# 8 Primes and Modular Arithmetic

Size: px
Start display at page:

Transcription

1 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers. We use the notation N to denote the nonnegative integers. That is, N = {0, 1, 2,...}. Unless otherwise specified, we restrict our attention here to the set N throughout this chapter. We say a is a factor or divisor of b, and b is a multiple of a if a goes into b without a remainder. For example, the factors of 6 are 1, 2, 3 and 6. A number greater than 1 with only itself and 1 as factors is called a prime number. Otherwise it is composite. (For the record, 1 is neither prime nor composite but is a unit.) For example, 19 is prime, but 21 is composite. The gcd (greatest common divisor) of two numbers, also known as the highest common factor, is the largest number that is a factor of both numbers. For example, gcd(6, 14) = 2. Two numbers are relatively prime if they have no common factor apart from 1. That is, their gcd is 1. If a number is composite, then it is a product of two nontrivial factors (nontrivial here meaning neither is 1). And these factors, if composite, are themselves products of factors. Eventually we reach primes. Thus any integer has a prime factorization (and the factorization is unique). For example, the prime factorization of 60 is This fact is sometimes called the fundamental theorem of arithmetic : Theorem 8.1 Every integer a > 1 can be expressed uniquely as a product of primes. While this theorem may sound obvious, if one is being careful, this fact actually needs several lines to prove it. The reason for the name of the theorem is that there are many places in mathematics where a form of multiplication is defined, and one of the first questions asked is about factoring. c Wayne Goddard, Clemson University, 2013

2 8 PRIMES AND MODULAR ARITHMETIC Euclid s Algorithm If we have the prime factorization of the two numbers, then there is a straightforward recipe to calculate their gcd: take the smaller power of each common prime and multiply together. For example, consider gcd(36, 120). Since 36 = and 120 = , their gcd is = 12. Surprisingly, knowing the factorizations is not necessary, as was known to Euclid and other ancients. To explain this, we need to introduce a new operator called mod. Let d be a positive integer. For c N, the value c mod d is the remainder when c is divided by d. For example, c mod d = 0 if and only if d is a multiple of c. Here is Euclid s Algorithm for the greatest common divisor of a and b: gcd(a,b) if b is a factor of a, then return b else return gcd(b, a mod b) This is a recursive algorithm. The procedure is guaranteed to terminate, since the b-value decreases each time. Example 8.1. What is the gcd of 33 and 12? gcd(33, 12) = gcd(12, 9) = gcd(9, 3) = 3. But we need to show that the procedure always gives the correct value. If b is a factor of a, then clearly their gcd is b. So we need to show that when b is not a factor of a, that gcd(a, b) = gcd(b, a mod b). Well suppose a = qb + r where r = a mod b. It follows that, if c is a factor of both b and r, then c is a factor of qb + r as well, and so it is a factor of a. Conversely, we can re-arrange the equation to r = a qb, and so if c is a factor of both a and b, then it is a factor of r as well. This shows that the set of common factors of a and b is the same as the set of

3 8 PRIMES AND MODULAR ARITHMETIC 47 common factors of a and r. In particular, the greatest element in the two sets must be the same. Euclid s algorithm can be extended to prove the following result, and indeed to construct the s and t the theorem claims exist: Theorem 8.2 If c is the gcd of a and b, then there exist integers s and t such that s a + t b = c. Example 8.2. For 12 and 33, we have ( 1) 33 = 3. We omit the proof of the theorem. For you to do! 1. Use factorization to calculate the gcd of 100 and Use Euclid s algorithm to calculate the gcd of 100 and Modular Arithmetic: Addition and Multiplication In arithmetic modulo n, when we add, subtract, or multiply two numbers, we take the answer mod n. For example, if we want the product of two numbers modulo n, then we multiply them normally and the answer is the remainder when the normal product is divided by n. The value n is sometimes called the modulus. Specifically, let Z n represent the set {0, 1,..., n 1} and define the two operations: a + n b = (a + b) mod n a n b = (a b) mod n Modular arithmetic obeys the usual rules/laws for the operations addition and multiplication. For example, a + n b = b + n a and (a n b) n c = a n (b n c). Now, we can write down tables for modular arithmetic. For example, here are the tables for arithmetic modulo 4 and modulo

4 8 PRIMES AND MODULAR ARITHMETIC The table for addition is rather boring, and it changes in a rather obvious way if we change the modulus. However, the table for multiplication is a bit more interesting. There is obviously a row with all zeroes. Consider the table for 5. Then in each of the other rows, every value is there and there is no repeated value. This does not always happen; for example, look at the table for modulus 4. Indeed, if both x and the modulus are a multiple of m, then every value in the row for x in the multiplication table will be a multiple of m. So the only way it can happen that all values appear in the multiplication table in every nonzero row is that the modulus is a prime. And in that case, yes this happens, as we now prove: Theorem 8.3 If p is a prime, and 1 a p 1, then the values 0 mod p, a mod p, 2a mod p, 3a mod p,..., (p 1)a mod p are all distinct. Proof. Proof by contradiction. Suppose ia mod p = ja mod p with 0 i < j p 1. Then (ja ia) mod p = ja mod p ia mod p = 0, and so ja ia = (j i)a is a multiple of p. However, a is not a multiple of p; so j i is a multiple of p. But that is impossible, because j i > 0 and j i < p. We have a contradiction. Since there are p distinct values in the row, but only p possible values, this means that every value must appear exactly once in the row. We can also define modular subtraction in the same way, provided we say what the mod operation does when the first argument is negative: c mod d is the smallest nonnegative number r such that c = qd + r for some integer q; for example, 1 mod d = d Modular Arithmetic: Inverses An interesting question is whether one can define division. This is based on the concept of an inverse, which is actually a more important concept. We define: the inverse of b, written b 1, is a number y in Z n such that b n y = 1.

5 8 PRIMES AND MODULAR ARITHMETIC 49 The question is: does such a y exist? And if so, how to find it? Well, it certainly does exist in some cases. Example 8.3. For n = 7, it holds that 4 1 = 2 and 3 1 = 5. But 0 1 never exists. Nevertheless, it turns out that modulo a prime p, all the remaining numbers have inverses. Actually, we already proved this when we showed in Theorem 8.3 that all values appear in a row of the multiplication table. In particular, we know that somewhere in the row for b there will be a 1; that is, there exists a y such that b p y = 1. And what about the case where the modulus is not a prime? For example, 7 1 = 13 when the modulus is 15. Theorem 8.4 b 1 exists if and only if b and n are relatively prime. Proof. There are two parts to prove. If b and n have a common factor say a, then any multiple of b is divisible by a and indeed b n y is a multiple of a for all y, so the inverse does not exist. If b is relatively prime to n, then consider Euclid s extended algorithm. Given n and b, the algorithm behind Theorem 8.2 will produce integers x and y such that: n x + b y = 1. And so b n y = 1. And, by using the extension of Euclid s algorithm, one actually has a quick algorithm for finding b 1. It can be shown that if an inverse exists, then it is unique. For you to do! 3. List all the values in Z 11 and their inverses. 8.5 Modular Equations A related question is trying to solve modular equations. These arise in puzzles where it says that: there was a collection of coconuts and when we divided it into four piles there was one left over, and when we divided it into five piles, etc.

6 8 PRIMES AND MODULAR ARITHMETIC 50 Theorem 8.5 Let a N, and let b and c be positive integers that are relatively prime. Then the solution to the equation c x mod b = a is all integers of the form ib + a b c 1 where i is an integer (which can be negative). Proof. We claim that the solution is all integers x such that x mod b = a b c 1, where c 1 is calculated modulo b. The proof of this is just to multiply both sides of the equation by c 1, which we know exists. From there the result follows. Example 8.4. Solve the equation 3x mod 10 = 4. Then 3 1 = 7 and = 8. So x mod 10 = 8. This is then generalized in the Chinese Remainder Theorem, which we do not discuss. 8.6 Unsolved Problems While we have come very far in number theory in thousands of years of effort, there are still many unsolved problems, some of which are easy to state. For example: Conjecture 8.6 (Goldbach s conjecture) Every even number at least 4 is the sum of two primes. Conjecture 8.7 (Twin prime conjecture) There are infinitely many pairs of prime that differ only by 2 (such as 11 and 13). There is a lot of evidence to support Goldbach s conjecture. Indeed, it appears that as the even number get larger, it is the sum of two primes in many ways. But a proof remains elusive. Another question is how to find the factors of a number. Is there an algorithm which runs in time proportional to some polynomial of the number of digits of a number and is guaranteed to find the factorization? Only recently did mankind find such an algorithm which tests whether a number is prime or composite (but the proof of compositeness does not find the factorization... ). Exercises 8.1. List all factors of 945.

7 8 PRIMES AND MODULAR ARITHMETIC How may factors are there of: (a) 21 (b) 245, 000 (c) Define D(n) as the number of factors of n. For example, the primes are the n such that D(n) = 2. (a) Determine all n such that D(n) = 3. (b) Determine all n such that D(n) = A famous mathematician once noticed that the formula f(n) = n 2 n + 41 yields primes for small values of n. For example, when n = 1 he calculated f(1) = 41, which is prime. When n = 2 he calculated f(2) = 43 and this is prime. Test the formula for n = 3, 4,and 5. Are the results prime? Does the formula always yield primes? Prove your answer Calculate the gcd of: (a) 91 and 287. (b) and Show that the gcd operation is associative. That is: gcd(a, gcd(b, c)) = gcd(gcd(a, b), c) (a) Write out the addition and multiplication tables for Z 2. (b) If we define 1 as true and 0 as false, explain which boolean connectives correspond to + 2 and Give the multiplication tables for Z 6 and Z Calculate 5 1 and 10 1 in Z Prove that if b has an inverse in Z n, then it is unique How many elements of Z 91 have multiplicative inverses in Z 91? How many rows of the table for 12 contain all values? Describe all solutions to the modular equation 7x mod 8 = 3.

8 8 PRIMES AND MODULAR ARITHMETIC Find the smallest positive solution to the set of modular equations: x mod 3 = 2, x mod 11 = 4, x mod 8 = (a) Consider the primes 5, 7, and 11 for n. For each integer from 1 through n 1, calculate its inverse. (b) A number is self-inverse if it is its own inverse. For example, 1 is always self-inverse. Based on the data from (a), state a conjecture about the number of self-inverses when n is a prime. (c) Prove your conjecture Given a, b Z n, we say that b is a modular square-root of a if b n b = a. (a) List all the elements in Z 11, and for each element, list all their modular squareroots, if they have any. (b) Prove that if n is prime then a has at most two square-roots. (c) Give an example that shows that it is possible for a number to have more than 2 square-roots (a) Consider the primes 5, 7, and 11 for n. For each a from 1 through n 1, calculate a 2 mod n (which is the same as a n a). (b) A number y is a quadratic residue if there is some a such that y = a 2 mod n. For example, 1 is always a quadratic residue (since it is 1 2 mod n). Based on the data from (a), state a conjecture about the number of quadratic residues. (c) Prove your conjecture. Solutions to Practice Exercises = and 240 = So gcd = = (240, 100) (100, 40) (40, 20)

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### 8 Divisibility and prime numbers

8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### Today s Topics. Primes & Greatest Common Divisors

Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

### Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

### Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

### MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

### Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

### 15 Prime and Composite Numbers

15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### The last three chapters introduced three major proof techniques: direct,

CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

### Theorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive

Chapter 3 Number Theory 159 3.1 Prime Numbers Prime numbers serve as the basic building blocs in the multiplicative structure of the integers. As you may recall, an integer n greater than one is prime

### SUM OF TWO SQUARES JAHNAVI BHASKAR

SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted

### Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Lights, Camera, Primes! Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Today, we re going

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### Elementary Number Theory

Elementary Number Theory A revision by Jim Hefferon, St Michael s College, 2003-Dec of notes by W. Edwin Clark, University of South Florida, 2002-Dec L A TEX source compiled on January 5, 2004 by Jim Hefferon,

### 6.2 Permutations continued

6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

### 5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing

### GREATEST COMMON DIVISOR

DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

### Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

### Stupid Divisibility Tricks

Stupid Divisibility Tricks 101 Ways to Stupefy Your Friends Appeared in Math Horizons November, 2006 Marc Renault Shippensburg University Mathematics Department 1871 Old Main Road Shippensburg, PA 17013

### SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

### Introduction to Programming (in C++) Loops. Jordi Cortadella, Ricard Gavaldà, Fernando Orejas Dept. of Computer Science, UPC

Introduction to Programming (in C++) Loops Jordi Cortadella, Ricard Gavaldà, Fernando Orejas Dept. of Computer Science, UPC Example Assume the following specification: Input: read a number N > 0 Output:

### Example. Introduction to Programming (in C++) Loops. The while statement. Write the numbers 1 N. Assume the following specification:

Example Introduction to Programming (in C++) Loops Assume the following specification: Input: read a number N > 0 Output: write the sequence 1 2 3 N (one number per line) Jordi Cortadella, Ricard Gavaldà,

### Factoring Algorithms

Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

### The Euclidean Algorithm

The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0

THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2 y +n = x 2 for fixed positive n. The computational

### MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

### Handout NUMBER THEORY

Handout of NUMBER THEORY by Kus Prihantoso Krisnawan MATHEMATICS DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES YOGYAKARTA STATE UNIVERSITY 2012 Contents Contents i 1 Some Preliminary Considerations

### Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility

### Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II

Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Last week: How to find one solution to a linear Diophantine equation This week: How to find all solutions to a linear Diophantine

### Chapter 3. if 2 a i then location: = i. Page 40

Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)

### Number Theory: A Mathemythical Approach. Student Resources. Printed Version

Number Theory: A Mathemythical Approach Student Resources Printed Version ii Contents 1 Appendix 1 2 Hints to Problems 3 Chapter 1 Hints......................................... 3 Chapter 2 Hints.........................................

### Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system

CHAPTER Number Theory FIGURE FIGURE FIGURE Plus hours Plus hours Plus hours + = + = + = FIGURE. Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter described a mathematical

### 3 Some Integer Functions

3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

### Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

### Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

### Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

### SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!

GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!!! Challenge Problem 2 (Mastermind) due Fri. 9/26 Find a fourth guess whose scoring will allow you to determine the secret code (repetitions are

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### DIVISIBILITY AND GREATEST COMMON DIVISORS

DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1 Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties Then we will

### MATH 13150: Freshman Seminar Unit 10

MATH 13150: Freshman Seminar Unit 10 1. Relatively prime numbers and Euler s function In this chapter, we are going to discuss when two numbers are relatively prime, and learn how to count the numbers

### Public Key Cryptography: RSA and Lots of Number Theory

Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### Handout #1: Mathematical Reasoning

Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

### Mathematical Induction

Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

### So let us begin our quest to find the holy grail of real analysis.

1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov

Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES

### WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

### Grade 7/8 Math Circles Fall 2012 Factors and Primes

1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Factors and Primes Factors Definition: A factor of a number is a whole

### 26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

### PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS A ver important set of curves which has received considerabl attention in recent ears in connection with the factoring of large numbers

### Lectures on Number Theory. Lars-Åke Lindahl

Lectures on Number Theory Lars-Åke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder

### The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic 1 Introduction: Why this theorem? Why this proof? One of the purposes of this course 1 is to train you in the methods mathematicians use to prove mathematical statements,

### Cryptography and Network Security Number Theory

Cryptography and Network Security Number Theory Xiang-Yang Li Introduction to Number Theory Divisors b a if a=mb for an integer m b a and c b then c a b g and b h then b (mg+nh) for any int. m,n Prime

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)

Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the

### Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms

The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008 This talk is about counting, and it s about

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### DigitalCommons@University of Nebraska - Lincoln

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University

### Computer and Network Security

MIT 6.857 Computer and Networ Security Class Notes 1 File: http://theory.lcs.mit.edu/ rivest/notes/notes.pdf Revision: December 2, 2002 Computer and Networ Security MIT 6.857 Class Notes by Ronald L. Rivest

### Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

### ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION

ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

### The Chinese Remainder Theorem

The Chinese Remainder Theorem Evan Chen evanchen@mit.edu February 3, 2015 The Chinese Remainder Theorem is a theorem only in that it is useful and requires proof. When you ask a capable 15-year-old why

### Number Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures

Number Theory Hungarian Style Cameron Byerley s interpretation of Csaba Szabó s lectures August 20, 2005 2 0.1 introduction Number theory is a beautiful subject and even cooler when you learn about it

### RSA and Primality Testing

and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2

### Computing exponents modulo a number: Repeated squaring

Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method

### Session 6 Number Theory

Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

### Just the Factors, Ma am

1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

### Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:

### V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical

### Math 453: Elementary Number Theory Definitions and Theorems

Math 453: Elementary Number Theory Definitions and Theorems (Class Notes, Spring 2011 A.J. Hildebrand) Version 5-4-2011 Contents About these notes 3 1 Divisibility and Factorization 4 1.1 Divisibility.......................................

### Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

### Introduction to Modern Algebra

Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write

### Overview of Number Theory Basics. Divisibility

Overview of Number Theory Basics Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Divisibility Definition Given integers a and b, b 0, b divides a (denoted b a) if integer c, s.t. a = cb. b is called

### Test1. Due Friday, March 13, 2015.

1 Abstract Algebra Professor M. Zuker Test1. Due Friday, March 13, 2015. 1. Euclidean algorithm and related. (a) Suppose that a and b are two positive integers and that gcd(a, b) = d. Find all solutions

### CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association

CISC - Curriculum & Instruction Steering Committee California County Superintendents Educational Services Association Primary Content Module IV The Winning EQUATION NUMBER SENSE: Factors of Whole Numbers

### Some practice problems for midterm 2

Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of 6 2000 when divided by 11? Solution: This is a long-winded way of asking for the value of 6 2000 mod