For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.


 Cathleen Morgan
 4 years ago
 Views:
Transcription
1 efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center of the circle to any point on the circle is a radius of the circle. y definition of a circle, all radii have the same length. We also use the term radius to mean the length of a radius of the circle. To refer to a circle, we may refer to the circle with a given center and a given radius. For example, we can say circle with radius r. r The circumference of a circle is the length around the circle. central angle of a circle is an angle that is formed by two radii of the circle and has the center of the circle as its vertex. In other words, a central angle always has its vertex as the center of the circle. n arc is a connected portion of a circle. n arc that is less than half a circle is a minor arc. n arc that is greater than half a circle is a major arc, and an arc that s equal to half a circle is a semicircle. y definition, the degree measure of an arc is the central angle that intercepts the arc. We use two letters with an arc symbol on top to refer to a minor arc, and three letters for a major arc. chord is an line segment that has any two points on the circumference as its endpoints. chord always lies inside a circle. diameter of a circle is a chord that contains the center of the circle. secant is a line that intersects the circle at two points. F
2 For the circle above, is a central angle. So is ù is a minor arc. The central angle is the angle that intercepts this arc. The (degree) measure of ù is the measure of. ü is a major arc. ù is a semicircle. is a diameter. is a chord. F is a secant. y definition, two circles are congruent if their radii are congruent. Two arcs are congruent if they have the same degree measure and same length. Postulates and/or facts: For circles that are congruent or the same: ll radii are congruent ll diameters are congruent diameter of a circle divides the circle into two equal arcs (semicircles). onversely, If a chord divides the circle into two equal arcs, then the chord is a diameter ongruent central angles intercept congruent arcs, and conversely, congruent arcs are intercepted by congruent central angles. ongruent chords divide congruent arcs, and conversely, ongruent arcs have congruent chords. F In the picture above, assume =. If central angle = = F, then = = F, and ù = ù = F ù onversely, if ù = ù = F ù, then = = F, and = = F Let be a circle with center and radius r, and let P be a point.
3 If the distance between a point P and the center of a circle is less then the radius of the circle, the point P is inside the circle. If the distance between a point P and the center of a circle is greater then the radius of the circle, the point is outside the circle. If the distance between a point P and the center of a circle is equal to the radius of the circle, the point is on the circle. r In the picture above, is inside circle since < r. is outside circle since > r, and is on circle since = r. Theorem: diameter perpendicular to a chord bisects the chord and its arcs. Proof: Given and a chord, let be a diameter of the circle such that is perpendicular to at point. We must prove that = and ù = ù We will construct the radii and
4 Statements Reasons 1. iameter chord at 1. given 2. = 2. Radii of same are = 3. = 3. Reflexive 4. = 4. HL 5. = ; = 5. PT 6. ù = ù 6. = central s intersect = arc Theorem: perpendicular bisector of a chord to a circle contains the center of the circle. This theorem says that, if is a line that bisects chord and is perpendicular to, then necessarily contains the center,, of the circle. Remember that the distance between a point and a line is the perpendicular distance. We have the following: Theorem: In same or congruent circles, equal chords are equidistant from the center. onversely, chords that are equidistant from the center are congruent to each other. G H The theorem says that, if =, then G = H. onversely, if G = H, then =.
5 Tangent: tangent to a circle is a line that intersects the circle at only one point. The point where the tangent intersects the circle is called the point of tangency. In the above, is the tangent to at point. tangency. Theorem: Point is the point of The tangent to a circle is perpendicular to the radius of the circle at the point of tangency. onversely, if a line is perpendicular to a radius of a circle at a pont on the circle, then that line is a tangent to the circle. In picture above, if is a tangent to, then. conversely, if, then is a tangent to the circle at point. Theorem: If two different tangents to the same circle at a common point, the distance between that point and the two points of tangency are the same. Proof: Let, be tangents to circle at points of tangency and, and intersect at point. We must prove that =
6 1. Statements and are tangents to and intersects at Reasons 1. given 2. = 2. Radii of same are = 3. = 3. Reflexive 4., 4. Tangents are to radius at pt. of tangency 5., are right angles 5. efinition of perpendicular lines 6. = 6. HL 7. = 7. PT In proving the above theorem, notice that PT allows us to say that =. In other words, is an angle bisector of. We have also proved the following: Theorem: The line segment from the center of a circle to the common intersection of two tangents also bisects the angle that is formed by the two tangents. We say that a polygon is inscribed inside a circle if all of the vertices of the polygon are on the circumference of the circle. The circle is said to circumscribe the polygon. In picture below, quadrilateral is an inscribed polygon of circle, and circle circumscribes quadrilateral.
