# POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078

Save this PDF as:

Size: px
Start display at page:

Download "POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078"

## Transcription

1 21 ELLIPTICAL PARTIAL DIFFERENTIAL EQUATIONS: POISSON AND LAPLACE EQUATIONS Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK nd Computer Project in MAE 3403 Computer Methods in Analysis and Design April 1999

2 Elliptic Partial Differential Equations 1 ABSTRACT A formula for solving elliptic partial differential equations using finite differences and iteration was derived. A computer program was made to iteratively calculate the solutions of Laplacian and Poisson elliptic partial differential equations. The results show that the finite differences method does find an approximate solution but can be sensitive to boundary types and step size. Implications of these results are discussed.

3 Elliptic Partial Differential Equations 2 INTRODUCTION Physical processes commonly can be related to the change in the properties of the substance undergoing the process. Those processes that depend on more than two variables are called partial differential equations. Laplace and Poisson s equations are examples of elliptic partial differential equations and are used to model the steady state time-invariant response of physical systems. Slicing the system into small segments of equal length yields a set of finite difference equations which can theoretically be solved using any matrix solving method. The potential for large matrices, which are mostly filled with zeros, makes the iterative method of solving a matrix attractive. A common example of the elliptic partial differential equation is the heated plate, which will be the physical model used even though these equations can be used on many other problems. The objective is to use an iterative technique to solve partial differential equations of the Poisson and Laplacian form. A computer program will use the derived iterative methods to calculate a steady state response to a physical model specified in a data file. Overrelaxation will be used to decrease the number of computer calculations. Three cases of the Laplace and Poisson equations will be used to verify the validity of the method and computer program. A further three cases will be analyized to determine the solutions to the class project problems given. THEORY Partial differential equations (PDEs) depend on the changing of two or more variables. In particular, the solutions to elliptic PDEs are the steady state responses of the system s boundary conditions. Poisson s Equation is 2 T x T = f(x, y) y2

4 Elliptic Partial Differential Equations 3 The Laplace Equation is a special case of the Poisson equation where f(x, y) = 0. 2 T x T y 2 = 0 Using a 3 point centered formula for the 2nd numerical derivative with respect to x and to y yields the relationship, 2 T x 2 = T W + T E 2T P x 2 2 T y 2 = T N + T S 2T P y 2 When the x and y spacing are equal, x = y =, Poisson s equation becomes, 2 T x T y 2 = T N + T S + T W + T E 4T P 2 which can be further simplified to Solving for T P yields, T N + T S + T W + T E 4T P 2 = f(x, y) T P = T N + T S + T W + T E 2 f(x, y) 4 Thus T P can now be solved iterativly to approximate the solution of the partial differential equation. Overrelaxation is the scaling of an iterated solution more than the iteration specifies in an attempt to converge the solution faster. By applying the principle of overrelaxation, the number of iterations to converge on the correct solution can be reduced significantly. Overrelaxation can be included by adding and subtracting T P on the right side of the equation while also specifying the degree of overrelaxation ω. This yields, T P = T P + ω 4 (T N + T S + T W + T E 4T P 2 f(x, y))

5 Elliptic Partial Differential Equations 4 Where ω is subject to the condition 1 ω < 2 For matrices over [10 10] and where p and q are the number of x and y intervals respectivly, ω can be approximated by ω 2 π 2 p q 2 METHOD OF CALCULATION A computer program written in FORTRAN 77 was developed to calculate the solution to Poisson s and the Laplacian equation by iteration. The program first initializes a matrix T to store the temperature values at all the x and y values. A data file is used to input the necessary boundaries, boundary conditions, spacing and internal heat generation values. When the east temperature is given as -999 or smaller, the program assumes an adiabatic east boundary. All temperature values are implicitly declared floating point single precision. All index values are implicitly declared as integers. Next, a series of DO loops initialize the boundary values with the values obtained from the data file. Three nested DO loops iteratively calculate the value of each point inside of the external edge points using the method derived in the theory section. When the program uses an adiabatic boundary on the east boundary, a fictional point just outside of the adiabatic boundary is made to reflect the temperature seen at the point just inside the adiabatic boundary. The matrix of temperatures is printed at specified intervals and the end iteration while inside the outer DO loop. When an adiabatic boundary is specified, the fictional points are also printed. The program then exits. RESULTS AND DISCUSSION Calculations have been performed as described above on three test cases and three project problems. The three test cases consist of one trivial case, one internal heat generation case and one adiabatic boundary case. The project problems are those given in

