CTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION. Virgil Leenerts WØINK 8 June 2008

CTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION. Virgil Leenerts WØINK 8 June 2008 CTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION Virgil Leenerts WØINK 8 June 28 The response of the audio voice band high pass filter is evaluated in conjunction with the rejection

More information

An Efficient RNS to Binary Converter Using the Moduli Set {2n + 1, 2n, 2n 1}

An Efficient RNS to Binary Converter Using the Moduli Set {2n + 1, 2n, 2n 1} An Efficient RNS to Binary Converter Using the oduli Set {n + 1, n, n 1} Kazeem Alagbe Gbolagade 1,, ember, IEEE and Sorin Dan Cotofana 1, Senior ember IEEE, 1. Computer Engineering Laboratory, Delft University

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

NAPIER University School of Engineering. Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response

NAPIER University School of Engineering. Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response NAPIER University School of Engineering Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response In R1 R2 C2 C1 + Opamp A - R1 R2 C2 C1 + Opamp B - Out

More information

ELEN E4810: Digital Signal Processing Topic 8: Filter Design: IIR

ELEN E4810: Digital Signal Processing Topic 8: Filter Design: IIR ELEN E48: Digital Signal Processing Topic 8: Filter Design: IIR. Filter Design Specifications 2. Analog Filter Design 3. Digital Filters from Analog Prototypes . Filter Design Specifications The filter

More information

DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION

DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION Meena Kohli 1, Rajesh Mehra 2 1 M.E student, ECE Deptt., NITTTR, Chandigarh, India 2 Associate Professor, ECE Deptt.,

More information

Design of FIR Filters

Design of FIR Filters Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 68 FIR as

More information

How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim

How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim This application note describes how to build a 5 th order low pass, high pass Butterworth filter for 10 khz

More information

A STUDY OF ECHO IN VOIP SYSTEMS AND SYNCHRONOUS CONVERGENCE OF

A STUDY OF ECHO IN VOIP SYSTEMS AND SYNCHRONOUS CONVERGENCE OF A STUDY OF ECHO IN VOIP SYSTEMS AND SYNCHRONOUS CONVERGENCE OF THE µ-law PNLMS ALGORITHM Laura Mintandjian and Patrick A. Naylor 2 TSS Departement, Nortel Parc d activites de Chateaufort, 78 Chateaufort-France

More information

THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0

THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2 y +n = x 2 for fixed positive n. The computational

More information

From Concept to Production in Secure Voice Communications

From Concept to Production in Secure Voice Communications From Concept to Production in Secure Voice Communications Earl E. Swartzlander, Jr. Electrical and Computer Engineering Department University of Texas at Austin Austin, TX 78712 Abstract In the 1970s secure

More information

AN-837 APPLICATION NOTE

AN-837 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

More information

Cancellation of Load-Regulation in Low Drop-Out Regulators

Cancellation of Load-Regulation in Low Drop-Out Regulators Cancellation of Load-Regulation in Low Drop-Out Regulators Rajeev K. Dokania, Student Member, IEE and Gabriel A. Rincόn-Mora, Senior Member, IEEE Georgia Tech Analog Consortium Georgia Institute of Technology

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary

More information

Digital Signal Processing Complete Bandpass Filter Design Example

Digital Signal Processing Complete Bandpass Filter Design Example Digital Signal Processing Complete Bandpass Filter Design Example D. Richard Brown III D. Richard Brown III 1 / 10 General Filter Design Procedure discrete-time filter specifications prewarp DT frequency

More information

The Periodic Moving Average Filter for Removing Motion Artifacts from PPG Signals

The Periodic Moving Average Filter for Removing Motion Artifacts from PPG Signals International Journal The of Periodic Control, Moving Automation, Average and Filter Systems, for Removing vol. 5, no. Motion 6, pp. Artifacts 71-76, from December PPG s 27 71 The Periodic Moving Average

More information

Lock - in Amplifier and Applications

Lock - in Amplifier and Applications Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o

More information

Time Series and Forecasting

Time Series and Forecasting Chapter 22 Page 1 Time Series and Forecasting A time series is a sequence of observations of a random variable. Hence, it is a stochastic process. Examples include the monthly demand for a product, the

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Transcription of polyphonic signals using fast filter bank( Accepted version ) Author(s) Foo, Say Wei;

More information

Introduction to Digital Filters

Introduction to Digital Filters CHAPTER 14 Introduction to Digital Filters Digital filters are used for two general purposes: (1) separation of signals that have been combined, and (2) restoration of signals that have been distorted