7 We say that a circle is inscribed by a polygon if each side of the polygon is a tangent of the circle, and the polygon circumscribes the circle. In picture below, pentagon KLMNP circumscribes circle, and circle is inscribed by pentagon KLMNP. ach side of the pentagon is a tangent of the circle. N P M K L We say that two circles are concentric if they share the same center. If two circles are ont concentric, we call the line segment connects their two centers the line of centers of the two circles. In below left figure, the two circles are concentric. The inner (black) and outer (red) circle both have the same center. In below right figure, circles and are not concentric. The segment is the line of centers of the two circles. oncentric circles cannot have a common tangent, but two circles that are not
8 concentric can share one or more common tangents. We say that two circles are internally tangent to each other if they intersect at one point (the same line will be tangent to the two circles at their point of intersection) and one is inside another. circles are externally tangent to each other if they intersect at one point (the same line will be tangent to the two circles at their point of intersection) but each is on the outside of another. tangent that is common to two circles is a common internal tangent if it intersects the line of centers of the two circles. tangent that is common to two circles is a common external tangent if it does not intersects the line of centers of the two circles. The two circles and above are internally tangent to each other. They share one common tangent. The common tangent they share is a common external tangent. The two circles and above share two common external tangents.
9 The two circles and above are externally tangent to each other. The share one common internal tangent (black line), and two common external tangents (blue lines). The two circles and above share two common internal tangents (black lines), and two common external tangents (blue lines). Inscribed ngles Remember that the (degree) measurement of an arc is by definition the (degree) measurement of the central angle that intercepts the arc. In the picture below, the measure of central angle is 40, so we say that the (degree) measure of arc ù is also 40. In other words, m = mù =
10 n inscribed angle to a circle is an angle whose vertex is on the circle and whose sides are chords of the circle. In picture above, is an inscribed angle. is inscribed by arc û and intercepts arc ù Inscribed ngle Theorem: The degree measure of an inscribed angle is half the degree measure of its inscribed arc. Proof: To prove this theorem, let be an inscribed angle of. We must prove that m = mù = 1 2 There are three possible cases we need to consider, the case where the center of the circle,, is outside of the angle, ; another case is where is inside of. The third case is if center is on one of the side of. We prove this third case:
11 Statements Reasons 1. is an inscribed ; enter is on 1. given 2. = 2. Radii of same are = 3. = 3. Isoceles 4. m + m = m 4. Sum of int. of = oppo. exterior 5. m + m = m 5. Substitution m ù 6. m = 1 2 (m ) 6. lgebra 7. m = ef. of measure of an arc Theorem: In the same or congruent circles, inscribed ngles that intercept the same or congruent arcs are congruent. onversely, arcs that are intercepted by congruent angles are congruent. So = since they both intercept the same arc,. ù ù = F ù, then = G. Furthermore, if If N = M, then ù KL = ù HJ G N M K F L H J Thales Theorem: The diameter of a circle subtends a right angle to any point on the circle In other words, an inscribed angle whose intercepted arc is a semicircle is always a right angle. onversely, if an inscribed angle is right, then the chord that connects the two endpoints of the intercepted arc is a diameter. In, if is a diameter, then and are both right angles. onversely, in the circle to the right, if F G is right, then F is a diameter of the circle. In other words, F contains the center of the circle.
