# Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will discover and prove the relationship between the triangles formed from parallelograms. II. UNIT AUTHOR: Ashley Swandby, James River High School, Botetourt County Public Schools III. COURSE: Geometry IV. CONTENT STRAND: Geometry V. OBJECTIVES: Students will prove the relationship between triangles formed when constructing possible vertices for a parallelogram given three non-collinear points. Students will also classify/prove the quadrilateral formed when connecting midpoints of sides of parallelograms. VI. REFERENCE/RESOURCE MATERIALS: Students may choose to construct figures using dynamic geometry software, but the activities also work with straightedges and paper/pencil. VII. VIII. IX. PRIMARY ASSESSMENT STRATEGIES: Students will communicate reasoning/justification of the following: -existence of a fourth point given any three non-collinear points to create a parallelogram -existence of three such points such that given three non-collinear points, a parallelogram can be formed -the four triangles constructed from three given points and three additional points to construct parallelograms create four congruent triangles -the quadrilateral constructed by connecting midpoints of sides of parallelograms create another parallelogram Students should use figures, dynamic geometry software, or constructed sketches to visualize properties of the triangles and parallelograms as well as provide formal justification of the results EVALUATION CRITERIA: For each question, students should provide a sketch and a formal justification of their conclusions. A possible justification is provided. Students should make explicit justification that the three points on each side of the larger triangle in Question 2 are in fact collinear. Students should be able to construct all three of the possible vertices to create parallelograms from any three non-collinear points before they attempt to prove the resulting triangles congruent. INSTRUCTIONAL TIME: 30 minutes

2 Constructing Parallelograms and Triangles Strand Geometry Mathematical Objective(s) Students will provide a formal justification of the relationship between the triangles formed when constructing the possible vertices to create a parallelogram from three non-collinear points. Students will also provide a formal justification for the type of quadrilateral created when connecting midpoints of sides of parallelograms. Related SOL G.9: The student will verify characteristics of quadrilaterals and use properties of quadrilaterals to solve real-world problems. G.6: The student, given information in the form of a figure or statement, will prove two triangles are congruent, using algebraic and coordinate methods as well as deductive proofs. G. 7: The student, given information in the form of a figure or statement, will prove two triangles are similar, using algebraic and coordinate methods as well as deductive proofs. G.2 : The student will use the relationships between angles formed by two lines cut by a transversal to b) verify the parallelism, using algebraic and coordinate methods as well as deductive proofs; and c) solve real-world problems involving angles formed when parallel lines are cut by a transversal. NCTM Standards The student will: Geometry: analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships o (9-12) explore relationships (including congruence and similarity) among classes of two- and three-dimensional objects, make and test conjectures about them, and solve problems involving them o (9-12) establish the validity of geometric conjectures using deduction, prove theorems, and critique arguments made by others Geometry: specify locations and describe spatial relationships using coordinate geometry and other representational systems o (9-12) investigate conjectures and solve problems involving two- and threedimensional objects represented with Cartesian coordinates 2

3 Geometry: use visualization, spatial reasoning, and geometric modeling to solve problems o (9-12) draw and construct representations of two- and three-dimensional geometric objects using a variety of tools Reasoning and Proof: make and investigate mathematical conjectures Reasoning and Proof: develop and evaluate mathematical arguments and proofs Communication: organize and consolidate their mathematical thinking through communication; communicate their mathematical thinking coherently and clearly to peers, teachers, and others Additional Objectives for Student Learning (include if relevant; may not be math-related): Materials/Resources Dynamic Geometry Software, if using for constructions Straightedge and compass, if using for constructions Assumption of Prior Knowledge Students should be able to prove relationships for angles in parallel lines Students should be able to prove congruent and/or similar triangle relationships Students should be able to identify properties of parallelograms and how to prove a quadrilateral is a parallelogram Students might have trouble identifying the three possible vertices that create parallelograms from any three non-collinear points. Students may also have trouble in the proof identifying why the three points on the sides of the larger triangle are in fact collinear. Students should be prompted to justify this linearity relationship if necessary. Before this task, students should also have considered properties of parallelograms in the coordinate plane Introduction: Setting Up the Mathematical Task In this task, the student will prove the relationship between the vertices and midpoints of parallelograms and triangles. The student will justify and prove the relationships between triangles and quadrilaterals formed when constructing various line segments. The student should create a visual representation (either with dynamic geometry software or with paper/pencil) to explore the relationships and then must provide a formal justification for the conclusions. The questions presented in the task is as follows: When three non-collinear points are on a plane, where can you draw a fourth point in order to guarantee the four points will create a parallelogram? Is it always possible to construct a parallelogram from three non-collinear points? Can there be more than 3

4 one point that creates a parallelogram? What conclusions can you make about the triangles formed from the points that create all possible parallelograms? For this task, the student should apply your knowledge of parallelograms, parallel lines and angles formed by parallel lines cut by a transversal, and properties of congruent or similar triangles in order to justify reasoning. For each question, the student should provide a figure and a written justification of the thinking involved. Teacher Note: (Students should complete this task in pairs in order to promote communication and reasoning/proof. The teacher should be observing the discussions and justifications and providing feedback to ensure the students are giving complete justifications of their conclusions.) Students may want to use dynamic geometry software to assist in the constructions, but ensure that the students are using the construction methods and geometrical properties to provide justification instead of relying solely on the observations from the software (Ask: why is that always true? or What allows you to make that conclusion?) It may be helpful to give the questions one at a time and have students present their models to the class after Question 1 in order for students to discover that there are three possible points that can form a parallelogram. Encourage students to justify their constructions and critique each other s justification. As students provide justification, ensure that the conclusions reached are justified mathematically, not simply based on observation (for example, why must three points be on the same line? Will any three points always be on the same line? Why must certain angles/sides be congruent in the construction?) Student Exploration 1. Consider three non-collinear points on the plane. Label them A, B, and C. From these points, where can you draw a fourth point, D, such that a parallelogram is formed? How do you know that this point exists? 2. When given three non-collinear points, there are actually three different points that can create a possible parallelogram with the given points. Where are these three points? Draw a figure that includes these three points. Label the given points A, B, and C, and the new points D, E, and F. From your drawing, you will notice four triangles. What is the relationship between these four triangles? Provide a formal justification for your conclusion. Monitoring Student Responses Students should provide a figure and a written justification for each question posed. Students should discuss their thinking with partners, and the teacher should listen for students misconceptions in order to guide their thinking and ensure proper justification. If students struggle to identify the relationship, prompt students to make an observation by 4

5 measuring sides and angles and then try to explain why they think the observation must be true. After students have prepared written justifications, have student groups present their proofs to the class. Encourage students to discuss their thinking throughout the task and why they chose to approach the task in their chosen way. How else could the conclusions be proven? Assessment List and Benchmarks Extension Questions o Questions If three vertices of a parallelogram are located at (0, 0), (3, 4) and (-2, 3), where could the fourth vertex be located? Is there more than one possible location? How do you know that must be the location? o Journal/writing prompts What initial conditions would ensure that the four triangles constructed are isosceles? Equilateral? Why is it possible to construct three different parallelograms from any three non-collinear points? Students should be assessed on the following: (5 point scale) o o accurate model provided (1 point) complete justifications for each question (are all statements supported with geometrical reasoning?) 4 points for complete justification, 3 points if minor assumption made without justification, 2 points for substantial missing justification, and 1 point for complete lack of justification but an accurate conclusion. 0 points for incorrect conclusions. 5

6 Possible solutions: Question 1: There are three possible parallelograms that can be constructed from the three non-collinear points. Possible justifications include: A) Construct a line segment through two points, draw a line segment parallel and congruent to the line through the other point. The fourth point occurs at the endpoint of the parallel and congruent line segment. B) Construct a line segment through two points, and construct a line segment through another pair of points. From each line segment, construct a line segment parallel to the line through the other point. The fourth point occurs at the intersection of the line segments. Question 2: 6

7 The four smaller triangles ( are congruent and they are all similar to the larger triangle, There are multiple approaches, and the corresponding sides and angles will vary. Ensure that students use an appropriate congruence justification and provide adequate justification. A possible justification approach could include this reasoning: Use ASA for the four triangles. For each of the pairs of parallel lines, congruent angles are formed by corresponding angles for each of the three outside triangles and alternate interior angles for the interior triangle. For each parallelogram formed, we conclude that opposite sides are congruent and prove that the four triangles are congruent by ASA. Use SSS by concluding corresponding sides of the parallelograms are congruent and use the transitive property to conclude congruence for all four triangles. 7

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### Performance Based Learning and Assessment Task Pizza Sector Task I. ASSESSSMENT TASK OVERVIEW & PURPOSE: Students will be introduced to the concept

Performance Based Learning and Assessment Task Pizza Sector Task I. ASSESSSMENT TASK OVERVIEW & PURPOSE: Students will be introduced to the concept of a sector of a circle and will learn the formula used

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### Circles in Triangles. This problem gives you the chance to: use algebra to explore a geometric situation

Circles in Triangles This problem gives you the chance to: use algebra to explore a geometric situation A This diagram shows a circle that just touches the sides of a right triangle whose sides are 3 units,

### Natural Disaster Recovery and Quadrilaterals

Natural Disaster Recovery and Quadrilaterals I. UNIT OVERVIEW & PURPOSE: In this unit, students will apply their knowledge of quadrilaterals to solve mathematics problems concerning a tornado that struck

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### Mathematics Geometry Unit 1 (SAMPLE)

Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

### NEW MEXICO Grade 6 MATHEMATICS STANDARDS

PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

### The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology

### Centers of Triangles Learning Task. Unit 3

Centers of Triangles Learning Task Unit 3 Course Mathematics I: Algebra, Geometry, Statistics Overview This task provides a guided discovery and investigation of the points of concurrency in triangles.

### Mathematics Georgia Performance Standards

Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by

### Performance Based Learning and Assessment Task Exploring Coal Pillar Mining I. ASSESSSMENT TASK OVERVIEW & PURPOSE: The purpose of this activity is

Performance Based Learning and Assessment Task Exploring Coal Pillar Mining I. ASSESSSMENT TASK OVERVIEW & PURPOSE: The purpose of this activity is to assess the students ability to calculate volume and

### A Correlation of Pearson Texas Geometry Digital, 2015

A Correlation of Pearson Texas Geometry Digital, 2015 To the Texas Essential Knowledge and Skills (TEKS) for Geometry, High School, and the Texas English Language Proficiency Standards (ELPS) Correlations

### Geometry Module 4 Unit 2 Practice Exam

Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

### 37 Basic Geometric Shapes and Figures

37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars

E XPLORING QUADRILATERALS E 1 Geometry State Goal 9: Use geometric methods to analyze, categorize and draw conclusions about points, lines, planes and space. Statement of Purpose: The activities in this

### Classifying Lesson 1 Triangles

Classifying Lesson 1 acute angle congruent scalene Classifying VOCABULARY right angle isosceles Venn diagram obtuse angle equilateral You classify many things around you. For example, you might choose

### Discovering Math: Exploring Geometry Teacher s Guide

Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional

### GEOMETRY COMMON CORE STANDARDS

1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

### Parallel Lines, Transversals, and Angles: What s the connection?

UNIT OVERVIEW & PURPOSE: This unit will review basic geometric vocabulary involving parallel lines, transversals, angles, and the tools used to create and verify the geometric relationships. This unit

### Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

### Unit 2 - Triangles. Equilateral Triangles

Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics

### G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.

### Geometry of 2D Shapes

Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles

### Geometry, Technology, and the Reasoning and Proof Standard inthemiddlegradeswiththegeometer ssketchpad R

Geometry, Technology, and the Reasoning and Proof Standard inthemiddlegradeswiththegeometer ssketchpad R Óscar Chávez University of Missouri oc918@mizzou.edu Geometry Standard Instructional programs from

### Situation: Proving Quadrilaterals in the Coordinate Plane

Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra

### Final Review Geometry A Fall Semester

Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

### HIGH SCHOOL GEOMETRY: COMPANY LOGO

HIGH SCHOOL GEOMETRY: COMPANY LOGO UNIT OVERVIEW This 3-4 week unit uses an investigation of rigid motions and geometric theorems to teach students how to verify congruence of plane figures and use the

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

### Chapter 18 Symmetry. Symmetry of Shapes in a Plane 18.1. then unfold

Chapter 18 Symmetry Symmetry is of interest in many areas, for example, art, design in general, and even the study of molecules. This chapter begins with a look at two types of symmetry of two-dimensional

### Duplicating Segments and Angles

CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### UNIT H1 Angles and Symmetry Activities

UNIT H1 Angles and Symmetry Activities Activities H1.1 Lines of Symmetry H1.2 Rotational and Line Symmetry H1.3 Symmetry of Regular Polygons H1.4 Interior Angles in Polygons Notes and Solutions (1 page)

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Reasoning and Proof Review Questions

www.ck12.org 1 Reasoning and Proof Review Questions Inductive Reasoning from Patterns 1. What is the next term in the pattern: 1, 4, 9, 16, 25, 36, 49...? (a) 81 (b) 64 (c) 121 (d) 56 2. What is the next

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### Standards for Mathematical Practice: Commentary and Elaborations for 6 8

Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:

### Exponential Growth and Modeling

Exponential Growth and Modeling Is it Really a Small World After All? I. ASSESSSMENT TASK OVERVIEW & PURPOSE: Students will apply their knowledge of functions and regressions to compare the U.S. population

### Performance Based Learning and Assessment Task

Performance Based Learning and Assessment Task Activity/Task Title I. ASSESSSMENT TASK OVERVIEW & PURPOSE: Students will be asked to find various characteristics of a polynomial function, modeled by a

### Chapter 5.1 and 5.2 Triangles

Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each

### 2.1. Inductive Reasoning EXAMPLE A

CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### ASSESSSMENT TASK OVERVIEW & PURPOSE:

Developing a Trigonometry Phone App I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this activity, students will be asked to develop a program for a smartphone application that could be used to calculate the

### Problem of the Month: Cutting a Cube

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

### A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

### Lesson 18: Looking More Carefully at Parallel Lines

Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

### CHAPTER 8 QUADRILATERALS. 8.1 Introduction

CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### Support Materials for Core Content for Assessment. Mathematics

Support Materials for Core Content for Assessment Version 4.1 Mathematics August 2007 Kentucky Department of Education Introduction to Depth of Knowledge (DOK) - Based on Norman Webb s Model (Karin Hess,

### Problem of the Month: William s Polygons

Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper

### 3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs

SUGGESTED LEARNING STRATEGIES: Think/Pair/Share, Use Manipulatives Two rays with a common endpoint form an angle. The common endpoint is called the vertex. You can use a protractor to draw and measure

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### Most popular response to

Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles

### Geometry Review Flash Cards

point is like a star in the night sky. However, unlike stars, geometric points have no size. Think of them as being so small that they take up zero amount of space. point may be represented by a dot on

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### The Pythagorean Theorem in Crime Scene Investigation

The Pythagorean Theorem in Crime Scene Investigation I II UNIT OVERVIEW & PURPOSE: Students are asked to solve a series of crimes using critical thinking, science and math skills. As they move through

### I. ASSESSSMENT TASK OVERVIEW & PURPOSE:

Performance Based Learning and Assessment Task Surface Area of Boxes I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In the Surface Area of Boxes activity, students will first discuss what surface area is and

### The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word

### /27 Intro to Geometry Review

/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

### North Carolina Math 2

Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Evaluating Statements About Length and Area

CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Evaluating Statements About Length and Area Mathematics Assessment Resource Service University of Nottingham

### Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

### Florida Geometry EOC Assessment Study Guide

Florida Geometry EOC Assessment Study Guide The Florida Geometry End of Course Assessment is computer-based. During testing students will have access to the Algebra I/Geometry EOC Assessments Reference

### Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### Set 4: Special Congruent Triangles Instruction

Instruction Goal: To provide opportunities for students to develop concepts and skills related to proving right, isosceles, and equilateral triangles congruent using real-world problems Common Core Standards

### McDougal Littell California:

McDougal Littell California: Pre-Algebra Algebra 1 correlated to the California Math Content s Grades 7 8 McDougal Littell California Pre-Algebra Components: Pupil Edition (PE), Teacher s Edition (TE),

### How does one make and support a reasonable conclusion regarding a problem? How does what I measure influence how I measure?

Middletown Public Schools Mathematics Unit Planning Organizer Subject Mathematics Grade/Course Grade 7 Unit 3 Two and Three Dimensional Geometry Duration 23 instructional days (+4 days reteaching/enrichment)

### PUBLIC SCHOOLS OF EDISON TOWNSHIP OFFICE OF CURRICULUM AND INSTRUCTION GEOMETRY HONORS. Middle School and High School

PUBLIC SCHOOLS OF EDISON TOWNSHIP OFFICE OF CURRICULUM AND INSTRUCTION GEOMETRY HONORS Length of Course: Elective/Required: Schools: Term Required Middle School and High School Eligibility: Grades 8-12

### Drawing 3-D Objects in Perspective

Mathematics Instructional Materials SAS#.1 (one per pair of students) SAS#.2 (one per pair of students) TIS#.1 (transparency) TIS#.2 (transparency) TIS#.3 (Journal prompt) Isometric Dot Paper Isometric

### Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

### Preparation Prepare a set of standard triangle shapes for each student. The shapes are found in the Guess My Rule Cards handout.

Classifying Triangles Student Probe How are triangles A, B, and C alike? How are triangles A, B, and C different? A B C Answer: They are alike because they each have 3 sides and 3 angles. They are different

### Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs

### Session 5 Dissections and Proof

Key Terms for This Session Session 5 Dissections and Proof Previously Introduced midline parallelogram quadrilateral rectangle side-angle-side (SAS) congruence square trapezoid vertex New in This Session

### Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations

Math Buddies -Grade 4 13-1 Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Goal: Identify congruent and noncongruent figures Recognize the congruence of plane

### GEOMETRY: TRIANGLES COMMON MISTAKES

GEOMETRY: TRIANGLES COMMON MISTAKES 1 Geometry-Classifying Triangles How Triangles are Classified Types-Triangles are classified by Angles or Sides By Angles- Obtuse Triangles-triangles with one obtuse

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Solutions to Practice Problems

Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### 12. Parallels. Then there exists a line through P parallel to l.

12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails

### For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

### Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical

Dear Grade 4 Families, During the next few weeks, our class will be exploring geometry. Through daily activities, we will explore the relationship between flat, two-dimensional figures and solid, three-dimensional