More information

Measuring Line Edge Roughness: Fluctuations in Uncertainty

Measuring Line Edge Roughness: Fluctuations in Uncertainty Tutor6.doc: Version 5/6/08 T h e L i t h o g r a p h y E x p e r t (August 008) Measuring Line Edge Roughness: Fluctuations in Uncertainty Line edge roughness () is the deviation of a feature edge (as

More information

New Method for Optimum Design of Pyramidal Horn Antennas

New Method for Optimum Design of Pyramidal Horn Antennas 66 New Method for Optimum Design of Pyramidal Horn Antennas Leandro de Paula Santos Pereira, Marco Antonio Brasil Terada Antenna Group, Electrical Engineering Dept., University of Brasilia - DF terada@unb.br

More information

Dynamic Eigenvalues for Scalar Linear Time-Varying Systems

Dynamic Eigenvalues for Scalar Linear Time-Varying Systems Dynamic Eigenvalues for Scalar Linear Time-Varying Systems P. van der Kloet and F.L. Neerhoff Department of Electrical Engineering Delft University of Technology Mekelweg 4 2628 CD Delft The Netherlands

More information

DSP-I DSP-I DSP-I DSP-I

DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I Digital Signal Proessing I (8-79) Fall Semester, 005 IIR FILER DESIG EXAMPLE hese notes summarize the design proedure for IIR filters as disussed in lass on ovember. Introdution:

More information

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

More information

CHAPTER 5 Round-off errors

CHAPTER 5 Round-off errors CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any

More information

Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm

Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm 1 Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm Hani Mehrpouyan, Student Member, IEEE, Department of Electrical and Computer Engineering Queen s University, Kingston, Ontario,

More information

NEW DIGITAL SIGNATURE PROTOCOL BASED ON ELLIPTIC CURVES

NEW DIGITAL SIGNATURE PROTOCOL BASED ON ELLIPTIC CURVES NEW DIGITAL SIGNATURE PROTOCOL BASED ON ELLIPTIC CURVES Ounasser Abid 1, Jaouad Ettanfouhi 2 and Omar Khadir 3 1,2,3 Laboratory of Mathematics, Cryptography and Mechanics, Department of Mathematics, Fstm,

More information

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the

More information

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal

More information

Analog and Digital Filters Anthony Garvert November 13, 2015

Analog and Digital Filters Anthony Garvert November 13, 2015 Analog and Digital Filters Anthony Garvert November 13, 2015 Abstract In circuit analysis and performance, a signal transmits some form of information, such as a voltage or current. However, over a range

More information

RN-Codings: New Insights and Some Applications

RN-Codings: New Insights and Some Applications RN-Codings: New Insights and Some Applications Abstract During any composite computation there is a constant need for rounding intermediate results before they can participate in further processing. Recently

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy

The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy BMI Paper The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy Faculty of Sciences VU University Amsterdam De Boelelaan 1081 1081 HV Amsterdam Netherlands Author: R.D.R.

More information

FFT Algorithms. Chapter 6. Contents 6.1

FFT Algorithms. Chapter 6. Contents 6.1 Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT

More information

PIEZO FILTERS INTRODUCTION

PIEZO FILTERS INTRODUCTION For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on

More information

Lecture 13: Factoring Integers

Lecture 13: Factoring Integers CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

The BBP Algorithm for Pi

The BBP Algorithm for Pi The BBP Algorithm for Pi David H. Bailey September 17, 2006 1. Introduction The Bailey-Borwein-Plouffe (BBP) algorithm for π is based on the BBP formula for π, which was discovered in 1995 and published

More information

Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

More information

S-Parameters and Related Quantities Sam Wetterlin 10/20/09

S-Parameters and Related Quantities Sam Wetterlin 10/20/09 S-Parameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of S-Parameters S-Parameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters

More information

Time-Frequency Detection Algorithm of Network Traffic Anomalies

Time-Frequency Detection Algorithm of Network Traffic Anomalies 2012 International Conference on Innovation and Information Management (ICIIM 2012) IPCSIT vol. 36 (2012) (2012) IACSIT Press, Singapore Time-Frequency Detection Algorithm of Network Traffic Anomalies

More information

Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3)

Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3) Effects of Poles & Zeros on Frequency Response (1) Consider a general system transfer function: zeros at z1, z2,..., zn Lecture 9 Poles, Zeros & Filters (Lathi 4.10) The value of the transfer function

More information

PRIME FACTORS OF CONSECUTIVE INTEGERS

PRIME FACTORS OF CONSECUTIVE INTEGERS PRIME FACTORS OF CONSECUTIVE INTEGERS MARK BAUER AND MICHAEL A. BENNETT Abstract. This note contains a new algorithm for computing a function f(k) introduced by Erdős to measure the minimal gap size in