12 G F Theorem n angle formed by a tangent and a chord of a circle is equal to half of the (degree) measurement of the intercepted arc. is a tangent to, and is a chord. Therefore, m = 1 2 m ù Theorem: The angle formed by the intersection of two chords is equal to half of the sum of the two intercepted arcs., are chords of, therefore, m = 1 2 m ù + m ù
13 xample: In below, mù = 50, m = 5x + 1, mù = 6x 4, find the value of x. 5x x 4 ns: ccording to the theorem, we have: m = 1 2 m ù + m ù 1 5x + 1 = (50 + (6x 4)) 2 5x + 1 = 1 (6x + 46) 5x + 1 = 3x x = 22 x = 11 2 Theorem: n angle formed by two secants intersecting outside a circle is equal to half of the difference of the two intercepted arcs. In picture below, and are secants that intersect at point outside of, we have: m = 1 2 m ù m ù xample: In picture below, m = x + 15, mù = 12x, m ù = 5x 5, find the value of x. 12x 5x 5 x + 15
14 ns: ccording to theorem, m = 1 2 m ù m ù 1 x + 15 = (12x (5x 5)) 2 x + 15 = 1 2 (12x 5x + 5) x + 15 = 1 (7x + 5) 2(x + 15) = 7x x + 30 = 7x + 5 5x = 25 x = 5 Theorem: The angle formed with a tangent and a secant intersecting at a point outside a circle is equal to half of the difference of the intercepted arcs. In picture below, is a tangent and a secant to, intersecting at, the theorem says that: m = 1 2 m ù m ù Theorem: The angle formed with two tangents to a circle intersecting at a point outside the circle is equal to half of the difference of the intercepted arcs. In picture below,, are tangents to, the theorem says that: m = 1 2 m û m ù
Geometry Chapter 10 Study Guide Name
eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.
More informationChapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
More informationChapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
More informationCircle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
More informationName Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion
Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent
More informationLesson 1: Introducing Circles
IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed
More informationCCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:
GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M91.G..1 Prove that all circles are similar. M91.G.. Identify and describe relationships
More informationCircle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.
Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,
More informationChapter Review. 111 Lines that Intersect Circles. 112 Arcs and Chords. Identify each line or segment that intersects each circle.
HPTR 111 hapter Review 111 Lines that Intersect ircles Identify each line or segment that intersects each circle. 1. m 2. N L K J n W Y X Z V 3. The summit of Mt. McKinley in laska is about 20,321 feet
More informationIntro to Circles Formulas Area: Circumference: Circle:
Intro to ircles Formulas rea: ircumference: ircle: Key oncepts ll radii are congruent If radii or diameter of 2 circles are congruent, then circles are congruent. Points with respect to ircle Interior
More informationA summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:
summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of midpoint and segment bisector M If a line intersects another line segment
More informationDefinitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
More informationSection 91. Basic Terms: Tangents, Arcs and Chords Homework Pages 330331: 118
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,
More informationLesson 2: Circles, Chords, Diameters, and Their Relationships
Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct
More informationUnit 10 Geometry Circles. NAME Period
Unit 10 Geometry Circles NAME Period 1 Geometry Chapter 10 Circles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** 1. (101) Circles and Circumference
More informationGeo 9 1 Circles 91 Basic Terms associated with Circles and Spheres. Radius. Chord. Secant. Diameter. Tangent. Point of Tangency.
Geo 9 1 ircles 91 asic Terms associated with ircles and Spheres ircle Given Point = Given distance = Radius hord Secant iameter Tangent Point of Tangenc Sphere Label ccordingl: ongruent circles or spheres
More informationUnit 3: Circles and Volume
Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,
More informationGeometry Unit 10 Notes Circles. Syllabus Objective: 10.1  The student will differentiate among the terms relating to a circle.
Geometry Unit 0 Notes ircles Syllabus Objective: 0.  The student will differentiate among the terms relating to a circle. ircle the set of all points in a plane that are equidistant from a given point,
More informationContents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
More informationConjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C2 Vertical Angles Conjecture If two angles are vertical
More informationHow To Understand The Theory Of Ircles
Geometry hapter 9 ircle Vocabulary rc Length ngle & Segment Theorems with ircles Proofs hapter 9: ircles Date Due Section Topics ssignment 9.1 9.2 Written Eercises Definitions Worksheet (pg330 classroom
More informationGeometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
More information1 Solution of Homework
Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,
More informationGEOMETRY OF THE CIRCLE
HTR GMTRY F TH IRL arly geometers in many parts of the world knew that, for all circles, the ratio of the circumference of a circle to its diameter was a constant. Today, we write d 5p, but early geometers
More informationConjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
More informationMATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014
EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle
More informationGEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
More informationCK12 Geometry: Parts of Circles and Tangent Lines
CK12 Geometry: Parts of Circles and Tangent Lines Learning Objectives Define circle, center, radius, diameter, chord, tangent, and secant of a circle. Explore the properties of tangent lines and circles.
More information1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
More informationMath 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:059:55. Exam 1 will be based on: Sections 1A  1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
More informationTangent Properties. Line m is a tangent to circle O. Point T is the point of tangency.
CONDENSED LESSON 6.1 Tangent Properties In this lesson you will Review terms associated with circles Discover how a tangent to a circle and the radius to the point of tangency are related Make a conjecture
More informationUnit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: lass: ate: I: Unit 3 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. The radius, diameter, or circumference of a circle is given. Find
More informationName: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: ID: A Q3 Geometry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Graph the image of each figure under a translation by the given
More information2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
More informationChapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
More informationMATH STUDENT BOOK. 8th Grade Unit 6
MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular
More informationPostulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 111: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
More informationEUCLIDEAN GEOMETRY: (±50 marks)
ULIN GMTRY: (±50 marks) Grade theorems:. The line drawn from the centre of a circle perpendicular to a chord bisects the chord. 2. The perpendicular bisector of a chord passes through the centre of the
More informationGEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
More informationTest on Circle Geometry (Chapter 15)
Test on Circle Geometry (Chapter 15) Chord Properties of Circles A chord of a circle is any interval that joins two points on the curve. The largest chord of a circle is its diameter. 1. Chords of equal
More informationGeometry Enduring Understandings Students will understand 1. that all circles are similar.
High School  Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
More information56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.
6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More information3.1 Triangles, Congruence Relations, SAS Hypothesis
Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)
More informationalternate interior angles
alternate interior angles two nonadjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate
More informationArea. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
More informationNew York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
More informationAdvanced Euclidean Geometry
dvanced Euclidean Geometry What is the center of a triangle? ut what if the triangle is not equilateral?? Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line
More informationGEOMETRY COMMON CORE STANDARDS
1st Nine Weeks Experiment with transformations in the plane GCO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,
More informationGrade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
More informationGeometry. Higher Mathematics Courses 69. Geometry
The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and
More informationGeometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
More informationFor each Circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1. x = 2. x =
Name: ate: Period: Homework  Tangents For each ircle, find the value of. ssume that segments that appear to be tangent are tangent. 1. =. = ( 5) 1 30 0 0 3. =. = (Leave as simplified radical!) 3 8 In
More informationIMO Training 2008 Circles Yufei Zhao. Circles. Yufei Zhao.
ircles Yufei Zhao yufeiz@mit.edu 1 Warm up problems 1. Let and be two segments, and let lines and meet at X. Let the circumcircles of X and X meet again at O. Prove that triangles O and O are similar.
More informationDuplicating Segments and Angles
CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty
More informationCurriculum Map by Block Geometry Mapping for Math Block Testing 20072008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 20072008 Pre s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
More informationGEOMETRY B: CIRCLE TEST PRACTICE
Class: Date: GEOMETRY B: CIRCLE TEST PRACTICE Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the measures of the indicated angles. Which statement
More information39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
More informationGeometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
More informationLesson 53: Concurrent Lines, Medians and Altitudes
Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special
More information8.2 Angle Bisectors of Triangles
Name lass Date 8.2 ngle isectors of Triangles Essential uestion: How can you use angle bisectors to find the point that is equidistant from all the sides of a triangle? Explore Investigating Distance from
More informationThe Geometry of Piles of Salt Thinking Deeply About Simple Things
The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word
More informationGeorgia Standards of Excellence Curriculum Frameworks Mathematics
Georgia Standards of Excellence Curriculum Frameworks Mathematics GSE Analytic Geometry Unit 3: Circles and Volume Unit 3: Circles and Volume Table of Contents OVERVIEW... 3 STANDARDS ADDRESSED IN THIS
More informationName: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: lass: _ ate: _ I: SSS Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Given the lengths marked on the figure and that bisects E, use SSS to explain
More informationPOTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
More informationUnit 2  Triangles. Equilateral Triangles
Equilateral Triangles Unit 2  Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics
More informationTImath.com. Geometry. Points on a Perpendicular Bisector
Points on a Perpendicular Bisector ID: 8868 Time required 40 minutes Activity Overview In this activity, students will explore the relationship between a line segment and its perpendicular bisector. Once
More informationObjectives. Cabri Jr. Tools
^Åíáîáíó=NO Objectives To learn how to construct all types of triangles using the Cabri Jr. application To reinforce the difference between a construction and a drawing Cabri Jr. Tools fåíêççìåíáçå `çåëíêìåíáåö
More informationChapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter?
Chapter Quiz Section.1 Area and Initial Postulates (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? (.) TRUE or FALSE: If two plane
More information111 Lines that Intersect Circles Quiz
Name: lass: ate: I: 111 Lines that Intersect ircles Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Identify the secant that intersects ñ. a. c. b.