6 Elliptic Partial Differential Equations 5 the MAE 3403 class and consist of one internal heat generation problem, a boundary temperature case and an adiabatic boundary case. For Case 1, a trivial solution case, a square plate was heated from an initial temperature of zero degrees to steady state with 100 degree boundaries at the edges. The solution of 100 degrees throughout the plate was found as expected by the boundary conditions (Appendix B. Case 1). The contour plot is given in Figure C1 (Appendix C). For Case 2, a square plate was internally heated with boundary temperatures of zero degrees. The internal heat generation should create a rounded rise in the plate temperature and the data (Appendix B. Case 2) confirms this. A contour plot is given in Figure C2. For Case 3. a square plate was heated at the north, south and west boundary while the east boundary had a adiabatic surface. This case is solved as example 29.3 in Chapra(1998). The data (Appendix B. Case 3) gives the fictional temperatures past the adiabatic surface boundary; however, all other data conforms with Chapra s solution. A contour plot is given in Figure C3. Problem 7.1 considers a plate with an internally generated heat source with boundary temperatures of zero degrees. The temperatures and boundaries were as followed: T(0,y)=0, T(x,0)=0, T(3,y)=0 and T(x,1)=0. The function to be solved is 2 T x T y 2 = 21 The computer program returned final answers of 2.56 degrees at the center (x=1.5, y=.5) of the plate (Appendix B. Problem 7.1). The values are similar to the test Case 2 in that the temperature reaches a rounded peak maximum value at the center of the plate (Figure P1). The peak is symmetric when divided along the center of the plate for both the x and y axis. A physical type of solution such as a long-uninsulated bar carrying electricity could be modeled with this type of equation and boundary conditions.

7 Elliptic Partial Differential Equations 6 Problem 7.2a is a square plate with boundary temperatures of different temperatures as followed: North=100, South=300 and East=West=192. The data file is given (Appendix B. Problem 7.2a). The function to be solved is 2 T x T y 2 = 0 Two calculations were performed with different grid sizes. The middle temperature is the same between the fine and coarse grid at 196 degrees. Extrapolating to the limit at the quarter temperature (y=0.25, x=0.25) yields T exact T fine (T fine T coarse ) = = This problem s contours (Figure P2) would be typical of a plate subjected to different temperatures. Problem 7.2b reduces the computation of 7.2a by considering the plate as having an adiabatic surface at the symmetry line of 7.2a. This symmetry line is at x values of 0.5 after which the plate can be truncated. The contour plot (Figure P4.) gives the same solution as the left side of Figure P2. The solution (Appendix B. Problem 7.2b) shows the same data as in Problem 7.2a up to one value past the adiabatic line. The iterative solution to Poisson and Laplace equations does work. Depending on the accuracy, the method can provide a rough, poor solution or a solution that approaches the precision of the computer. Results from the test cases did show a stable and repeatable method. This method is adaptable to many types of problems and can easily be modified for different conditions and boundary types. Iteration does have problems. Most serious is that the method uses finite segments. This prevents the exact answers from occurring and limits high quality answers to those calculations with many iterations. A second problem, slow convergence, is inherited from the first problem due to the number of points required.

8 Elliptic Partial Differential Equations 7 This slow convergence can be offset to some degree using overrelaxation techniques, but high quality answers with large systems still require many calculations. Using properties of symmetry can help the computational load as shown in Problem 7.2b but only for larger systems. Not calculating the extra half of the plate did allow for a slight shorter computation; however, when the plate is modeled with a few number of points as in the coarse grid, the overhead of calculating the adiabatic boundary almost equals the calculation of the entire plate. A final problem is that the modeling method breaks at corners due to the presence of two different temperatures with no separating distance and maintaining the same step value. This can be seen in the corners of the contour plots in many of the Appendix C figures. CONCLUSION Iteration when combined with finite difference derivative and properly used provides good quality solutions to partial differential equations. The method is computationally better than solving plate temperatures by elimination matrix methods for sparse matrices; however, it still has faults that can create problems. Particularly, the method is dependent upon finite differences which creates many computations and no exact answers. When large computing power is available and the problem is sufficently formulated, the finite difference equations combined with iteration is powerful and adaptable.

9 Elliptic Partial Differential Equations 8 REFERENCES Chapra, Steven C., Raymond P. Canale (1998) Numerical methods for engineers: with programming and software applications, WCB/McGraw-Hill.