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

More information

EE 508 Lecture 11. The Approximation Problem. Classical Approximations the Chebyschev and Elliptic Approximations

EE 508 Lecture 11. The Approximation Problem. Classical Approximations the Chebyschev and Elliptic Approximations EE 508 Lecture The Approximation Problem Classical Approximations the Chebyschev and Elliptic Approximations Review from Last Time Butterworth Approximations Analytical formulation: All pole approximation

More information

CHAPTER 6 Frequency Response, Bode Plots, and Resonance

CHAPTER 6 Frequency Response, Bode Plots, and Resonance ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Chebyshev Filter at 197.12 MHz Frequency for Radar System

Chebyshev Filter at 197.12 MHz Frequency for Radar System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-1676 Volume 5, Issue 1 (Mar. - Apr. 013), PP 8-33 Chebyshev Filter at 197.1 MHz Frequency for Radar System Denny Permana 1,

More information

The continuous and discrete Fourier transforms

The continuous and discrete Fourier transforms FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

More information

7.6 Approximation Errors and Simpson's Rule

7.6 Approximation Errors and Simpson's Rule WileyPLUS: Home Help Contact us Logout Hughes-Hallett, Calculus: Single and Multivariable, 4/e Calculus I, II, and Vector Calculus Reading content Integration 7.1. Integration by Substitution 7.2. Integration

More information

SWISS ARMY KNIFE INDICATOR John F. Ehlers

SWISS ARMY KNIFE INDICATOR John F. Ehlers SWISS ARMY KNIFE INDICATOR John F. Ehlers The indicator I describe in this article does all the common functions of the usual indicators, such as smoothing and momentum generation. It also does some unusual

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Practical Design of Filter Banks for Automatic Music Transcription

Practical Design of Filter Banks for Automatic Music Transcription Practical Design of Filter Banks for Automatic Music Transcription Filipe C. da C. B. Diniz, Luiz W. P. Biscainho, and Sergio L. Netto Federal University of Rio de Janeiro PEE-COPPE & DEL-Poli, POBox 6854,

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013 FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

THE development of new methods and circuits for electrical energy conversion

THE development of new methods and circuits for electrical energy conversion FACTA UNIERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 29, 245252 Investigation of ThreePhase to SinglePhase Matrix Converter Mihail Antchev and Georgi Kunov Abstract: A threephase to singlephase

More information

Yaesu FT-847 70 MHz PA output and filter simulations Marc Vlemmings, PA1O - Eindhoven, The Netherlands

Yaesu FT-847 70 MHz PA output and filter simulations Marc Vlemmings, PA1O - Eindhoven, The Netherlands Yaesu FT-847 70 MHz PA output and filter simulations Marc Vlemmings, PA1O - Eindhoven, The Netherlands The efficiency of the HF transmitter chain which is also used for 50 MHz and 70 MHz decreases with

More information

Time series analysis Matlab tutorial. Joachim Gross

Time series analysis Matlab tutorial. Joachim Gross Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,

More information

Mathematics, Basic Math and Algebra

Mathematics, Basic Math and Algebra NONRESIDENT TRAINING COURSE Mathematics, Basic Math and Algebra NAVEDTRA 14139 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. PREFACE About this course: This is a self-study

More information

THE Walsh Hadamard transform (WHT) and discrete

THE Walsh Hadamard transform (WHT) and discrete IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 54, NO. 12, DECEMBER 2007 2741 Fast Block Center Weighted Hadamard Transform Moon Ho Lee, Senior Member, IEEE, Xiao-Dong Zhang Abstract

More information

High-Mix Low-Volume Flow Shop Manufacturing System Scheduling

High-Mix Low-Volume Flow Shop Manufacturing System Scheduling Proceedings of the 14th IAC Symposium on Information Control Problems in Manufacturing, May 23-25, 2012 High-Mix Low-Volume low Shop Manufacturing System Scheduling Juraj Svancara, Zdenka Kralova Institute

More information

LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters - Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A

LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters - Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A LM833,LMF100,MF10 Application Note 779 A Basic Introduction to Filters - Active, Passive,and Switched Capacitor Literature Number: SNOA224A A Basic Introduction to Filters Active, Passive, and Switched-Capacitor

More information

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

Matlab GUI for WFB spectral analysis

Matlab GUI for WFB spectral analysis Matlab GUI for WFB spectral analysis Jan Nováček Department of Radio Engineering K13137, CTU FEE Prague Abstract In the case of the sound signals analysis we usually use logarithmic scale on the frequency

More information

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

More information

Math Common Core Sampler Test

Math Common Core Sampler Test High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of. Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

More information

CORRECTION OF DYNAMIC WHEEL FORCES MEASURED ON ROAD SIMULATORS

CORRECTION OF DYNAMIC WHEEL FORCES MEASURED ON ROAD SIMULATORS Pages 1 to 35 CORRECTION OF DYNAMIC WHEEL FORCES MEASURED ON ROAD SIMULATORS Bohdan T. Kulakowski and Zhijie Wang Pennsylvania Transportation Institute The Pennsylvania State University University Park,

More information

Scalable Bloom Filters

Scalable Bloom Filters Scalable Bloom Filters Paulo Sérgio Almeida Carlos Baquero Nuno Preguiça CCTC/Departamento de Informática Universidade do Minho CITI/Departamento de Informática FCT, Universidade Nova de Lisboa David Hutchison

More information

Chapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A

Chapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Literature Number SLOA088 Excerpted from Op Amps for Everyone Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Thomas Kugelstadt 16.1 Introduction

More information

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078

POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078 21 ELLIPTICAL PARTIAL DIFFERENTIAL EQUATIONS: POISSON AND LAPLACE EQUATIONS Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 2nd Computer

More information

ROUTH S STABILITY CRITERION

ROUTH S STABILITY CRITERION ECE 680 Modern Automatic Control Routh s Stability Criterion June 13, 2007 1 ROUTH S STABILITY CRITERION Consider a closed-loop transfer function H(s) = b 0s m + b 1 s m 1 + + b m 1 s + b m a 0 s n + s

More information

Vector Signal Analyzer FSQ-K70

Vector Signal Analyzer FSQ-K70 Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM

More information

EE 508 Lecture 11. The Approximation Problem. Classical Approximations the Chebyschev and Elliptic Approximations

EE 508 Lecture 11. The Approximation Problem. Classical Approximations the Chebyschev and Elliptic Approximations EE 508 Lecture The Approximation Problem Classical Approximations the Chebyschev and Elliptic Approximations Review from Last Time Butterworth Approximations TLP ( jω) Analytical formulation: All pole

More information

4.5 Chebyshev Polynomials

4.5 Chebyshev Polynomials 230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION 4.5 Chebyshev Polynomials We now turn our attention to polynomial interpolation for f (x) over [ 1, 1] based on the nodes 1 x 0 < x 1 < < x N 1. Both

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to

More information

Ira Fine and Thomas J. Osler Department of Mathematics Rowan University Glassboro, NJ 08028. osler@rowan.edu. 1. Introduction

Ira Fine and Thomas J. Osler Department of Mathematics Rowan University Glassboro, NJ 08028. osler@rowan.edu. 1. Introduction 1 08/0/00 THE REMARKABLE INCIRCLE OF A TRIANGLE Ira Fine and Thomas J. Osler Department of Mathematics Rowan University Glassboro, NJ 0808 osler@rowan.edu 1. Introduction The incircle of a triangle is

More information

Piecewise Cubic Splines

Piecewise Cubic Splines 280 CHAP. 5 CURVE FITTING Piecewise Cubic Splines The fitting of a polynomial curve to a set of data points has applications in CAD (computer-assisted design), CAM (computer-assisted manufacturing), and

More information

Designing a Linear FIR filter

Designing a Linear FIR filter Designing a Linear FIR filter implement the transfer function which can be in the form Leena Darsena, Himani of a program Agrawal or form of a circuit diagram. Abstract- Digital filtering has a very important

More information

Lab #9: AC Steady State Analysis

Lab #9: AC Steady State Analysis Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

Synchronization of sampling in distributed signal processing systems

Synchronization of sampling in distributed signal processing systems Synchronization of sampling in distributed signal processing systems Károly Molnár, László Sujbert, Gábor Péceli Department of Measurement and Information Systems, Budapest University of Technology and

More information

Frequency response. Chapter 1. 1.1 Introduction

Frequency response. Chapter 1. 1.1 Introduction Chapter Frequency response. Introduction The frequency response of a system is a frequency dependent function which expresses how a sinusoidal signal of a given frequency on the system input is transferred

More information

IMPROVED NETWORK PARAMETER ERROR IDENTIFICATION USING MULTIPLE MEASUREMENT SCANS

IMPROVED NETWORK PARAMETER ERROR IDENTIFICATION USING MULTIPLE MEASUREMENT SCANS IMPROVED NETWORK PARAMETER ERROR IDENTIFICATION USING MULTIPLE MEASUREMENT SCANS Liuxi Zhang and Ali Abur Department of Electrical and Computer Engineering Northeastern University Boston, MA, USA lzhang@ece.neu.edu

More information