Continuous Random Variables: Joint PDFs, Conditioning, Expectation and Independence

Size: px
Start display at page:

Download "Continuous Random Variables: Joint PDFs, Conditioning, Expectation and Independence"

Transcription

1 Cotiuous Radom Variables: Joit DFs, Coditioig, xpectatio ad Idepedece Berli Che Departmet o Computer ciece & Iormatio gieerig Natioal Taiwa Normal Uiversit Reerece: - D.. Bertsekas, J. N. Tsitsiklis, Itroductio to robabilit, ectios

2 Multiple Cotiuous Radom Variables (/) Two cotiuous radom variables ad associated with a commo experimet are joitl cotiuous ad ca be described i terms o a joit DF satisig, B x, is a oegative uctio Normalizatio robabilit, x, dxd, a, c imilarl, ca be viewed as the probabilit per uit area i the viciit o a, c a a a c c a Where is a small positive umber x, B,,, dxd, c c x, dxd a c,,, robabilit-berli Che

3 Multiple Cotiuous Radom Variables (/) Margial robabilit ad, x, ddx We have alread deied that We thus have the margial DF imilarl, x x x,, x,, d dx dx robabilit-berli Che 3

4 Illustrative xample xample 3.0. Two-Dimesioal Uiorm DF. We are told that the joit DF o the radom variables ad is a costat c o a area ad is zero outside. Fid the value o c ad the margial DFs o ad. The correspod ig uiorm joit DF o a area is deied to be (c. xample 3.9), x,, ize 0, 4, i x, o area otherwise x, or x, or 4 x x, or x 3 x 3 x x, 4 3, 4, 4 d d d d or or x, 3 x, 3 3 4, 4, dx dx 4 dx dx or 3 x, 4, 4 dx 4 dx robabilit-berli Che 4

5 Joit CDFs I ad are two (either cotiuous or discrete) radom variables associated with the same experimet, their joit cumulative distributio uctio (Joit CDF) is deied b F I ad urther have a joit DF ( ad are cotiuous radom variables), the d x, x,,,, x,, x s t F,, I ca be dieretiated at the poit F x,, x, x F, x, dsdt robabilit-berli Che 5

6 Illustrative xample xample 3.. Veri that i ad are described b a uiorm DF o the uit square, the the joit CDF is give b F x, x, x, or 0 x,, 0,, 0,0,0 F, x x,, x,, or all x, i the uit square robabilit-berli Che 6

7 xpectatio o a Fuctio o Radom Variables I ad are joitl cotiuous radom variables, ad g is some uctio, the Z g, is also a radom variable (ca be cotiuous or discrete) The expectatio o Z ca be calculated b Z g gx, x,,, dxd Z b I is a liear uctio o ad, e.g., Z a, the Z a b a b a Where ad are scalars b We will see i ectio 4. methods or computig the DF o Z (i it has oe). robabilit-berli Che 7

8 More tha Two Radom Variables The joit DF o three radom variables, ad Z is deied i aalog with the case o two radom variables,, Z B x, z The correspodig margial probabilities The expected value rule takes the orm g I is liear (o the orm a b cz ), the,, Z,, Z, B x,,, Z x,, z x x,, z,,, Z dz ddz dxddz g, Z gx,, z x, z,,, a b cz a b cz Z, dxd dz robabilit-berli Che 8

9 Coditioig DF Give a vet (/3) The coditioal DF o a cotiuous radom variable, give a evet I caot be described i terms o, the coditioal DF is deied as a oegative uctio satisig B xdx B x Normalizatio propert x dx robabilit-berli Che 9

10 Coditioig DF Give a vet (/3) I ca be described i terms o ( is a subset o the real lie with 0 ), the coditioal DF is deied as a oegative uctio x satisig x 0, The coditioal DF is zero outside the coditioig evet ad or a subset x Normalizatio ropert, i x otherwise B B, B B B x dx x dx x dx x dx remais the same shape as except that it is scaled alog the vertical axis robabilit-berli Che 0

