Triple Integrals in Cylindrical or Spherical Coordinates
|
|
|
- Margaret Waters
- 9 years ago
- Views:
Transcription
1 Triple Integrals in Clindrical or Spherical Coordinates. Find the volume of the solid ball Solution. Let be the ball. We know b #a of the worksheet Triple Integrals that the volume of is given b the triple integral dv. To compute this, we need to convert the triple integral to an iterated integral. The given ball can be described easil in spherical coordinates b the inequalities ρ, φ π, θ < 2π, so we can rewrite the triple integral dv as an iterated integral in spherical coordinates 2π π ρ 2 sin φ dρ dφ dθ 2π π 2π π 2π 2π 4 π ρ sin φ φ ρ ρ sin φ dφ dθ φπ cos φ dθ 2 dθ dφ dθ 2. Let be the solid inside both the cone and the sphere Write the triple integral dv as an iterated integral in spherical coordinates. Solution. Here is a picture of the solid: We have to write both the integrand and the solid of integration in spherical coordinates. We know that in Cartesian coordinates is the same as ρ cos φ in spherical coordinates, so the function we re integrating is ρ cos φ. The cone is the same as φ π 4 in spherical coordinates. The sphere is ρ in spherical coordinates. So, the solid can be described in spherical coordinates as ρ, φ π 4, θ 2π. This means that the iterated integral is 2π π/4 ρ cos φρ 2 sin φ dρ dφ dθ. Wh? We could first rewrite in clindrical coordinates: it s r. In terms of spherical coordinates, this sas that ρ cos φ ρ sin φ, so cos φ sin φ. That s the same as saing that tan φ, or φ π 4.
2 For the remaining problems, use the coordinate sstem Cartesian, clindrical, or spherical that seems easiest.. Let be the ice cream cone bounded below b and above b Write an iterated integral which gives the volume of. You need not evaluate. Solution. We know b #a of the worksheet Triple Integrals that the volume of is given b the triple integral dv. The solid has a simple description in spherical coordinates, so we will use spherical coordinates to rewrite the triple integral as an iterated integral. The sphere is the same as ρ 2. The cone can be written as φ π 6.2 So, the volume is 2π π/6 2 ρ 2 sin φ dρ dφ dθ. 4. Write an iterated integral which gives the volume of the solid enclosed b ,, and 2. You need not evaluate. Solution. We know b #a of the worksheet Triple Integrals that the volume of is given b the triple integral dv. To compute this, we need to convert the triple integral to an iterated integral. Since the solid is smmetric about the -ais but doesn t seem to have a simple description in terms of spherical coordinates, we ll use clindrical coordinates. Let s think of slicing the solid, using slices parallel to the -plane. This means we ll write the outer integral first. We re slicing [, 2] on the -ais, so our outer integral will be 2 something d. To write the inner double integral, we want to describe each slice and, within a slice, we can think of as being a constant. Each slice is just the disk enclosed b the circle , which is a circle 2 This is true because can be written in clindrical coordinates as r. In terms of spherical coordinates, this sas that ρ cos φ ρ sin φ. That s the same as saing tan φ, or φ π 6. 2
3 of radius : We ll use polar coordinates to write the iterated double integral describing this slice. The circle can be described as θ < 2π and r and remember that we are still thinking of as a constant, so the appropriate integral is 2π r dr dθ. Putting this into our outer integral, we get the iterated integral 2 2π r dr dθ d. Note: For this problem, writing the inner integral first doesn t work as well, at least not if we want to write the integral with d as the inner integral. Wh? Well, if we tr to write the integral with d as the inner integral, we imagine sticking vertical lines through the solid. The problem is that there are different tpes of vertical lines. For instance, along the red line in the picture below, goes from the cone or r to 2 in the solid. But, along the blue line, goes from to 2. So, we d have to write two separate integrals to deal with these two different situations. 5. Let be the solid enclosed b and 9. Rewrite the triple integral iterated integral. You need not evaluate, but can ou guess what the answer is? dv as an Solution describes a paraboloid, so the solid looks like this: Since the solid is smmetric about the -ais, a good guess is that clindrical coordinates will make
4 things easier. In clindrical coordinates, the integrand is equal to r cos θ. Let s think of slicing the solid, which means we ll write our outer integral first. If we slice parallel to the -plane, then we are slicing the interval [, 9] on the -ais, so our outer integral is 9 something d. We use the inner two integrals to describe a tpical slice; within a slice, is constant. Each slice is a disk enclosed b the circle which has radius. We know that we can describe this in polar coordinates as r, θ < 2π. So, the inner two integrals will be Therefore, the given triple integral is equal to the iterated integral 9 2π 9 2π r cos θ r dr dθ d r cos θ 9 2π 9 2π r r /2 cos θ dθ d θ2π /2 sin θ d θ dr dθ d r cos θ r dr dθ. That the answer is should not be surprising because the integrand f,, is anti-smmetric about the plane this is sort of like saing the function is odd: f,, f,,, but the solid is smmetric about the plane. Note: If ou decided to do the inner integral first, ou probabl ended up with d as our inner integral. In this case, a valid iterated integral is 6. The iterated integral in spherical coordinates 2π 9 π π/2 r 2 r cos θ r d dr dθ. π/2 2 solid. Describe the solid its shape and its densit at an point. ρ sin φ dρ dφ dθ computes the mass of a Solution. The shape of the solid is described b the region of integration. We can read this off from the bounds of integration: it is π 2 θ π, φ π 2, ρ 2. We can visualie ρ 2 b imagining a solid ball of radius 2 with a solid ball of radius taken out of the middle. φ π 2 tells us we ll onl have the top half of that, and π 2 θ π tells us that we ll onl be looking at one octant: the one with negative and positive: To figure out the densit, remember that we get mass b integrating the densit. If we call this solid, then the iterated integral in the problem is the same as the triple integral ρ sin 2 φ dv since 4
5 dv is ρ 2 sin φ dρ dφ dθ. So, the densit of the solid at a point ρ, φ, θ is ρ sin 2 φ. 5
Double Integrals in Polar Coordinates
Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then
MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.