10 Elliptic Partial Differential Equations 9 APPENDIX A Computer Program

11 Elliptic Partial Differential Equations 12 APPENDIX B Input and Output

12 Elliptic Partial Differential Equations 22 APPENDIX C Figures

13 TEST CASES: Elliptic Partial Differential Equations 23 Figure C1. Contour plot of test case 1 Figure C2. Contour plot of test case 2

14 Figure C3. Contour plot of test case 3 Elliptic Partial Differential Equations 24

15 PROJECT SOLUTIONS Elliptic Partial Differential Equations 25 Figure P1. Contour plot of 7.1 Figure P2. Contour plot of 7.2a coarse grid

16 Elliptic Partial Differential Equations 26 Figure P3. Contour plot of 7.2a fine grid Figure P4. Contour plot of 7.2b coarse grid

17 Figure P5. Contour plot of 7.2b fine grid Elliptic Partial Differential Equations 27

### JET ENGINE PERFORMANCE. Charles Robert O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078

JET ENGINE PERFORMANCE Charles Robert O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Honors Project in ENGSC 3233 Fluid Mechanics December 1998 JET

### (57) (58) (59) (60) (61)

Module 4 : Solving Linear Algebraic Equations Section 5 : Iterative Solution Techniques 5 Iterative Solution Techniques By this approach, we start with some initial guess solution, say for solution and

### Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis

### Graphs of Polar Equations

Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate

### 10.4 APPLICATIONS OF NUMERICAL METHODS Applications of Gaussian Elimination with Pivoting

558 HAPTER NUMERIAL METHODS 5. (a) ompute the eigenvalues of A 5. (b) Apply four iterations of the power method with scaling to each matrix in part (a), starting with x,. 5. (c) ompute the ratios for A

### 10.4 APPLICATIONS OF NUMERICAL METHODS Applications of Gaussian Elimination with Pivoting

59 CHAPTER NUMERICAL METHODS. APPLICATIONS OF NUMERICAL METHODS Applications of Gaussian Elimination with Pivoting In Section.5 you used least squares regression analysis to find linear mathematical models

### FINITE DIFFERENCE METHODS

FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to

### Fourier Series. A Fourier series is an infinite series of the form. a + b n cos(nωx) +

Fourier Series A Fourier series is an infinite series of the form a b n cos(nωx) c n sin(nωx). Virtually any periodic function that arises in applications can be represented as the sum of a Fourier series.

### Astrophysics with the Computer: Finding the Gravitational Potential of a Galaxy

Astrophysics with the Computer: Finding the Gravitational Potential of a Galaxy Joachim Köppen Kiel/Strasbourg 2006/07 1 Astrophysics The movement of stars within a galaxy is governed by the gravitational

### 1 Finite difference example: 1D implicit heat equation

1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following

### Week 9 - Lecture Linear Structural Analysis. ME Introduction to CAD/CAE Tools

Week 9 - Lecture Linear Structural Analysis Lecture Topics Finite Element Analysis (FEA) Overview FEA Parameters FEA Best Practices FEA Software Introduction Linear Structure Analysis Product Lifecycle

### LECTURE NOTES: FINITE ELEMENT METHOD

LECTURE NOTES: FINITE ELEMENT METHOD AXEL MÅLQVIST. Motivation The finite element method has two main strengths... Geometry. Very complex geometries can be used. This is probably the main reason why finite

### The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

### General Framework for an Iterative Solution of Ax b. Jacobi s Method

2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

### An Introduction to Separation of Variables with Fourier Series Math 391w, Spring 2010 Tim McCrossen Professor Haessig

An Introduction to Separation of Variables with Fourier Series Math 391w, Spring 2010 Tim McCrossen Professor Haessig Abstract: This paper aims to give students who have not yet taken a course in partial

### Contents. Bibliografische Informationen digitalisiert durch

1 Introduction 1 1.1 Introduction to Maple 1 1.1.1 Getting Started with Maple 1 1.1.2 Plotting with Maple 3 1.1.3 Solving Linear and Nonlinear Equations 5 1.1.4 Matrix Operations 6 1.1.5 Differential Equations

### How High a Degree is High Enough for High Order Finite Elements?

This space is reserved for the Procedia header, do not use it How High a Degree is High Enough for High Order Finite Elements? William F. National Institute of Standards and Technology, Gaithersburg, Maryland,

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY REPORT 12-06 ADJOINT SENSITIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING COMSOL MULTIPHYSICS W. MULCKHUYSE, D. LAHAYE, A. BELITSKAYA ISSN 1389-6520 Reports of the Department