11 Coditioig DF Give a vet (3/3),,, I are disjoit evets with i 0 or each i, that orm a partitio o the sample space, the x x i i i Veriicatio o the above total probabilit theorem x x x i x t dt t x x i i i i i Takig the derivative o both sides with respect to x i i i dt thik o x as a evet B, ad use the total probabilit theorem rom Chapter robabilit-berli Che

12 Illustrative xamples (/) t xample 3.3. The expoetial radom variable is memorless. T is expoetial T t t e T e 0, The time T util a ew light bulb burs out is expoetial distributio. Joh turs the light o, leave the room, ad whe he returs, t time uits later, id that the light bulb is still o, which correspods to the evet ={T>t} Let be the additioal time util the light bulb burs out. What is the coditioal DF o give? T t, T t t, t 0 otherwise The coditioal CDF o x T t x T t (where x T t x ad T t T t xt t T t x T t et x et ex give is deied b T t 0) The coditioa l DF o the evet is also expoetia l with parameter. give robabilit-berli Che

13 Illustrative xamples (/) /0 xample 3.4. The metro trai arrives at the statio ear our home ever quarter hour startig at 6:00 M. ou walk ito the statio ever morig betwee 7:0 ad 7:30 M, with the time i this iterval beig a uiorm radom variable. What is the DF o the time ou have to wait or the irst trai to arrive? - The arrival time, deoted b, is a uiorm radom variableover theiterval 7 :0 to 7 : 30 - Let radom varible model the waitig time - Let be a evet 7 :0 7 :5(ou board the 7 :5 trai) - Let B be a evet B 7 :5 7 : 30(ou board the 7 : 30 trai) - Let be uiorm coditioed o - Let be uiorm coditioed o B Total robabilit theorem: B B For 0 For 5 5, 5, robabilit-berli Che 3

14 Coditioig oe Radom Variable o other Two cotiuous radom variables ad have a joit DF. For a with 0, the coditioal DF o give that is deied b Normalizatio ropert x, x, x dx The margial, joit ad coditioal DFs are related to each other b the ollowig ormulas x, x,, x x, d., margializatio robabilit-berli Che 4

15 Illustrative xamples (/) Notice that the coditioal DF x has the same shape as the joit DF, x,, because the ormalizig actor does ot deped o x Figure 3.6: Visualizatio o the coditioal DF. Let, have a joit DF which is uiorm o the set. For each ixed, we cosider the joit DF alog the slice ad ormalize it so that it itegrates to x 3.5 x 3.5 x 3.5 x, x,, x,3.5,.5 3.5,.5.5 x.5 c. example 3.3 / 4 / 4 / 4 / / / 4 / 4 robabilit-berli Che 5

16 Illustrative xamples (/) xample 3.5. Circular Uiorm DF. Be throws a dart at a circular target o radius r. We assume that he alwas hits the target, ad that all poits o impact x, are equall likel, so that the joit DF, x, o the radom variables x ad is uiorm What is the margial DF, x,, i x, is i the circle area o the circle 0, otherwise, x r πr 0, otherwise, x, dx x r dx πr r dx dx x r πr πr r r, i r πr (Notice here that DF is ot uiorm) x, x, πr r πr, i x r For each value, x is uiorm robabilit-berli Che 6 r

17 Coditioal xpectatio Give a vet The coditioal expectatio o a cotiuous radom variable, give a evet ( ), is deied b The coditioal expectatio o a uctio also has the orm g gx xdx x x dx 0 g Total xpectatio Theorem ad i i i g g i Where,,, are disjoit evets with i 0 each i, that orm a partitio o the sample space i i or robabilit-berli Che 7

18 Illustrative xample xample 3.7. Mea ad Variace o a iecewise Costat DF. uppose that the radom variable has the piecewise costat DF Deie x / 3, / 3, 0, lies i 0 x, i x, otherwise. evet i the irst iterval [0,] evet lies i the secod iterval 0 / 3dx / 3, / 3dx / 3 x, 0 x x x Recall that the mea ad secod momet o a uiorm radom variable over a iterval a b/ ad a ab b / 3 [ a, b ] is /, / 3 3 /, 7 / 3 0, otherwise var [,] 0, / 3 / / 3 3 / x / 3 / 3 / 3 7 / 3 5 / 9 5 / 9 7 / 6 / 36, x otherwise 7 / 6 robabilit-berli Che 8

19 robabilit-berli Che 9 Coditioal xpectatio Give a Radom Variable The properties o ucoditioal expectatio carr though, with the obvious modiicatios, to coditioal expectatio dx x x dx x x g g dx x x g g,,

20 Total robabilit/xpectatio Theorems Total robabilit Theorem For a evet ad a cotiuous radom variable d Total xpectatio Theorem For a cotiuous radom variables ad g g g, g, d d d robabilit-berli Che 0

21 Idepedece Two cotiuous radom variables ad are idepedet i ice that x, x, or all x,,, x, x x x We thereore have x x or all x ad all with, 0 Or x or all ad all x with x, 0 robabilit-berli Che

22 More Factors about Idepedece (/) I two cotiuous radom variables ad are idepedet, the two evets o the orms ad B are F, idepedet It also implies that, B x B, x x B x x xdx B B, ddx ddx x, x, x F xf x The coverse statemet is also true (ee the ed-o-chapter problem 8) d robabilit-berli Che

23 More Factors about Idepedece (/) I two cotiuous radom variables ad are idepedet, the var var var The radom variables g ad h are idepedet or a uctios g ad h Thereore, g h g h robabilit-berli Che 3

24 Recall: the Discrete Baes Rule Let,,, be disjoit evets that orm a partitio o the sample space, ad assume that i 0, or all i. The, or a evet such that we have B B 0 i B B i B i i B i k k B k i B i B B Multiplicatio rule Total probabilit theorem robabilit-berli Che 4

25 Ierece ad the Cotiuous Baes Rule s we have a model o a uderlig but uobserved pheomeo, represeted b a radom variable with DF, ad we make a ois measuremet, which is modeled i terms o a coditioal DF. Oce the experimetal value o is measured, what iormatio does this provide o the ukow value o? x Measuremet Ierece x x x, x, x x t t dt Note that, robabilit-berli Che 5

26 robabilit-berli Che 6 Ierece ad the Cotiuous Baes Rule (/) I the uobserved pheomeo is iheretl discrete Let is a discrete radom variable o the orm that represets the dieret discrete probabilities or the uobserved pheomeo o iterest, ad be the MF o N N N p N i N N N N N N i i p p p N N N N Total probabilit theorem Ierece about a Discrete Radom Variable

27 Illustrative xamples (/) xample 3.9. lightbulb produced b the Geeral Illumiatio Compa is kow to have a expoetiall distributed lietime. However, the compa has bee experiecig qualit cotrol problems. O a give da, the parameter o the DF o is actuall a radom variable, uiorml distributed i the iterval, 3 /. I we test a lightbulb ad record its lietime ( ), what ca we sa about the uderlig parameter? e, 0, 0, or 3 / 0, otherwise 3 / t t dt Coditioed o, has a expoetial distributio with parameter 3 / e te t, or λ 3/ dt robabilit-berli Che 7

28 robabilit-berli Che 8 Illustrative xamples (/) xample 3.0. igal Detectio. biar sigal is trasmitted, ad we are give that ad. The received sigal is, where is a ormal oise with zero mea ad uit variace, idepedet o. What is the probabilit that, as a uctio o the observed value o? p p N N - - s e s s ad, ad or, / Coditioed o, has a ormal distributio with mea ad uit variace s s e p pe pe e p e pe e pe e e p e p e p p p p p / / / / / /

29 Ierece Based o a Discrete Radom Variable The earlier ormula expressig i terms o ca be tured aroud to ield t t dt? d d ( ormalizat io propert : d ) d robabilit-berli Che 9

30 Recitatio CTION 3.4 Joit DFs o Multiple Radom Variables roblems 5, 6 CTION 3.5 Coditioig roblems 8, 0, 3, 4 CTION 3.6 The Cotiuous Baes Rule roblems 34, 35 robabilit-berli Che 30

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

LECTURE 13: Cross-validation

LECTURE 13: Cross-validation LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

More information

Chapter XIV: Fundamentals of Probability and Statistics *

Chapter XIV: Fundamentals of Probability and Statistics * Objectives Chapter XIV: Fudametals o Probability ad Statistics * Preset udametal cocepts o probability ad statistics Review measures o cetral tedecy ad dispersio Aalyze methods ad applicatios o descriptive

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Universal coding for classes of sources

Universal coding for classes of sources Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric

More information

Uncertainty Chapter 13. Mausam (Based on slides by UW-AI faculty)

Uncertainty Chapter 13. Mausam (Based on slides by UW-AI faculty) Ucertait Chapter 3 Mausam Based o slides b UW-AI facult Kowledge Represetatio KR Laguage Otological Commitmet Epistemological Commitmet ropositioal Logic facts true false ukow First Order Logic facts objects

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

1 The Gaussian channel

1 The Gaussian channel ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.

More information

BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1)

BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1) BASIC STATISTICS. SAMPLES, RANDOM SAMPLING AND SAMPLE STATISTICS.. Radom Sample. The radom variables X,X 2,..., X are called a radom sample of size from the populatio f(x if X,X 2,..., X are mutually idepedet

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

3 Basic Definitions of Probability Theory

3 Basic Definitions of Probability Theory 3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Sampling Distribution And Central Limit Theorem

Sampling Distribution And Central Limit Theorem () Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Chapter 14 Nonparametric Statistics

Chapter 14 Nonparametric Statistics Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

, a Wishart distribution with n -1 degrees of freedom and scale matrix. UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Partial Di erential Equations

Partial Di erential Equations Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Research Article Sign Data Derivative Recovery

Research Article Sign Data Derivative Recovery Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov

More information

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011 15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

More information

Research Method (I) --Knowledge on Sampling (Simple Random Sampling)

Research Method (I) --Knowledge on Sampling (Simple Random Sampling) Research Method (I) --Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact

More information

MEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)

MEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book) MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:

More information

Unbiased Estimation. Topic 14. 14.1 Introduction

Unbiased Estimation. Topic 14. 14.1 Introduction Topic 4 Ubiased Estimatio 4. Itroductio I creatig a parameter estimator, a fudametal questio is whether or ot the estimator differs from the parameter i a systematic maer. Let s examie this by lookig a

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Topic 5: Confidence Intervals (Chapter 9)

Topic 5: Confidence Intervals (Chapter 9) Topic 5: Cofidece Iterval (Chapter 9) 1. Itroductio The two geeral area of tatitical iferece are: 1) etimatio of parameter(), ch. 9 ) hypothei tetig of parameter(), ch. 10 Let X be ome radom variable with

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

A Mathematical Perspective on Gambling

A Mathematical Perspective on Gambling A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

THE HEIGHT OF q-binary SEARCH TREES

THE HEIGHT OF q-binary SEARCH TREES THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

More information

How To Solve The Homewor Problem Beautifully

How To Solve The Homewor Problem Beautifully Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

CAMERA AUTOCALIBRATION AND HOROPTER CURVES

CAMERA AUTOCALIBRATION AND HOROPTER CURVES CAMERA AUTOCALIBRATION AND HOROPTER CURVES JOSÉ IGNACIO RONDA, ANTONIO VALDÉS, AND FERNANDO JAUREGUIZAR * Grupo de Tratamieto de Imágees ** Dep. de Geometría y Topología Uiversidad Politécica de Madrid

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY

A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY J. Appl. Prob. 45, 060 070 2008 Prited i Eglad Applied Probability Trust 2008 A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY MARK BROWN, The City College of New York EROL A. PEKÖZ, Bosto Uiversity SHELDON

More information

1 Review of Probability

1 Review of Probability Copyright c 27 by Karl Sigma 1 Review of Probability Radom variables are deoted by X, Y, Z, etc. The cumulative distributio fuctio (c.d.f.) of a radom variable X is deoted by F (x) = P (X x), < x

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016

NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016 NOTES ON PROBBILITY Greg Lawler Last Updated: March 21, 2016 Overview This is a itroductio to the mathematical foudatios of probability theory. It is iteded as a supplemet or follow-up to a graduate course

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

Tradigms of Astundithi and Toyota

Tradigms of Astundithi and Toyota Tradig the radomess - Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore

More information

On Formula to Compute Primes. and the n th Prime

On Formula to Compute Primes. and the n th Prime Applied Mathematical cieces, Vol., 0, o., 35-35 O Formula to Compute Primes ad the th Prime Issam Kaddoura Lebaese Iteratioal Uiversity Faculty of Arts ad cieces, Lebao issam.kaddoura@liu.edu.lb amih Abdul-Nabi

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

Parameter estimation for nonlinear models: Numerical approaches to solving the inverse problem. Lecture 11 04/01/2008. Sven Zenker

Parameter estimation for nonlinear models: Numerical approaches to solving the inverse problem. Lecture 11 04/01/2008. Sven Zenker Parameter estimatio for oliear models: Numerical approaches to solvig the iverse problem Lecture 11 04/01/2008 Sve Zeker Review: Trasformatio of radom variables Cosider probability distributio of a radom

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

W. Sandmann, O. Bober University of Bamberg, Germany

W. Sandmann, O. Bober University of Bamberg, Germany STOCHASTIC MODELS FOR INTERMITTENT DEMANDS FORECASTING AND STOCK CONTROL W. Sadma, O. Bober Uiversity of Bamberg, Germay Correspodig author: W. Sadma Uiversity of Bamberg, Dep. Iformatio Systems ad Applied

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

Central Limit Theorem and Its Applications to Baseball

Central Limit Theorem and Its Applications to Baseball Cetral Limit Theorem ad Its Applicatios to Baseball by Nicole Aderso A project submitted to the Departmet of Mathematical Scieces i coformity with the requiremets for Math 4301 (Hoours Semiar) Lakehead

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

7. Concepts in Probability, Statistics and Stochastic Modelling

7. Concepts in Probability, Statistics and Stochastic Modelling 7. Cocepts i Probability, Statistics ad Stochastic Modellig 1. Itroductio 169. Probability Cocepts ad Methods 170.1. Radom Variables ad Distributios 170.. Expectatio 173.3. Quatiles, Momets ad Their Estimators

More information

Semiconductor Devices

Semiconductor Devices emicoductor evices Prof. Zbigiew Lisik epartmet of emicoductor ad Optoelectroics evices room: 116 e-mail: zbigiew.lisik@p.lodz.pl Uipolar devices IFE T&C JFET Trasistor Uipolar evices - Trasistors asic

More information

How To Calculate A Radom Umber From A Probability Fuctio

How To Calculate A Radom Umber From A Probability Fuctio Iteral Report SUF PFY/96 Stockholm, December 996 st revisio, 3 October 998 last modificatio September 7 Had-book o STATISTICAL DISTRIBUTIONS for experimetalists by Christia Walck Particle Physics Group

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

STATISTICAL METHODS FOR BUSINESS

STATISTICAL METHODS FOR BUSINESS STATISTICAL METHODS FOR BUSINESS UNIT 7: INFERENTIAL TOOLS. DISTRIBUTIONS ASSOCIATED WITH SAMPLING 7.1.- Distributios associated with the samplig process. 7.2.- Iferetial processes ad relevat distributios.

More information

Metric, Normed, and Topological Spaces

Metric, Normed, and Topological Spaces Chapter 13 Metric, Normed, ad Topological Spaces A metric space is a set X that has a otio of the distace d(x, y) betwee every pair of poits x, y X. A fudametal example is R with the absolute-value metric

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information