2.1 Three Dimensional Curves and Surfaces
. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The
Solutions - Homework sections 17.7-17.9
olutions - Homework sections 7.7-7.9 7.7 6. valuate xy d, where is the triangle with vertices (,, ), (,, ), and (,, ). The three points - and therefore the triangle between them - are on the plane x +
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
Vector surface area Differentials in an OCS
Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals
M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM
68 Theor Supplement Section M M POOF OF THE DIEGENE THEOEM ND STOKES THEOEM In this section we give proofs of the Divergence Theorem Stokes Theorem using the definitions in artesian coordinates. Proof
9.5 CALCULUS AND POLAR COORDINATES
smi9885_ch09b.qd 5/7/0 :5 PM Page 760 760 Chapter 9 Parametric Equations and Polar Coordinates 9.5 CALCULUS AND POLAR COORDINATES Now that we have introduced ou to polar coordinates and looked at a variet
Math 1B, lecture 5: area and volume
Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in
6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:
Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(-, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph
Graphing Quadratic Equations
.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations
Electromagnetism - Lecture 2. Electric Fields
Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric
CHAPTER 24 GAUSS S LAW
CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 4-40 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 4-40 4. From the direction of the lines of force (away from positive and toward
An Introduction to Partial Differential Equations in the Undergraduate Curriculum
An Introduction to Partial Differential Equations in the Undergraduate Curriculum J. Tolosa & M. Vajiac LECTURE 11 Laplace s Equation in a Disk 11.1. Outline of Lecture The Laplacian in Polar Coordinates
COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN
COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject
Fundamental Theorems of Vector Calculus
Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use
Review B: Coordinate Systems
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics 8.02 Review B: Coordinate Systems B.1 Cartesian Coordinates... B-2 B.1.1 Infinitesimal Line Element... B-4 B.1.2 Infinitesimal Area Element...
Introduction to Matrices for Engineers
Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11
Exponential and Logarithmic Functions
Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,
Area and Arc Length in Polar Coordinates
Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly
Complex Numbers. w = f(z) z. Examples
omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If
Lecture L5 - Other Coordinate Systems
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates
Linear Inequality in Two Variables
90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.
D.3. Angles and Degree Measure. Review of Trigonometric Functions
APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric
Geometry Notes VOLUME AND SURFACE AREA
Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate
Derive 5: The Easiest... Just Got Better!
Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; [email protected] 1. Introduction Engineering
The Math Circle, Spring 2004
The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the
Geometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
Slope-Intercept Form and Point-Slope Form
Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.
sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj
Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models
y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.
13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
Chapter 22: Electric Flux and Gauss s Law
22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we
SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11.
SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651 SOLUTION The inequalities 1 2 2 2 4 can be rewritten as 2 FIGURE 11 1 0 1 s 2 2 2 2 so the represent the points,, whose distance from the origin is
SECTION 2.2. Distance and Midpoint Formulas; Circles
SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation
Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.
Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical
5.3 Graphing Cubic Functions
Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1
AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss
AB2.5: urfaces and urface Integrals. Divergence heorem of Gauss epresentations of surfaces or epresentation of a surface as projections on the xy- and xz-planes, etc. are For example, z = f(x, y), x =
Warm-Up y. What type of triangle is formed by the points A(4,2), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D.