### Introduction to the Finite Element Method

Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross

### Two-Dimensional Conduction: Shape Factors and Dimensionless Conduction Heat Rates

Two-Dimensional Conduction: Shape Factors and Dimensionless Conduction Heat Rates Chapter 4 Sections 4.1 and 4.3 make use of commercial FEA program to look at this. D Conduction- General Considerations

### Types of Elements

chapter : Modeling and Simulation 439 142 20 600 Then from the first equation, P 1 = 140(0.0714) = 9.996 kn. 280 = MPa =, psi The structure pushes on the wall with a force of 9.996 kn. (Note: we could

### SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I

Lennart Edsberg, Nada, KTH Autumn 2008 SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I Parameter values and functions occurring in the questions belowwill be exchanged

### CAD and Finite Element Analysis

CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: Stress Analysis Thermal Analysis Structural Dynamics Computational Fluid Dynamics (CFD) Electromagnetics Analysis...

### 5 Numerical Differentiation

D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

### Numerical Methods for Engineers

Steven C. Chapra Berger Chair in Computing and Engineering Tufts University RaymondP. Canale Professor Emeritus of Civil Engineering University of Michigan Numerical Methods for Engineers With Software

### INCORPORATING CFD INTO THE UNDERGRADUATE MECHANICAL ENGINEERING PROGRAMME AT THE UNIVERSITY OF MANITOBA

INCORPORATING CFD INTO THE UNDERGRADUATE MECHANICAL ENGINEERING PROGRAMME AT THE UNIVERSITY OF MANITOBA Scott J. Ormiston SJ Ormiston@UManitoba.ca Associate Professor, Dept. of Mechanical and Industrial

### Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

### Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 01

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 01 Welcome to the series of lectures, on finite element analysis. Before I start,

### The Basics of FEA Procedure

CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

### NUMERICAL METHODS C. Carl Gustav Jacob Jacobi 10.1 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

0. Gaussian Elimination with Partial Pivoting 0.2 Iterative Methods for Solving Linear Systems 0.3 Power Method for Approximating Eigenvalues 0.4 Applications of Numerical Methods Carl Gustav Jacob Jacobi

### Numerical methods for American options

Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

### 3 Numerical Methods for Convection

3 Numerical Methods for Convection The topic of computational fluid dynamics (CFD) could easily occupy an entire semester indeed, we have such courses in our catalog. The objective here is to eamine some

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### Axisymmetry Tutorial. A few representations of simple axisymmetric models are shown below. Axisymmetry Tutorial 6-1 0, 18 28, MPa 0, 12.

Axisymmetry Tutorial 6-1 Axisymmetry Tutorial 0, 18 28, 18 0, 12 10 MPa 10 MPa 0, 6 0, 0 4, 0 x = 0 (axis of symmetry) user-defined external boundary 4, 24 12, 24 20, 24 28, 24 This tutorial will illustrate

### INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural

### > 2. Error and Computer Arithmetic

> 2. Error and Computer Arithmetic Numerical analysis is concerned with how to solve a problem numerically, i.e., how to develop a sequence of numerical calculations to get a satisfactory answer. Part

### Multi-Block Gridding Technique for FLOW-3D Flow Science, Inc. July 2004

FSI-02-TN59-R2 Multi-Block Gridding Technique for FLOW-3D Flow Science, Inc. July 2004 1. Introduction A major new extension of the capabilities of FLOW-3D -- the multi-block grid model -- has been incorporated

### NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS

Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Fall semester 2004/2005 NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS 1. NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS - Matrices

### Project 1: Relaxation Methods

Project 1: Relaxation Methods Due date: 17 February 2012 12:00hrs For full credit, hand in a tidy and efficiently short presentation of your results and how they come about, in a manner that can be understood

### www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software

www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software Content Executive Summary... 3 Characteristics of Electromagnetic Sensor Systems... 3 Basic Selection

### Nonlinear Iterative Partial Least Squares Method

Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

Frequently Asked Questions about the Finite Element Method 1. What is the finite element method (FEM)? The FEM is a novel numerical method used to solve ordinary and partial differential equations. The

### An Overview of the Finite Element Analysis

CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry

### Groundwater Analysis Overview

Finite Element Groundwater Seepage (Overview) 7-1 Groundwater Analysis Overview Introduction Within the Slide program, Slide has the capability to carry out a finite element groundwater seepage analysis

