Solving Systems of Equations


 Trevor Craig
 1 years ago
 Views:
Transcription
1 Solving Sstems of Equations When we have or more equations and or more unknowns, we use a sstem of equations to find the solution. Definition: A solution of a sstem of equations is an ordered pair that satisfies all of the equations in the sstem. Eample of a sstem: The ordered pair (, ) is a solution because: () () () 6 The ordered pair (, ) is a solution to the sstem because it is a solution for both equations.
2 The Substitution Method for Solving Sstems Solve the sstem of equations. Since = +, we can substitute + in for in the top equation without affecting its solution. We get one equation with a single variable. Solve the equation. ) ( Once is known, ou can backsubstitute = into the equation = + to find the value of. The solution is thus (, ). Check this in both of the original equations.
3 Check: The solution checks in both equations. Look at the graphs of the lines in the sstem (, ) **The solution to the sstem is the point where the graphs of the equations intersect.
4 Eample: Solve the sstem of equations. 9 We must begin b solving one of the equations for one of the variables. Solve the first equation for. (Alwas solve for the variable that has a coefficient of if possible.) 9 Substitute and solve the resulting equation. 9 9 ( ) 9 9 Backsubstitute to find. ( ) The solution is (, ).
5 The point of intersection of the lines is (, ). (,) Steps for the Substitution Method for Solving Sstems:. Solve one of the equations for one variable in terms of the other.. Substitute the epression found in Step into the other equation to obtain an equation in one variable.. Solve the equation obtained in Step.. Backsubstitute the value obtained in Step into the epression obtained in Step to find the value of the other variable.. Check that the solution satisfies each of the original equations.
6 6 Eample: Solve the sstem of equations. Solution: 0 ) )( ( 0 ) ( 0 ) ( or We must backsubstitute each of these values of to solve for the corresponding values of.
7 Backsubstitute: = =  ( ) The solutions are (, ) and (, ). Look at the graphs of these equations. (, ) (, ) The solution to the sstem is the set of points where the graphs of the equations intersect. 7
8 8 Eample: Solve the sstem of equations. Solution: 0 ) ( This does not factor, so use the quadratic formula. () ()() ) ( a ac b b This sstem has no real solutions.
9 Look at the graph of the sstem These graphs do not intersect. There is no real solution to this sstem, as we found b solving algebraicall. A sstem of equations in unknowns can have:. Eactl one real solution. More than one real solution. No real solution. 9
10 Solving Sstems Graphicall Eample: Solve the sstem using a graphing calculator. Solution:. Enter each equation in the [=] screen.. Press [GRAPH].. Press [ nd ] [CALC] and choose [intersect].. The cursor will appear on the graph of the first equation entered. Use the left and right arrows to move the cursor as close the visual point of intersection as possible. Press [ENTER].. The cursor will jump to the graph of the nd equation. Use the left and right arrows again to move the cursor to the visual point of intersection. Press [ENTER]. 6. The calculator screen reads Guess? Press [ENTER]. 7. The point of intersection is given. Repeat the process for an other visual points of intersection. The solution to the sstem is (0, ) and (, ). Note: Using the up and down arrows will move the cursor from one equation to the other. The right and left arrows move the cursor along one of the equations. 0
11 Eample: Solve the sstem of equations graphicall. ln CHAT PreCalculus Note: If we tried to solve this b substitution, we would get the equation + ln =, which is difficult to solve using standard algebraic techniques. (, 0) Check: ln 0 ln The solution (, 0) checks in both equations.
12 Application Eample: A compan has fied monthl manufacturing costs of $,000, and it costs $0.9 to produce each unit of product. The compan then sells each unit for $.. How man units must be sold before this compan breaks even? (The breakeven point is where the cost equals the revenue.) Solution: The total cost of producing units is: Total Cost Cost per Number =. unit of units + Fied cost For our problem, C = 0.9 +,000 The total revenue obtained b selling units is: Total Revenue Price per =. unit Number of units For our problem, R =.
13 Our sstem of equations looks like: C R. Because the breakeven point occurs when R = C, we are reall looking at the sstem: C C. Solve this sstem b substitution , ,000 The breakeven point occurs when 0,000 units are produced.
14 Question: How man units must be sold to make a profit of $7,000? Profit is found b CHAT PreCalculus Profit = Revenue  Cost Revenue = the mone received from selling the product Cost = the mone spent to produce the product For our problem C R P P P R C. (0.9,000) 0.,000 We want the profit to be $7,000 so substitute that for P. P 0.,000 7,000 0.,000 9, ,000 0,000 units must be produced for a profit of $7,000.
15 Additional Eamples: Eample: Solve the sstem. Solution: (, ) Eample: Solve the sstem. Solution: (0, ), (, ), (, 0) Eample: Solve the sstem. Solution: (, )
Graphing Nonlinear Systems
10.4 Graphing Nonlinear Sstems 10.4 OBJECTIVES 1. Graph a sstem of nonlinear equations 2. Find ordered pairs associated with the solution set of a nonlinear sstem 3. Graph a sstem of nonlinear inequalities
More informationLearning Objectives for Section 1.2 Graphs and Lines. Linear Equations in Two Variables. Linear Equations
Learning Objectives for Section 1.2 Graphs and Lines After this lecture and the assigned homework, ou should be able to calculate the slope of a line. identif and work with the Cartesian coordinate sstem.
More information7.1 LINEAR AND NONLINEAR SYSTEMS OF EQUATIONS
7.1 LINEAR AND NONLINEAR SYSTEMS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the method of substitution to solve systems of linear equations in two variables.
More informationSYSTEMS OF LINEAR EQUATIONS
SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations
More informationGraphing Quadratic Equations
.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph firstdegree equations. Similar methods will allow ou to graph quadratic equations
More informationGraphing Linear Equations
6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are
More informationQuadratic Functions and Parabolas
MATH 11 Quadratic Functions and Parabolas A quadratic function has the form Dr. Neal, Fall 2008 f () = a 2 + b + c where a 0. The graph of the function is a parabola that opens upward if a > 0, and opens
More information1.2 GRAPHS OF EQUATIONS
000_00.qd /5/05 : AM Page SECTION. Graphs of Equations. GRAPHS OF EQUATIONS Sketch graphs of equations b hand. Find the  and intercepts of graphs of equations. Write the standard forms of equations of
More informationSECTION 2.2. Distance and Midpoint Formulas; Circles
SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation
More information3.1 Graphically Solving Systems of Two Equations
3.1 Graphicall Solving Sstems of Two Equations (Page 1 of 24) 3.1 Graphicall Solving Sstems of Two Equations Definitions The plot of all points that satisf an equation forms the graph of the equation.
More informationSystems of Equations. from Campus to Careers Fashion Designer
Sstems of Equations from Campus to Careers Fashion Designer Radius Images/Alam. Solving Sstems of Equations b Graphing. Solving Sstems of Equations Algebraicall. Problem Solving Using Sstems of Two Equations.
More informationSOLVING SYSTEMS OF EQUATIONS
SOLVING SYSTEMS OF EQUATIONS 4.. 4..4 Students have been solving equations even before Algebra. Now the focus on what a solution means, both algebraicall and graphicall. B understanding the nature of solutions,
More informationprice quantity q The Supply Function price quantity q
Shown below is another demand function for price of a pizza p as a function of the quantity of pizzas sold per week. This function models the behavior of consumers with respect to price and quantity. 3
More informationReasoning with Equations and Inequalities
Instruction Goal: To provide opportunities for students to develop concepts and skills related to solving sstems of linear inequalities, including realworld problems through graphing two and three variables
More information2.3 Quadratic Functions
. Quadratic Functions 9. Quadratic Functions You ma recall studing quadratic equations in Intermediate Algebra. In this section, we review those equations in the contet of our net famil of functions: the
More informationExample 1: Model A Model B Total Available. Gizmos. Dodads. System:
Lesson : Sstems of Equations and Matrices Outline Objectives: I can solve sstems of three linear equations in three variables. I can solve sstems of linear inequalities I can model and solve realworld
More information3. Solve the equation containing only one variable for that variable.
Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated
More informationReasoning with Equations and Inequalities
Instruction Goal: To provide opportunities for students to develop concepts and skills related to solving linear sstems of equations b graphing Common Core Standards Algebra: Solve sstems of equations.
More informationIntroduction. Introduction
Introduction Solving Sstems of Equations Let s start with an eample. Recall the application of sales forecasting from the Working with Linear Equations module. We used historical data to derive the equation
More information{ } Sec 3.1 Systems of Linear Equations in Two Variables
Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination
More informationQuadratic Equations in One Unknown
1 Quadratic Equations in One Unknown 1A 1. Solving Quadratic Equations Using the Factor Method Name : Date : Mark : Ke Concepts and Formulae 1. An equation in the form a + b + c, where a, b and c are real
More information2.4 Inequalities with Absolute Value and Quadratic Functions
08 Linear and Quadratic Functions. Inequalities with Absolute Value and Quadratic Functions In this section, not onl do we develop techniques for solving various classes of inequalities analticall, we
More informationP1. Plot the following points on the real. P2. Determine which of the following are solutions
Section 1.5 Rectangular Coordinates and Graphs of Equations 9 PART II: LINEAR EQUATIONS AND INEQUALITIES IN TWO VARIABLES 1.5 Rectangular Coordinates and Graphs of Equations OBJECTIVES 1 Plot Points in
More informationSolving Special Systems of Linear Equations
5. Solving Special Sstems of Linear Equations Essential Question Can a sstem of linear equations have no solution or infinitel man solutions? Using a Table to Solve a Sstem Work with a partner. You invest
More informationAx 2 Cy 2 Dx Ey F 0. Here we show that the general seconddegree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X
Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus
More informationGraphing Linear Equations in SlopeIntercept Form
4.4. Graphing Linear Equations in SlopeIntercept Form equation = m + b? How can ou describe the graph of the ACTIVITY: Analzing Graphs of Lines Work with a partner. Graph each equation. Find the slope
More informationEssential Question How can you solve a system of linear equations? $15 per night. Cost, C (in dollars) $75 per Number of. Revenue, R (in dollars)
5.1 Solving Sstems of Linear Equations b Graphing Essential Question How can ou solve a sstem of linear equations? Writing a Sstem of Linear Equations Work with a partner. Your famil opens a bedandbreakfast.
More information8. Bilateral symmetry
. Bilateral smmetr Our purpose here is to investigate the notion of bilateral smmetr both geometricall and algebraicall. Actuall there's another absolutel huge idea that makes an appearance here and that's
More informationUnit 1 Study Guide Systems of Linear Equations and Inequalities. Part 1: Determine if an ordered pair is a solution to a system
Unit Stud Guide Sstems of Linear Equations and Inequalities 6 Solving Sstems b Graphing Part : Determine if an ordered pair is a solution to a sstem e: (, ) Eercises: substitute in for and  in for in
More informationFINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function. 1) 
More informationSolving Systems of Linear Equations by Graphing
. Solving Sstems of Linear Equations b Graphing How can ou solve a sstem of linear equations? ACTIVITY: Writing a Sstem of Linear Equations Work with a partner. Your famil starts a bedandbreakfast. It
More informationAlex and Morgan were asked to graph the equation y = 2x + 1
Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and intercept wa First, I made a table. I chose some values, then plugged
More informationMath 1314 Lesson 8: Business Applications: Break Even Analysis, Equilibrium Quantity/Price
Math 1314 Lesson 8: Business Applications: Break Even Analysis, Equilibrium Quantity/Price Cost functions model the cost of producing goods or providing services. Examples: rent, utilities, insurance,
More information8.7 Systems of NonLinear Equations and Inequalities
8.7 Sstems of NonLinear Equations and Inequalities 67 8.7 Sstems of NonLinear Equations and Inequalities In this section, we stud sstems of nonlinear equations and inequalities. Unlike the sstems of
More information7.7 Solving Rational Equations
Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate
More informationName Date. BreakEven Analysis
Name Date BreakEven Analsis In our business planning so far, have ou ever asked the questions: How much do I have to sell to reach m gross profit goal? What price should I charge to cover m costs and
More informationFlorida Algebra I EOC Online Practice Test
Florida Algebra I EOC Online Practice Test 1 Directions: This practice test contains 65 multiplechoice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end
More information1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model
. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses
More informationCHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS
CHAPTER 0 SYSTEMS, MATRICES, AND DETERMINANTS PRECALCULUS: A TEACHING TEXTBOOK Lesson 64 Solving Sstems In this chapter, we re going to focus on sstems of equations. As ou ma remember from algebra, sstems
More informationHigher. Polynomials and Quadratics 64
hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining
More informationExponential and Logarithmic Functions
Chapter 3 Eponential and Logarithmic Functions Section 3.1 Eponential Functions and Their Graphs Objective: In this lesson ou learned how to recognize, evaluate, and graph eponential functions. Course
More informationMath 152, Intermediate Algebra Practice Problems #1
Math 152, Intermediate Algebra Practice Problems 1 Instructions: These problems are intended to give ou practice with the tpes Joseph Krause and level of problems that I epect ou to be able to do. Work
More information6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH
6 CHAPTER 6 Techniques of Integration 6. PARTIAL FRACTIONS AND LOGISTIC GROWTH Use partial fractions to find indefinite integrals. Use logistic growth functions to model reallife situations. Partial Fractions
More informationSection C Non Linear Graphs
1 of 8 Section C Non Linear Graphs Graphic Calculators will be useful for this topic of 8 Cop into our notes Some words to learn Plot a graph: Draw graph b plotting points Sketch/Draw a graph: Do not plot,
More informationFilling in Coordinate Grid Planes
Filling in Coordinate Grid Planes A coordinate grid is a sstem that can be used to write an address for an point within the grid. The grid is formed b two number lines called and that intersect at the
More informationThe Graph of a Linear Equation
4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that
More informationEssential Question How can you graph a system of linear inequalities?
5.7 Sstems of Linear Inequalities Essential Question How can ou graph a sstem of linear inequalities? Graphing Linear Inequalities Work with a partner. Match each linear inequalit with its graph. Eplain
More information11.7 MATHEMATICAL MODELING WITH QUADRATIC FUNCTIONS. Objectives. Maximum Minimum Problems
a b Objectives Solve maimum minimum problems involving quadratic functions. Fit a quadratic function to a set of data to form a mathematical model, and solve related applied problems. 11.7 MATHEMATICAL
More informationSolving Systems of Linear Equations
5 Solving Sstems of Linear Equations 5. Solving Sstems of Linear Equations b Graphing 5. Solving Sstems of Linear Equations b Substitution 5.3 Solving Sstems of Linear Equations b Elimination 5. Solving
More informationSolution of the System of Linear Equations: any ordered pair in a system that makes all equations true.
Definitions: Sstem of Linear Equations: or more linear equations Sstem of Linear Inequalities: or more linear inequalities Solution of the Sstem of Linear Equations: an ordered pair in a sstem that makes
More informationMath 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price
Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price Three functions of importance in business are cost functions, revenue functions and profit functions. Cost functions
More informationAnswers (Lesson 31) Answers. Skills Practice. Practice (Average)
Glencoe/McGrawHill A3 Glencoe Algebra 3 NAME DATE PERID Solving Sstems of Equations B Graphing Solve each sstem of equations b graphing... 3 6 3. 4 3 0 (, 0) 4 (, 0) (, ) 4. 4 5. 6. (3, ) 5 3 (3, 4)
More informationSolving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form
SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving
More information5.1. Systems of Linear Equations. Linear Systems Substitution Method Elimination Method Special Systems
5.1 Systems of Linear Equations Linear Systems Substitution Method Elimination Method Special Systems 5.11 Linear Systems The possible graphs of a linear system in two unknowns are as follows. 1. The
More informationSection 7.2 Linear Programming: The Graphical Method
Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function
More informationPolynomial and Rational Functions
Chapter Section.1 Quadratic Functions Polnomial and Rational Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Course Number Instructor Date Important
More informationSimplification of Rational Expressions and Functions
7.1 Simplification of Rational Epressions and Functions 7.1 OBJECTIVES 1. Simplif a rational epression 2. Identif a rational function 3. Simplif a rational function 4. Graph a rational function Our work
More informationMath 1400/1650 (Cherry): Quadratic Functions
Math 100/1650 (Cherr): Quadratic Functions A quadratic function is a function Q() of the form Q() = a + b + c with a 0. For eample, Q() = 3 7 + 5 is a quadratic function, and here a = 3, b = 7 and c =
More informationSystems of Linear Equations: Solving by Substitution
8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing
More informationThis workshop will. Exponential Functions
1 This workshop will Arapahoe Community College MAT 111 Graphing Calculator Techniques for Survey of Algebra TI83 Graphing Calculator Workshop #12 Exponential and Logarithmic Functions 1) explore graphs
More informationM122 College Algebra Review for Final Exam
M1 College Algebra Review for Final Eam Revised Fall 015 for College Algebra Beecher All answers should include our work (this could be a written eplanation of the result, a graph with the relevant feature
