Notes on Congruence 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Notes on Congruence 1"

Transcription

1 ongruence-1 Notes on ongruence 1 xiom 1 (-1). If and are distinct points and if is any point, then for each ray r emanating from there is a unique point on r such that =. xiom 2 (-2). If = and = F, then = F. Moreover, every segment is congruent to itself. xiom 3 (-3: Segment ddition). If,, =, and =, then =. xiom 4 (-4). Given any, and given and ray emanating from a point, then there is a unique ray on a given side of line such that =. xiom 5 (-5). If = and =, then =. Moreover, every angle is congruent to itself. xiom 6 (-6: SS). If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent. orollary 1 (orollary to SS). Given and segment =, there is a unique point F on a given side of such that = F. Proof. y -4 there is a unique ray G on the given side of such that = G. y -1, there is a unique point F on G such that = F. y SS, = F. Proposition 10. If in we have =, then =. Proof. onsider the correspondence of vertices,,. y hypothesis =, and by -5 =. Then by SS =. y the definition of congruent triangles =. Proposition 11 (Segment Subtraction). If, F, =, and = F, then = F. Proof. Suppose = F (R). y -1, there is a point G on F such that = G. y the R hypothesis F G. Since = by hypothesis, and = G we have = G by -3. y hypothesis, = F, so by -2, G = F. y the uniqueness in -1 G = F. This is a contradiction, so = F. Proposition 12. Given = F, then for any point between and, there is a unique point between and F such that =. Proof. y -1 there is a unique point on F such that =. Suppose is not between and F (R). y the definition of ray, either = F or F. Suppose = F. and are distinct points on by 1, but = and =. This contradicts -1, so F. Now suppose F. y -1 there is a unique point G on the ray opposite to such that G = F. y -3, G =. This contradicts the uniqueness part of -1, since =. Hence is between and F. efinition. < (or > ) means that there exists a point between and such that =. Proposition 13 (Segment Ordering). 1. xactly one of the following conditions holds (trichotomy): <, =, or >. 2. If < and = F, then < F. 3. If > and = F, then > F. 4. If < and < F, then < F (transitivity). Proof. 1 The statements of the propositions and many proofs are taken from the book uclidean and Non-uclidean Geometries by M. Greenberg.

2 ongruence-2 1. Suppose and are not congruent. y -1, there exists a point on such that =. y definition of ray, either or. If, then < by definition of <. Suppose. y Proposition 3.12, there is a unique point F on between and such that = F. Then > by definition of <. 2. Since <, there is a point P between and such that = P. Since = F, by Proposition 3.12, there is a unique point Q between and F such that P = Q. y -2, = Q, so < F. 3. Since >, there is a point P between and such that P =. Suppose = F. Then by -2, P = F, so > F. 4. Since <, there is a point P between and such that = P. Since < F, there is a point Q between and F such that = Q. y Proposition 3, there is a point R between and Q such that P = R. y -2, = R. Since R Q and Q F, we know by Proposition 3.3 that R F. Hence, < F. Proposition 14. Supplements of congruent angles are congruent. Proof. Suppose = F. Let P be the ray opposite to and let Q be the ray opposite to. We want to show P = FQ. F P Since the points,, and P are given arbitrarily on the sides of and P, by -1 we can choose the points, F, and Q on F and FQ such that =, = F, and P = Q. Then = F by SS. y the definition of congruent triangles, = F, and =. y -3, P = Q. Then again by SS, P = FQ. y the definition of congruent triangles P = FQ and P = Q. nd again by SS, P = FQ, so P = FQ. Proposition Vertical angles are congruent to each other. 2. n angle congruent to a right angle is a right angle. Proof. 1. y definition two angles are vertical if they allow labeling and where and are opposite, and and are opposite. Q

3 ongruence-3 isthesupplementto and isthesupplementto. y-5 =, so by Proposition 5 =. 2. Suppose is a right angle and F =. Suppose P is a point on the ray opposite to and Q is a point on the ray opposite F. We need to show F = Q. Since = F, by Proposition 5, their supplements are congruent, i.e. P = Q. y the definition of right angle = P, so by -5 = Q. gain by -5 F = Q. Proposition 16. For every line l and every point P there exists a line through P perpendicular to l. Proof. ither P lies on l or it does not. ssume first that P does not lie on l, and let and be any two points on l by I-2. y -4 there is a ray X such that X is on the opposite side of l as P and X = P. y -1 there is a point P on X such that P = P. Since P and P are on opposite sides of l, PP intersects l at a point Q between P and P. If Q =, P and P are supplementary. Since these angles are congruent, they are right angles, so PP l. If Q, then Q = Q by -1, so PQ = P Q by SS. y the definition of congruent triangles PQ = P Q. Hence PP l. Now suppose P lies on l. y Proposition 2.3 there is a point not on l. y the above argument we can construct a line perpendicular to l through this point, thereby obtaining a right angle. y -4, there is a unique ray on a particular side of l emanating from P such that P with one side contained in l is congruent to a right angle. y Proposition 3.15, P is a right angle. The side of this angle not contained in l is contained in a line perpendicular to l through P. Proposition 17 (S). Given and F with =, = F, and = F. Then = F. Proof. y -1, there is a unique point X on such that = X. y hypothesis = and = F, so = XF by SS. y the definition of congruent triangles = FX. y hypothesis = F, so by the uniqueness of -4 F = FX. y Proposition 2.3, = X. Hence = F. Proposition 18. If in we have =, then = and is isosceles. Proof. onsider the correspondence of vertices,, and. y -1 =. y hypothesis =, so by Proposition 3.17, =. y the definition of congruent triangles =, so by the definition of isosceles triangle is isosceles. Proposition 19 (ngle ddition). Given G between and, H between and F, G = FH, and G = H. Then = F. Proof. y the crossbar theorem we may choose G so that G. y -1 we may choose, F, and H so that =, = F, and G = H. y hypothesis G = H, so by SS G = H. Similarly, by hypothesis G = FH, so by SS G = FH. y the definition of congruent triangles G = H and G = HF. We next need to show, H, and F are collinear. y the definition of congruent triangles G = H and G = FH. Since, G, and are collinear G and G are supplementary. y Proposition 5 G is congruent to the supplement of H. enote this supplement by HX. y -4 HX is unique, so HX = HF. Then H is supplementary to FH, so F, H, and are collinear. Since H is between and F, H is in the interior of F, so H F by Proposition 3.7. Since G = H and G = HF, by -3 = F. y SS = F, so by the definition of congruent triangles = F. Proposition 20 (ngle Subtraction). Given G between and, H between and F, G = FH, and = F. Then G = H. Proof. We proceed as in the proof of Proposition Suppose G = H (R). y -4 there is a unique ray X on the same side of H such that G = HX. y the R hypothesis X. y hypothesis FH = G, and by R hypothesis XH = G, so by Proposition 10 = XF. y hypothesis = F, so by -5 F = XF. y the uniqueness part of -4 X =, but this is a contradiction, so G = H.

4 ongruence-4 Lemma 1. Given = F, then for any ray G between and, there is a unique ray H between and F such that G = FH. G H F Proof. y the rossbar Theorem we can choose G so that G. y -1 we can choose points and F such that = and = F. y SS = F, and by the definition of congruent triangles = F and = F. Then by Proposition 3.12 there is a unique point H on F such that G = FH. gain by SS, G = FH, so by the definition of congruent triangles G = FH. We only need to show that H is between and F. Since H is on F, H is between and F, so by Proposition 3.7 H is between and F. efinition. < F means there exists a ray G between and F such that = GF. Proposition 21 (Ordering of ngles). 1. xactly one of the following conditions holds (trichotomy): P < Q, P = Q, or P > Q. 2. If P < Q and Q = R, then P < R. 3. If P > Q and Q = R, then P > R. 4. If P < Q and Q < R, then P < R. (transitivity). Proof. This proofis verysimilarto the proofofproposition3.13. Forlabeling purposeswe say P =, Q = F, and R = GHI. 1. Suppose = F. y -4 there exists a unique ray X on the same side of F as such that = XF. X either is between F and or X is not between F and. If X is between F and, then < F. Suppose X is not between F and. Since X is on the same side of F as and X is not between F and, we know that X and F are on opposite sides of. y Lemma 2 and orollary 1 every point except on F is on the opposite side of as every point of X, so segment F does not intersect X. y a similar argument with the ray opposite X and F, we can show that segment F does not meet X. Hence is on the same side of X as F, so is interior to XF. Then is between X and F. y Lemma 4 there exists a unique ray Y between and such that F = Y. Hence > F. 2. Since < F, there exists a ray X between and F such that = XF. y Lemma 4 there is a unique ray HY between HG and HI such that YHI = XF. y -5 = YHI, so < GHI. 3. Since > F, there exists a ray X between and such that X = F. y -5 X = GHI, so > GHI. 4. Suppose < F and F < GHI. Since < F, there is a unique ray X between and F such that = XF. Since F < GHI, there is a unique ray HY between HG and HI such that F = YHI. y Lemma 4, there is a unique ray HZ between HY and HI such that XF = ZHI. y -5 = ZHI. Since HI HZ HY and HI HY HZ, by Lemma 3 HI HZ HZ. Then by definition < GHI.

5 ongruence-5 Proposition 22 (SSS). Given and F. If =, = F, and = F, then = F. Proof. y orollary 4, since = F we can pick a point G uniquely on the opposite side of as such that F = G. y the definition of congruent triangles = G and F = G. Then by -2 = G and = G. We will show that = G. Since and G are on opposite sides of, segment G intersects at X. y -3, X, = X, or X. The circumstances X = and X are equivalent to X = and X, respectively. Suppose X. onsider G. Since = G, G, by Proposition 3.10 G = G. Now consider G. Since = G, by Proposition 3.10 G = G. Then by Proposition 3.20 (angle subtraction) = G. y SS = G. Suppose = X. Since G = in G, by Proposition 10 = G. Then by SS = G. Suppose X. onsider G. Since = G, G, by Proposition 3.10 G = G. Now consider G. Since = G, by Proposition 3.10 G = G. Then by Proposition 3.19 (angle addition) = G. y SS = G. In all three cases = G. y the definition of congruent triangles = G. Since F = G, = G. y -5 =, so by SS = F. Proposition 23. ll right angles are congruent to each other. Proof. Suppose = and HF = HG are two pairs of right angles. ssume = HF (R). y Proposition 3.21 (a), either > HF or < HF. Without loss of generality suppose > HF. Then there is X between and such that X = HF. y Proposition 3.14 X = HG. Since = by hypothesis, and > HF by by R hypothesis, we have > HF by Proposition 3.21 (c). Since HF = HG by hypothesis, we have again by Proposition 3.21 (c) > HG. From above since X = HG we have > X by Proposition 3.21 (c). y Proposition 3.8 (c), since X is between and, we know that is between X and, since is the ray opposite to. Then < X, but this contradicts Proposition 3.21 (a). Hence = HF.

1.2 Informal Geometry

1.2 Informal Geometry 1.2 Informal Geometry Mathematical System: (xiomatic System) Undefined terms, concepts: Point, line, plane, space Straightness of a line, flatness of a plane point lies in the interior or the exterior

More information

Neutral Geometry. April 18, 2013

Neutral Geometry. April 18, 2013 Neutral Geometry pril 18, 2013 1 Geometry without parallel axiom Let l, m be two distinct lines cut by a third line t at point on l and point Q on m. Let be a point on l and a point on m such that, are

More information

Betweenness of Points

Betweenness of Points Math 444/445 Geometry for Teachers Summer 2008 Supplement : Rays, ngles, and etweenness This handout is meant to be read in place of Sections 5.6 5.7 in Venema s text [V]. You should read these pages after

More information

Euclidean Geometry - The Elements

Euclidean Geometry - The Elements hapter 2 Euclidean Geometry - The Elements Goal: In this chapter we will briefly discuss the first thirty two propositions of Euclid s: The Elements. You can find the Elements on the Web at: http://aleph0.clarku.edu/

More information

Chapter 4 Circles, Tangent-Chord Theorem, Intersecting Chord Theorem and Tangent-secant Theorem

Chapter 4 Circles, Tangent-Chord Theorem, Intersecting Chord Theorem and Tangent-secant Theorem Tampines Junior ollege H3 Mathematics (9810) Plane Geometry hapter 4 ircles, Tangent-hord Theorem, Intersecting hord Theorem and Tangent-secant Theorem utline asic definitions and facts on circles The

More information

The Protractor Postulate and the SAS Axiom. Chapter The Axioms of Plane Geometry

The Protractor Postulate and the SAS Axiom. Chapter The Axioms of Plane Geometry The Protractor Postulate and the SAS Axiom Chapter 3.4-3.7 The Axioms of Plane Geometry The Protractor Postulate and Angle Measure The Protractor Postulate (p51) defines the measure of an angle (denoted

More information

Last revised: November 9, 2006

Last revised: November 9, 2006 MT 200 OURSE NOTES ON GEOMETRY STONY ROOK MTHEMTIS DEPRTMENT Last revised: November 9, 2006 ontents 1. Introduction 3 1.1. Euclidean geometry as an axiomatic theory 3 1.2. asic objects 3 2. Incidence xioms

More information

Euclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts:

Euclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts: Euclidean Geometry Students are often so challenged by the details of Euclidean geometry that they miss the rich structure of the subject. We give an overview of a piece of this structure below. We start

More information

Given: ABCD is a rhombus. Prove: ABCD is a parallelogram.

Given: ABCD is a rhombus. Prove: ABCD is a parallelogram. Given: is a rhombus. Prove: is a parallelogram. 1. &. 1. Property of a rhombus. 2.. 2. Reflexive axiom. 3.. 3. SSS. + o ( + ) =180 4.. 4. Interior angle sum for a triangle. 5.. 5. PT + o ( + ) =180 6..

More information

Math 330A Class Drills All content copyright October 2010 by Mark Barsamian

Math 330A Class Drills All content copyright October 2010 by Mark Barsamian Math 330A Class Drills All content copyright October 2010 by Mark Barsamian When viewing the PDF version of this document, click on a title to go to the Class Drill. Drill for Section 1.3.1: Theorems about

More information

PARALLEL LINES CHAPTER

PARALLEL LINES CHAPTER HPTR 9 HPTR TL OF ONTNTS 9-1 Proving Lines Parallel 9-2 Properties of Parallel Lines 9-3 Parallel Lines in the oordinate Plane 9-4 The Sum of the Measures of the ngles of a Triangle 9-5 Proving Triangles

More information

This supplement is meant to be read after Venema s Section 9.2. Throughout this section, we assume all nine axioms of Euclidean geometry.

This supplement is meant to be read after Venema s Section 9.2. Throughout this section, we assume all nine axioms of Euclidean geometry. Mat 444/445 Geometry for Teacers Summer 2008 Supplement : Similar Triangles Tis supplement is meant to be read after Venema s Section 9.2. Trougout tis section, we assume all nine axioms of uclidean geometry.

More information

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above? 1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

More information

Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item 2) (MAT 360) Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

More information

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: lass: _ ate: _ I: SSS Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Given the lengths marked on the figure and that bisects E, use SSS to explain

More information

A quick review of elementary Euclidean geometry

A quick review of elementary Euclidean geometry C H P T E R 0 quick review of elementary Euclidean geometry 0.1 MESUREMENT ND CONGRUENCE 0.2 PSCH S XIOM ND THE CROSSR THEOREM 0.3 LINER PIRS ND VERTICL PIRS 0.4 TRINGLE CONGRUENCE CONDITIONS 0.5 THE EXTERIOR

More information

Picture. Right Triangle. Acute Triangle. Obtuse Triangle

Picture. Right Triangle. Acute Triangle. Obtuse Triangle Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from

More information

Picture. Right Triangle. Acute Triangle. Obtuse Triangle

Picture. Right Triangle. Acute Triangle. Obtuse Triangle Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from

More information

#2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent.

#2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent. 1 Geometry Proofs Reference Sheet Here are some of the properties that we might use in our proofs today: #1. Definition of Isosceles Triangle says that If a triangle is isosceles then TWO or more sides

More information

14 add 3 to preceding number 35 add 2, then 4, then 6,...

14 add 3 to preceding number 35 add 2, then 4, then 6,... Geometry Definitions, Postulates, and Theorems hapter 2: Reasoning and Proof Section 2.1: Use Inductive Reasoning Standards: 1.0 Students demonstrate understanding by identifying and giving examples of

More information

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

More information

POTENTIAL REASONS: Definition of Congruence:

POTENTIAL REASONS: Definition of Congruence: Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

More information

Elementary triangle geometry

Elementary triangle geometry Elementary triangle geometry Dennis Westra March 26, 2010 bstract In this short note we discuss some fundamental properties of triangles up to the construction of the Euler line. ontents ngle bisectors

More information

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs

More information

Coordinate Plane Project

Coordinate Plane Project Coordinate Plane Project C. Sormani, MTTI, Lehman College, CUNY MAT631, Fall 2009, Project XI BACKGROUND: Euclidean Axioms, Half Planes, Unique Perpendicular Lines, Congruent and Similar Triangle Theorems,

More information

Int. Geometry Unit 2 Quiz Review (Lessons 1-4) 1

Int. Geometry Unit 2 Quiz Review (Lessons 1-4) 1 Int. Geometry Unit Quiz Review (Lessons -4) Match the examples on the left with each property, definition, postulate, and theorem on the left PROPRTIS:. ddition Property of = a. GH = GH. Subtraction Property

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1 Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

More information

1. Determine all real numbers a, b, c, d that satisfy the following system of equations.

1. Determine all real numbers a, b, c, d that satisfy the following system of equations. altic Way 1999 Reykjavík, November 6, 1999 Problems 1. etermine all real numbers a, b, c, d that satisfy the following system of equations. abc + ab + bc + ca + a + b + c = 1 bcd + bc + cd + db + b + c

More information

Lesson 2: Circles, Chords, Diameters, and Their Relationships

Lesson 2: Circles, Chords, Diameters, and Their Relationships Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

More information

acute angle adjacent angles angle bisector between axiom Vocabulary Flash Cards Chapter 1 (p. 39) Chapter 1 (p. 48) Chapter 1 (p.38) Chapter 1 (p.

acute angle adjacent angles angle bisector between axiom Vocabulary Flash Cards Chapter 1 (p. 39) Chapter 1 (p. 48) Chapter 1 (p.38) Chapter 1 (p. Vocabulary Flash ards acute angle adjacent angles hapter 1 (p. 39) hapter 1 (p. 48) angle angle bisector hapter 1 (p.38) hapter 1 (p. 42) axiom between hapter 1 (p. 12) hapter 1 (p. 14) collinear points

More information

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle. Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

More information

Chapter 4. Outline of chapter. 1. More standard geometry (interior and exterior angles, etc.) 3. Statements equivalent to the parallel postulate

Chapter 4. Outline of chapter. 1. More standard geometry (interior and exterior angles, etc.) 3. Statements equivalent to the parallel postulate Chapter 4 Outline of chapter 1. More standard geometry (interior and exterior angles, etc.) 2. Measurement (degrees and centimeters) 3. Statements equivalent to the parallel postulate 4. Saccheri and Lambert

More information

Foundations of Geometry 1: Points, Lines, Segments, Angles

Foundations of Geometry 1: Points, Lines, Segments, Angles Chapter 3 Foundations of Geometry 1: Points, Lines, Segments, Angles 3.1 An Introduction to Proof Syllogism: The abstract form is: 1. All A is B. 2. X is A 3. X is B Example: Let s think about an example.

More information

Geometry Unit 1. Basics of Geometry

Geometry Unit 1. Basics of Geometry Geometry Unit 1 Basics of Geometry Using inductive reasoning - Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture- an unproven statement that is based

More information

Advanced Euclidean Geometry

Advanced Euclidean Geometry dvanced Euclidean Geometry What is the center of a triangle? ut what if the triangle is not equilateral?? Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line

More information

NAME DATE PERIOD. Study Guide and Intervention

NAME DATE PERIOD. Study Guide and Intervention opyright Glencoe/McGraw-Hill, a division of he McGraw-Hill ompanies, Inc. 5-1 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector

More information

Logic Rule 0 No unstated assumptions may be used in a proof. Logic Rule 1 Allowable justifications.

Logic Rule 0 No unstated assumptions may be used in a proof. Logic Rule 1 Allowable justifications. Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries, 4th Ed by Marvin Jay Greenberg (Revised: 18 Feb 2011) Logic Rule 0 No unstated assumptions may be

More information

SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses

SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses CHAPTER SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY For the review sessions, I will try to post some of the solved homework since I find that at this age both taking notes and proofs are still a burgeoning

More information

Geometry. Unit 6. Quadrilaterals. Unit 6

Geometry. Unit 6. Quadrilaterals. Unit 6 Geometry Quadrilaterals Properties of Polygons Formed by three or more consecutive segments. The segments form the sides of the polygon. Each side intersects two other sides at its endpoints. The intersections

More information

**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.

**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:

More information

A polygon with five sides is a pentagon. A polygon with six sides is a hexagon.

A polygon with five sides is a pentagon. A polygon with six sides is a hexagon. Triangles: polygon is a closed figure on a plane bounded by (straight) line segments as its sides. Where the two sides of a polygon intersect is called a vertex of the polygon. polygon with three sides

More information

11 th Annual Harvard-MIT Mathematics Tournament

11 th Annual Harvard-MIT Mathematics Tournament 11 th nnual Harvard-MIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit

More information

Triangle Congruence and Similarity: A Common-Core-Compatible Approach

Triangle Congruence and Similarity: A Common-Core-Compatible Approach Triangle Congruence and Similarity: A Common-Core-Compatible Approach The Common Core State Standards for Mathematics (CCSSM) include a fundamental change in the geometry curriculum in grades 8 to 10:

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

2. Sketch and label two different isosceles triangles with perimeter 4a + b. 3. Sketch an isosceles acute triangle with base AC and vertex angle B.

2. Sketch and label two different isosceles triangles with perimeter 4a + b. 3. Sketch an isosceles acute triangle with base AC and vertex angle B. Section 1.5 Triangles Notes Goal of the lesson: Explore the properties of triangles using Geometer s Sketchpad Define and classify triangles and their related parts Practice writing more definitions Learn

More information

Theorem Prove Given. Dates, assignments, and quizzes subject to change without advance notice.

Theorem Prove Given. Dates, assignments, and quizzes subject to change without advance notice. Name Period GP GOTRI PROOFS 1) I can define, identify and illustrate the following terms onjecture Inductive eductive onclusion Proof Postulate Theorem Prove Given ates, assignments, and quizzes subject

More information

Three Lemmas in Geometry

Three Lemmas in Geometry Winter amp 2010 Three Lemmas in Geometry Yufei Zhao Three Lemmas in Geometry Yufei Zhao Massachusetts Institute of Technology yufei.zhao@gmail.com 1 iameter of incircle T Lemma 1. Let the incircle of triangle

More information

4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem.

4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem. 14 Perpendicularity and Angle Congruence Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles) An acute angle is an angle whose measure is less than 90. A right

More information

1. point, line, and plane 2a. always 2b. always 2c. sometimes 2d. always 3. 1 4. 3 5. 1 6. 1 7a. True 7b. True 7c. True 7d. True 7e. True 8.

1. point, line, and plane 2a. always 2b. always 2c. sometimes 2d. always 3. 1 4. 3 5. 1 6. 1 7a. True 7b. True 7c. True 7d. True 7e. True 8. 1. point, line, and plane 2a. always 2b. always 2c. sometimes 2d. always 3. 1 4. 3 5. 1 6. 1 7a. True 7b. True 7c. True 7d. True 7e. True 8. 3 and 13 9. a 4, c 26 10. 8 11. 20 12. 130 13 12 14. 10 15.

More information

BC AB = AB. The first proportion is derived from similarity of the triangles BDA and ADC. These triangles are similar because

BC AB = AB. The first proportion is derived from similarity of the triangles BDA and ADC. These triangles are similar because 150 hapter 3. SIMILRITY 397. onstruct a triangle, given the ratio of its altitude to the base, the angle at the vertex, and the median drawn to one of its lateral sides 398. Into a given disk segment,

More information

Poincaré s Disk Model for Hyperbolic Geometry

Poincaré s Disk Model for Hyperbolic Geometry Chapter 9 oincaré s Disk Model for Hyperbolic Geometry 9.1 Saccheri s Work Recall that Saccheri introduced a certain family of quadrilaterals. Look again at Section 7.3 to remind yourself of the properties

More information

Terminology: When one line intersects each of two given lines, we call that line a transversal.

Terminology: When one line intersects each of two given lines, we call that line a transversal. Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal.

More information

12. Parallels. Then there exists a line through P parallel to l.

12. Parallels. Then there exists a line through P parallel to l. 12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails

More information

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures. Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

More information

Math 3372-College Geometry

Math 3372-College Geometry Math 3372-College Geometry Yi Wang, Ph.D., Assistant Professor Department of Mathematics Fairmont State University Fairmont, West Virginia Fall, 2004 Fairmont, West Virginia Copyright 2004, Yi Wang Contents

More information

Most popular response to

Most popular response to Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles

More information

A (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. beginning or end.

A (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. beginning or end. Points, Lines, and Planes Point is a position in space. point has no length or width or thickness. point in geometry is represented by a dot. To name a point, we usually use a (capital) letter. (straight)

More information

Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of Course Exam

Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of Course Exam Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of ourse Exam 1) Which term best defines the type of reasoning used below? bdul broke out in hives the last four times

More information

Theorem 3.1. If two circles meet at P and Q, then the magnitude of the angles between the circles is the same at P and Q.

Theorem 3.1. If two circles meet at P and Q, then the magnitude of the angles between the circles is the same at P and Q. 3 rthogonal circles Theorem 3.1. If two circles meet at and, then the magnitude of the angles between the circles is the same at and. roof. Referring to the figure on the right, we have A B AB (by SSS),

More information

Chapter 1: Essentials of Geometry

Chapter 1: Essentials of Geometry Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

More information

/27 Intro to Geometry Review

/27 Intro to Geometry Review /27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

More information

GEOMETRY FINAL EXAM REVIEW

GEOMETRY FINAL EXAM REVIEW GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.

More information

Geometry Final Assessment 11-12, 1st semester

Geometry Final Assessment 11-12, 1st semester Geometry Final ssessment 11-12, 1st semester Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Name three collinear points. a. P, G, and N c. R, P, and G

More information

Copyright 2014 Edmentum - All rights reserved. 04/01/2014 Cheryl Shelton 10 th Grade Geometry Theorems Given: Prove: Proof: Statements Reasons

Copyright 2014 Edmentum - All rights reserved. 04/01/2014 Cheryl Shelton 10 th Grade Geometry Theorems Given: Prove: Proof: Statements Reasons Study Island Copyright 2014 Edmentum - All rights reserved. Generation Date: 04/01/2014 Generated By: Cheryl Shelton Title: 10 th Grade Geometry Theorems 1. Given: g h Prove: 1 and 2 are supplementary

More information

7-3 Parallel and Perpendicular Lines

7-3 Parallel and Perpendicular Lines Learn to identify parallel, perpendicular, and skew lines, and angles formed by a transversal. 7-3 Parallel Insert Lesson and Perpendicular Title Here Lines Vocabulary perpendicular lines parallel lines

More information

How Do You Measure a Triangle? Examples

How Do You Measure a Triangle? Examples How Do You Measure a Triangle? Examples 1. A triangle is a three-sided polygon. A polygon is a closed figure in a plane that is made up of segments called sides that intersect only at their endpoints,

More information

Formal Geometry S1 (#2215)

Formal Geometry S1 (#2215) Instructional Materials for WCSD Math Common Finals The Instructional Materials are for student and teacher use and are aligned to the Course Guides for the following course: Formal Geometry S1 (#2215)

More information

A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Perpendicular Bisector Theorem

A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Perpendicular Bisector Theorem Perpendicular Bisector Theorem A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Converse of the Perpendicular Bisector Theorem If a

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

POINT OF INTERSECTION OF TWO STRAIGHT LINES

POINT OF INTERSECTION OF TWO STRAIGHT LINES POINT OF INTERSECTION OF TWO STRAIGHT LINES THEOREM The point of intersection of the two non parallel lines bc bc ca ca a x + b y + c = 0, a x + b y + c = 0 is,. ab ab ab ab Proof: The lines are not parallel

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

The Inscribed Angle Alternate A Tangent Angle

The Inscribed Angle Alternate A Tangent Angle Student Outcomes Students use the inscribed angle theorem to prove other theorems in its family (different angle and arc configurations and an arc intercepted by an angle at least one of whose rays is

More information

Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle.

Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle. Geometry Unit 0 Notes ircles Syllabus Objective: 0. - The student will differentiate among the terms relating to a circle. ircle the set of all points in a plane that are equidistant from a given point,

More information

Neutral Geometry. Chapter Neutral Geometry

Neutral Geometry. Chapter Neutral Geometry Neutral Geometry Chapter 4.1-4.4 Neutral Geometry Geometry without the Parallel Postulate Undefined terms point, line, distance, half-plane, angle measure Axioms Existence Postulate (points) Incidence

More information

Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

More information

Reflex Vertices A 2. A 1 Figure 2a

Reflex Vertices A 2. A 1 Figure 2a Reflex Vertices For any integer n 3, the polygon determined by the n points 1,..., n (1) in the plane consists of the n segments 1 2, 2 3,..., n-1 n, n 1, (2) provided that we never pass through a point

More information

3.1 Triangles, Congruence Relations, SAS Hypothesis

3.1 Triangles, Congruence Relations, SAS Hypothesis Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)

More information

Geometry 8-1 Angles of Polygons

Geometry 8-1 Angles of Polygons . Sum of Measures of Interior ngles Geometry 8-1 ngles of Polygons 1. Interior angles - The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.

More information

Problems and Solutions, INMO-2011

Problems and Solutions, INMO-2011 Problems and Solutions, INMO-011 1. Let,, be points on the sides,, respectively of a triangle such that and. Prove that is equilateral. Solution 1: c ka kc b kb a Let ;. Note that +, and hence. Similarly,

More information

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points. Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit

More information

Lesson 1: Introducing Circles

Lesson 1: Introducing Circles IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed

More information

Lesson 18: Looking More Carefully at Parallel Lines

Lesson 18: Looking More Carefully at Parallel Lines Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

More information

Notes on Perp. Bisectors & Circumcenters - Page 1

Notes on Perp. Bisectors & Circumcenters - Page 1 Notes on Perp. isectors & ircumcenters - Page 1 Name perpendicular bisector of a triangle is a line, ray, or segment that intersects a side of a triangle at a 90 angle and at its midpoint. onsider to the

More information

Ch 3 Worksheets S15 KEY LEVEL 2 Name 3.1 Duplicating Segments and Angles [and Triangles]

Ch 3 Worksheets S15 KEY LEVEL 2 Name 3.1 Duplicating Segments and Angles [and Triangles] h 3 Worksheets S15 KEY LEVEL 2 Name 3.1 Duplicating Segments and ngles [and Triangles] Warm up: Directions: Draw the following as accurately as possible. Pay attention to any problems you may be having.

More information

Unknown Angle Problems with Inscribed Angles in Circles

Unknown Angle Problems with Inscribed Angles in Circles : Unknown Angle Problems with Inscribed Angles in Circles Student Outcomes Use the inscribed angle theorem to find the measures of unknown angles. Prove relationships between inscribed angles and central

More information

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is

More information

Math 311 Test III, Spring 2013 (with solutions)

Math 311 Test III, Spring 2013 (with solutions) Math 311 Test III, Spring 2013 (with solutions) Dr Holmes April 25, 2013 It is extremely likely that there are mistakes in the solutions given! Please call them to my attention if you find them. This exam

More information

1 Solution of Homework

1 Solution of Homework Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

More information

Let s Talk About Symmedians!

Let s Talk About Symmedians! Let s Talk bout Symmedians! Sammy Luo and osmin Pohoata bstract We will introduce symmedians from scratch and prove an entire collection of interconnected results that characterize them. Symmedians represent

More information

Final Review Geometry A Fall Semester

Final Review Geometry A Fall Semester Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

More information

Lecture 24: Saccheri Quadrilaterals

Lecture 24: Saccheri Quadrilaterals Lecture 24: Saccheri Quadrilaterals 24.1 Saccheri Quadrilaterals Definition In a protractor geometry, we call a quadrilateral ABCD a Saccheri quadrilateral, denoted S ABCD, if A and D are right angles

More information

Plane transformations and isometries

Plane transformations and isometries Plane transformations and isometries We have observed that Euclid developed the notion of congruence in the plane by moving one figure on top of the other so that corresponding parts coincided. This notion

More information

Conic Construction of a Triangle from the Feet of Its Angle Bisectors

Conic Construction of a Triangle from the Feet of Its Angle Bisectors onic onstruction of a Triangle from the Feet of Its ngle isectors Paul Yiu bstract. We study an extension of the problem of construction of a triangle from the feet of its internal angle bisectors. Given

More information

Chapter 12. The Straight Line

Chapter 12. The Straight Line 302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

Homework 9 Solutions and Test 4 Review

Homework 9 Solutions and Test 4 Review Homework 9 Solutions and Test 4 Review Dr. Holmes May 6, 2012 1 Homework 9 Solutions This is the homework solution set followed by some test review remarks (none of which should be surprising). My proofs

More information

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle. DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

More information

MI314 History of Mathematics: Episodes in Non-Euclidean Geometry

MI314 History of Mathematics: Episodes in Non-Euclidean Geometry MI314 History of Mathematics: Episodes in Non-Euclidean Geometry Giovanni Saccheri, Euclides ab omni naevo vindicatus In 1733, Saccheri published Euclides ab omni naevo vindicatus (Euclid vindicated om

More information

Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will

Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will discover and prove the relationship between the triangles

More information

Chapter 5.1 and 5.2 Triangles

Chapter 5.1 and 5.2 Triangles Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each

More information