### 3. Double Integrals 3A. Double Integrals in Rectangular Coordinates

3. Double Integrals 3A. Double Integrals in ectangular Coordinates 3A-1 Evaluate each of the following iterated integrals: c) 2 1 1 1 x 2 (6x 2 +2y)dydx b) x 2x 2 ydydx d) π/2 π 1 u (usint+tcosu)dtdu u2

### Yousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal - April 30, 2008

A tutorial on: Iterative methods for Sparse Matrix Problems Yousef Saad University of Minnesota Computer Science and Engineering CRM Montreal - April 30, 2008 Outline Part 1 Sparse matrices and sparsity

### (Refer Slide Time: 00:00:56 min)

Numerical Methods and Computation Prof. S.R.K. Iyengar Department of Mathematics Indian Institute of Technology, Delhi Lecture No # 3 Solution of Nonlinear Algebraic Equations (Continued) (Refer Slide

### WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics

WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics Visualization of Matrices Good visuals anchor any presentation. MATLAB has a wide variety of ways to display data and calculation results that can be

### Sparse direct methods

Sparse direct methods Week 6: Monday, Sep 24 Suppose A is a sparse matrix, and P A = LU. Will L and U also be sparse? The answer depends in a somewhat complicated way on the structure of the graph associated

### This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections:

Chapter 21. Melting Modeling Solidification and This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections: Section 21.1: Overview

### Math Common Core Sampler Test

High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests

### Matrix Multiplication

Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

### LINEAR SYSTEMS. Consider the following example of a linear system:

LINEAR SYSTEMS Consider the following example of a linear system: Its unique solution is x +2x 2 +3x 3 = 5 x + x 3 = 3 3x + x 2 +3x 3 = 3 x =, x 2 =0, x 3 = 2 In general we want to solve n equations in

### Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

### What is a Filter? Output Signal. Input Signal Amplitude. Frequency. Low Pass Filter

What is a Filter? Input Signal Amplitude Output Signal Frequency Time Sequence Low Pass Filter Time Sequence What is a Filter Input Signal Amplitude Output Signal Frequency Signal Noise Signal Noise Frequency

NOTES ON THE GRADIENT In this discussion, we investigate properties of the gradient and in the process learn several important and useful Mathematica functions and techniques. Simple examples of the gradient

### Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Chapter 10 Boundary Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

### Simplified wave modelling

Simple wave modelling Simplified wave modelling John C. Bancroft ABSTRACT Wave motion is modelled using the acoustic wave equation and implemented using MATLAB. This method requires two initial conditions

### MATHS LEVEL DESCRIPTORS

MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and

### Introduction to Basics of FEA and

Introduction to Basics of FEA and Pro/MECHANICA 25.353 Lecture Series G. Gary Wang Department of Mechanical and Manufacturing Engineering The University of Manitoba What is Pro/MECHANICA Pro/MECHANICA

### 1.01 b) Operate with polynomials.

1.01 Write equivalent forms of algebraic expressions to solve problems. a) Apply the laws of exponents. There are a few rules that simplify our dealings with exponents. Given the same base, there are ways

### MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

### AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

### Finite Elements for 2 D Problems

Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,

### Parameter Estimation for Bingham Models

Dr. Volker Schulz, Dmitriy Logashenko Parameter Estimation for Bingham Models supported by BMBF Parameter Estimation for Bingham Models Industrial application of ceramic pastes Material laws for Bingham

### Algorithms 2/17/2015. Double Summations. Enough Mathematical Appetizers! Algorithms. Algorithms. Algorithm Examples. Algorithm Examples

Double Summations Table 2 in 4 th Edition: Section 1.7 5 th Edition: Section.2 6 th and 7 th Edition: Section 2.4 contains some very useful formulas for calculating sums. Enough Mathematical Appetizers!

### Fourier Series Chapter 3 of Coleman

Fourier Series Chapter 3 of Coleman Dr. Doreen De eon Math 18, Spring 14 1 Introduction Section 3.1 of Coleman The Fourier series takes its name from Joseph Fourier (1768-183), who made important contributions

### 7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

### Inverse problems. Nikolai Piskunov 2014. Regularization: Example Lecture 4

Inverse problems Nikolai Piskunov 2014 Regularization: Example Lecture 4 Now that we know the theory, let s try an application: Problem: Optimal filtering of 1D and 2D data Solution: formulate an inverse

### Iterative Solvers for Linear Systems

9th SimLab Course on Parallel Numerical Simulation, 4.10 8.10.2010 Iterative Solvers for Linear Systems Bernhard Gatzhammer Chair of Scientific Computing in Computer Science Technische Universität München