More information5.2 Inverse Functions
78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,
More informationLINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0
LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )
More informationSolving Absolute Value Equations and Inequalities Graphically
4.5 Solving Absolute Value Equations and Inequalities Graphicall 4.5 OBJECTIVES 1. Draw the graph of an absolute value function 2. Solve an absolute value equation graphicall 3. Solve an absolute value
More informationApplications of Linear Equations. Chapter 5
52 Applications of Linear Equations Chapter 5 53 After completing this chapter, you will be able to: > Solve two linear equations in two variables > Solve problems that require setting up two linear
More informationAnswers (Lesson 31) Study Guide and Intervention. Study Guide and Intervention (continued) Solving Systems of Equations by Graphing
Glencoe/McGrawHill A Glencoe Algebra  NAME DATE PERID Stud Guide and Intervention Solving Sstems of Equations b Graphing Graph Sstems of Equations A sstem of equations is a set of two or more equations
More informationQ (x 1, y 1 ) m = y 1 y 0
. Linear Functions We now begin the stud of families of functions. Our first famil, linear functions, are old friends as we shall soon see. Recall from Geometr that two distinct points in the plane determine
More informationThe Quadratic Function
0 The Quadratic Function TERMINOLOGY Ais of smmetr: A line about which two parts of a graph are smmetrical. One half of the graph is a reflection of the other Coefficient: A constant multiplied b a pronumeral
More informationGraphing Linear Inequalities in Two Variables
5.4 Graphing Linear Inequalities in Two Variables 5.4 OBJECTIVES 1. Graph linear inequalities in two variables 2. Graph a region defined b linear inequalities What does the solution set look like when
More information5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED
CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given
More information17.1 Connecting Intercepts and Zeros
Locker LESSON 7. Connecting Intercepts and Zeros Teas Math Standards The student is epected to: A.7.A Graph quadratic functions on the coordinate plane and use the graph to identif ke attributes, if possible,
More information2.3 Domain and Range of a Function
Section Domain and Range o a Function 1 2.3 Domain and Range o a Function Functions Recall the deinition o a unction. Deinition 1 A relation is a unction i and onl i each object in its domain is paired
More informationx y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are
Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented
More informationFunctions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study
Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 21 Functions 22 Elementar Functions: Graphs and Transformations 23 Quadratic
More informationAx 2 Cy 2 Dx Ey F 0. Here we show that the general seconddegree equation. Ax 2 Bxy Cy 2 Dx Ey F 0 P(X, Y) X
Rotation of Aes For a discussion of conic sections, see Appendi. In precalculus or calculus ou ma have studied conic sections with equations of the form A C D E F Here we show that the general seconddegree
More informationSystems of Equations Involving Circles and Lines
Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system
More information7.3 Solving Systems by Elimination
7. Solving Sstems b Elimination In the last section we saw the Substitution Method. It turns out there is another method for solving a sstem of linear equations that is also ver good. First, we will need
More information4.9 Graph and Solve Quadratic
4.9 Graph and Solve Quadratic Inequalities Goal p Graph and solve quadratic inequalities. Your Notes VOCABULARY Quadratic inequalit in two variables Quadratic inequalit in one variable GRAPHING A QUADRATIC
More information1.2 BreakEven Analysis and Market Equilibrium
Math 142 c Roberto Barrera, Fall 2015 1 1.2 BreakEven Analysis and Market Equilibrium Mathematical models of cost, revenue, and profits Two types of costs: 1. Fixed costs: 2. Variable costs: Total cost:
More informationSection V: Quadratic Equations and Functions. Module 1: Solving Quadratic Equations Using Factoring, Square Roots, Graphs, and CompletingtheSquare
Haberman / Kling MTH 95 Section V: Quadratic Equations and Functions Module : Solving Quadratic Equations Using Factoring, Square Roots, Graphs, and CompletingtheSquare DEFINITION: A quadratic equation
More information2.3 Quadratic Functions
88 Linear and Quadratic Functions. Quadratic Functions You ma recall studing quadratic equations in Intermediate Algebra. In this section, we review those equations in the contet of our net famil of functions:
More informationChapter 6 Quadratic Functions
Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where
More informationContents. How You May Use This Resource Guide
Contents How You Ma Use This Resource Guide ii 9 Fractional and Quadratic Equations 1 Worksheet 9.1: Similar Figures.......................... 5 Worksheet 9.: Stretch of a Spring........................