More informationChapter Three. Circles
hapter Three ircles FINITIONS 1. QUL IRLS are those with equal radii. K 2. HOR of a circle is any straight line joining two points on its circumference. For example, K is a chord. R 3. n R of a circle
More informationArc Length and Areas of Sectors
Student Outcomes When students are provided with the angle measure of the arc and the length of the radius of the circle, they understand how to determine the length of an arc and the area of a sector.
More informationArchimedes and the Arbelos 1 Bobby Hanson October 17, 2007
rchimedes and the rbelos 1 obby Hanson October 17, 2007 The mathematician s patterns, like the painter s or the poet s must be beautiful; the ideas like the colours or the words, must fit together in a
More informationDEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
More informationClass10 th (X) Mathematics Chapter: Tangents to Circles
Class10 th (X) Mathematics Chapter: Tangents to Circles 1. Q. AB is line segment of length 24 cm. C is its midpoint. On AB, AC and BC semicircles are described. Find the radius of the circle which touches
More informationGeometry  Semester 2. Mrs. DayBlattner 1/20/2016
Geometry  Semester 2 Mrs. DayBlattner 1/20/2016 Agenda 1/20/2016 1) 20 Question Quiz  20 minutes 2) Jan 15 homework  selfcorrections 3) Spot check sheet Thales Theorem  add to your response 4) Finding
More informationNAME DATE PERIOD. Study Guide and Intervention
opyright Glencoe/McGrawHill, a division of he McGrawHill ompanies, Inc. 51 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector
More informationSolutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 57:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
More informationCIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
More informationFinal Review Geometry A Fall Semester
Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over
More information11 th Annual HarvardMIT Mathematics Tournament
11 th nnual HarvardMIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit
More informationConjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence  a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
More information15. Appendix 1: List of Definitions
page 321 15. Appendix 1: List of Definitions Definition 1: Interpretation of an axiom system (page 12) Suppose that an axiom system consists of the following four things an undefined object of one type,
More informationChapter 1. The Medial Triangle
Chapter 1. The Medial Triangle 2 The triangle formed by joining the midpoints of the sides of a given triangle is called the medial triangle. Let A 1 B 1 C 1 be the medial triangle of the triangle ABC
More informationThe Geometry of a Circle Geometry (Grades 10 or 11)
The Geometry of a Circle Geometry (Grades 10 or 11) A 5 day Unit Plan using Geometers Sketchpad, graphing calculators, and various manipulatives (string, cardboard circles, Mira s, etc.). Dennis Kapatos
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationLesson 19: Equations for Tangent Lines to Circles
Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line
More informationPERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various twodimensional figures.
PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various twodimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the
More informationObjective: To distinguish between degree and radian measure, and to solve problems using both.
CHAPTER 3 LESSON 1 Teacher s Guide Radian Measure AW 3.2 MP 4.1 Objective: To distinguish between degree and radian measure, and to solve problems using both. Prerequisites Define the following concepts.
More informationGEOMETRIC MENSURATION
GEOMETRI MENSURTION Question 1 (**) 8 cm 6 cm θ 6 cm O The figure above shows a circular sector O, subtending an angle of θ radians at its centre O. The radius of the sector is 6 cm and the length of the
More information5.1 Midsegment Theorem and Coordinate Proof
5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle  A midsegment of a triangle is a segment that connects
More informationD.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its
More informationGeorgia Online Formative Assessment Resource (GOFAR) AG geometry domain
AG geometry domain Name: Date: Copyright 2014 by Georgia Department of Education. Items shall not be used in a third party system or displayed publicly. Page: (1 of 36 ) 1. Amy drew a circle graph to represent
More informationGeometry 81 Angles of Polygons
. Sum of Measures of Interior ngles Geometry 81 ngles of Polygons 1. Interior angles  The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.
More informationBasic Geometry Review For Trigonometry Students. 16 June 2010 Ventura College Mathematics Department 1
Basic Geometry Review For Trigonometry Students 16 June 2010 Ventura College Mathematics Department 1 Undefined Geometric Terms Point A Line AB Plane ABC 16 June 2010 Ventura College Mathematics Department
More informationCalculate the circumference of a circle with radius 5 cm. Calculate the area of a circle with diameter 20 cm.
RERTIES F CIRCLE Revision. The terms Diameter, Radius, Circumference, rea of a circle should be revised along with the revision of circumference and area. Some straightforward examples should be gone over
More informationWeek 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test
Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationIncenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
More information