### ESSENTIAL COMPUTATIONAL FLUID DYNAMICS

ESSENTIAL COMPUTATIONAL FLUID DYNAMICS Oleg Zikanov WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xv 1 What Is CFD? 1 1.1. Introduction / 1 1.2. Brief History of CFD / 4 1.3. Outline of the Book / 6 References

### Computer programming course in the Department of Physics, University of Calcutta

Computer programming course in the Department of Physics, University of Calcutta Parongama Sen with inputs from Prof. S. Dasgupta and Dr. J. Saha and feedback from students Computer programming course

### AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

### SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

### Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

### Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.

Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that

### Math 181 Spring 2007 HW 1 Corrected

Math 181 Spring 2007 HW 1 Corrected February 1, 2007 Sec. 1.1 # 2 The graphs of f and g are given (see the graph in the book). (a) State the values of f( 4) and g(3). Find 4 on the x-axis (horizontal axis)

### Math 2400 - Numerical Analysis Homework #2 Solutions

Math 24 - Numerical Analysis Homework #2 Solutions 1. Implement a bisection root finding method. Your program should accept two points, a tolerance limit and a function for input. It should then output

### COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

### Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Jennifer Zhao, 1 Weizhong Dai, Tianchan Niu 1 Department of Mathematics and Statistics, University of Michigan-Dearborn,

### STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

### Pre-Calculus 20 Chapter 3 Notes

Section 3.1 Quadratic Functions in Vertex Form Pre-Calculus 20 Chapter 3 Notes Using a table of values, graph y = x 2 y x y=x 2-2 4-2 4 x Using a table of values, graph y = -1x 2 (or y = -x 2 ) y x y=-x

### Comsol Laboration: Heat Conduction in a Chip

Comsol Laboration: Heat Conduction in a Chip JO, CSC January 11, 2012 1 Physical configuration A chip on a circuit board is heated inside and cooled by convection by the surrounding fluid. We consider

### Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

### Floating-point computation

Real values and floating point values Floating-point representation IEEE 754 standard representation rounding special values Floating-point computation 1 Real values Not all values can be represented exactly

### FEM Software Automation, with a case study on the Stokes Equations

FEM Automation, with a case study on the Stokes Equations FEM Andy R Terrel Advisors: L R Scott and R C Kirby Numerical from Department of Computer Science University of Chicago March 1, 2006 Masters Presentation

### CHAPTER 3 CENTRAL TENDENCY ANALYSES

CHAPTER 3 CENTRAL TENDENCY ANALYSES The next concept in the sequential statistical steps approach is calculating measures of central tendency. Measures of central tendency represent some of the most simple

### Regression Clustering

Chapter 449 Introduction This algorithm provides for clustering in the multiple regression setting in which you have a dependent variable Y and one or more independent variables, the X s. The algorithm

### An Analysis of Heat Conduction with Phase Change during the Solidification of Copper

An Analysis of Heat Conduction with Phase Change during the Solidification of Copper J. Michalski and E. Gutierrez-Miravete *2 1 Hamilton Sundstrand, 2 Rensselaer at Hartford *Corresponding author: 275

### The QOOL Algorithm for fast Online Optimization of Multiple Degree of Freedom Robot Locomotion

The QOOL Algorithm for fast Online Optimization of Multiple Degree of Freedom Robot Locomotion Daniel Marbach January 31th, 2005 Swiss Federal Institute of Technology at Lausanne Daniel.Marbach@epfl.ch

### CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

### Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

### Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -

### Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

### Energy and material efficient non-circular bore Bitter magnets. A. Akhmeteli 1, A.V. Gavrilin 2

Energy and material efficient non-circular bore Bitter magnets A. Akhmeteli 1, A.V. Gavrilin 2 Abstract There exist a number of experiments/applications where the second dimension of the bore of Bitter

### A three point formula for finding roots of equations by the method of least squares

A three point formula for finding roots of equations by the method of least squares Ababu Teklemariam Tiruneh 1 ; William N. Ndlela 1 ; Stanley J. Nkambule 1 1 Lecturer, Department of Environmental Health

### An Introduction to Partial Differential Equations in the Undergraduate Curriculum

An Introduction to Partial Differential Equations in the Undergraduate Curriculum J. Tolosa & M. Vajiac LECTURE 11 Laplace s Equation in a Disk 11.1. Outline of Lecture The Laplacian in Polar Coordinates