More informationFlorida Algebra I EOC Online Practice Test
Florida Algebra I EOC Online Practice Test Directions: This practice test contains 65 multiplechoice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end
More informationSystem of Equations and Inequalities
CHAPTER 5 Sstem of Equations and Inequalities Solutions Ke Are ou read? 1. B. F 3. A. E 5. D 6. Plot (, 1). Count 3 units up and units right and plot another point. Draw the line connecting the two points.
More informationSolving Systems of Linear Equations
5 Solving Sstems of Linear Equations 5. Solving Sstems of Linear Equations b Graphing 5. Solving Sstems of Linear Equations b Substitution 5.3 Solving Sstems of Linear Equations b Elimination 5. Solving
More informationSummer Review For Students Entering Algebra 2
Summer Review For Students Entering Algebra Board of Education of Howard Count Frank Aquino Chairman Ellen Flnn Giles Vice Chairman Larr Cohen Allen Der Sandra H. French Patricia S. Gordon Janet Siddiqui
More informationQUADRATIC EQUATIONS Use with Section 1.4
QUADRATIC EQUATIONS Use with Section 1.4 OBJECTIVES: Solve Quadratic Equations by Factoring Solve Quadratic Equations Using the Zero Product Property Solve Quadratic Equations Using the Quadratic Formula
More informationPractice Problems. Lesson 5b  Solving Quadratic Equations
1. Use your graphing calculator to help you determine the number type of solutions to each of the quadratic equations below. a) Begin by putting the equations into stard form. b) Drawn an accurate sketch
More informationAnytime plan TalkMore plan
CONDENSED L E S S O N 6.1 Solving Sstems of Equations In this lesson ou will represent situations with sstems of equations use tables and graphs to solve sstems of linear equations A sstem of equations
More information2013 MBA Jump Start Program
2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of
More informationSection 37. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative
202 Chapter 3 The Derivative Section 37 Marginal Analysis in Business and Economics Marginal Cost, Revenue, and Profit Application Marginal Average Cost, Revenue, and Profit Marginal Cost, Revenue, and
More informationHow can you tell if a relation is a function? Time Worked (h) Amount Earned ($) B: Number of Weeks Worked and Amount Earned by 10 Different Students
. Functions, Domain, and Range When mathematicians and scientists recognize a relationship between items in the world around them, the tr to model the relationship with an equation. The concept of developing
More information3.1 Quadratic Functions
Section 3.1 Quadratic Functions 1 3.1 Quadratic Functions Functions Let s quickl review again the definition of a function. Definition 1 A relation is a function if and onl if each object in its domain
More informationExponential equations will be written as, where a =. Example 1: Determine a formula for the exponential function whose graph is shown below.
.1 Eponential and Logistic Functions PreCalculus.1 EXPONENTIAL AND LOGISTIC FUNCTIONS 1. Recognize eponential growth and deca functions 2. Write an eponential function given the intercept and another
More informationLinear Inequalities, Systems, and Linear Programming
8.8 Linear Inequalities, Sstems, and Linear Programming 481 8.8 Linear Inequalities, Sstems, and Linear Programming Linear Inequalities in Two Variables Linear inequalities with one variable were graphed
More informationD.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review APPENDIX D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane Just as ou can represent real numbers b
More informationM122 College Algebra Review for Final Exam
M122 College Algebra Review for Final Eam Revised Fall 2007 for College Algebra in Contet All answers should include our work (this could be a written eplanation of the result, a graph with the relevant
More information