CST/CAHSEE: Warm-Up Review: Grade What tpe of triangle is formed b the points A(4,), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D. scalene Find the distance between the points (, 5) and
Chapter 9 Circular Motion Dynamics
Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3
Stirling s formula, n-spheres and the Gamma Function
Stirling s formula, n-spheres and the Gamma Function We start by noticing that and hence x n e x dx lim a 1 ( 1 n n a n n! e ax dx lim a 1 ( 1 n n a n a 1 x n e x dx (1 Let us make a remark in passing.
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
Graphs of Polar Equations
Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate
Algebra II. Administered May 2013 RELEASED
STAAR State of Teas Assessments of Academic Readiness Algebra II Administered Ma 0 RELEASED Copright 0, Teas Education Agenc. All rights reserved. Reproduction of all or portions of this work is prohibited
ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude
ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height
Section V.2: Magnitudes, Directions, and Components of Vectors
Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
Trigonometry Review Workshop 1
Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions
Today in Physics 217: the method of images
Today in Physics 17: the method of images Solving the Laplace and Poisson euations by sleight of hand Introduction to the method of images Caveats Example: a point charge and a grounded conducting sphere
10 Polar Coordinates, Parametric Equations
Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates
MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60
MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets
Practice Final Math 122 Spring 12 Instructor: Jeff Lang
Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6
SURFACE TENSION. Definition
SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting
Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder
Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A
An explicit inversion formula for the exponetial Radon transform using data from 180
ISSN: 40-567 An explicit inversion formula for the exponetial Radon transform using data from 80 Hans Rullgård Research Reports in Mathematics Number 9, 00 Department of Mathematics Stockholm University
The GED math test gives you a page of math formulas that
Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding
4 More Applications of Definite Integrals: Volumes, arclength and other matters
4 More Applications of Definite Integrals: Volumes, arclength and other matters Volumes of surfaces of revolution 4. Find the volume of a cone whose height h is equal to its base radius r, by using the
D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its
Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012
Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to
Lecture 5. Electric Flux and Flux Density, Gauss Law in Integral Form
Lecture 5 Electric Flux and Flux ensity, Gauss Law in Integral Form ections: 3.1, 3., 3.3 Homework: ee homework file LECTURE 5 slide 1 Faraday s Experiment (1837), Flux charge transfer from inner to outer
Lecture on Solid Angle
Lecture on Solid Angle Ben Kravitz 1 Introduction The idea of a solid angle comes up a lot in remote sensing applications, so it s important that you know what it is. As such, I ve made this lecture for
MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS
MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
Problem Set V Solutions
Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3
So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1.
Joint probabilit is the probabilit that the RVs & Y take values &. like the PDF of the two events, and. We will denote a joint probabilit function as P,Y (,) = P(= Y=) Marginal probabilit of is the probabilit
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011
Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force
Gauss Formulation of the gravitational forces
Chapter 1 Gauss Formulation of the gravitational forces 1.1 ome theoretical background We have seen in class the Newton s formulation of the gravitational law. Often it is interesting to describe a conservative
15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors
SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential
THE PARABOLA 13.2. section
698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.
Introduction to polarization of light
Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.
The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!
The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal
2.5 Library of Functions; Piecewise-defined Functions
SECTION.5 Librar of Functions; Piecewise-defined Functions 07.5 Librar of Functions; Piecewise-defined Functions PREPARING FOR THIS SECTION Before getting started, review the following: Intercepts (Section.,
Graphing Linear Equations
6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:
SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen
SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen DEFINITION. A trig inequality is an inequality in standard form: R(x) > 0 (or < 0) that contains one or a few trig functions
Core Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook. Solar System Math. Comparing Mass, Gravity, Composition, & Density
National Aeronautics and Space Administration NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook Solar System Math Comparing Mass, Gravity, Composition, & Density What interval of values
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
REVIEW OF ANALYTIC GEOMETRY
REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.
PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
Chapter 15, example problems:
Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,
Acceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
Math 152, Intermediate Algebra Practice Problems #1
Math 152, Intermediate Algebra Practice Problems 1 Instructions: These problems are intended to give ou practice with the tpes Joseph Krause and level of problems that I epect ou to be able to do. Work
C3: Functions. Learning objectives
CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the
Click here for answers.
CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent
Chapter 6 Circular Motion
Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example
Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form
SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving
y 1 x dx ln x y a x dx 3. y e x dx e x 15. y sinh x dx cosh x y cos x dx sin x y csc 2 x dx cot x 7. y sec 2 x dx tan x 9. y sec x tan x dx sec x
Strateg for Integration As we have seen, integration is more challenging than differentiation. In finding the derivative of a function it is obvious which differentiation formula we should appl. But it
Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review
Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 [email protected] December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1
27.3. Introduction. Prerequisites. Learning Outcomes
olume Integrals 27. Introduction In the previous two sections, surface integrals (or double integrals) were introduced i.e. functions were integrated with respect to one variable and then with respect
Physics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
{ } Sec 3.1 Systems of Linear Equations in Two Variables
Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination
