# Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Save this PDF as:

Size: px
Start display at page:

Download "Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about."

## Transcription

1 Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always, when we introduce a new topic we have to define the things we wish to talk about. RDIUS of a circle is a segment that joins the center of a circle to a point on the circle. TD CHORD is a segment whose endpoints lie on the circle; G. DIMETER is a chord that contains the center; CE. SECNT is a line that contains a chord; C G T D E TNGENT to a circle is a line that lies in the plane of the circle and intersects the circle in exactly one point. central angle of a circle is an angle whose vertex is the center of the circle. ngle is a central angle of!

2 minor arc of a circle is the union of two points on the circle and all the points of the circle that lie in the interior of the central angle whose sides contain the two points. The measure of a minor arc is defined to be the measure of its central angle. What that means is that if the measure of the minor arc is 50º, then the measure of! is 50º. 50 semicircle is the union of the endpoints of a diameter and all the points of the circle lying on one side of the diameter. n inscribed angle is an angle whose vertex lies on the circle and whose sides contain chords of a circle. 2 hº ngle 2 is an inscribed angle. Before we start, let s look at two theorems. In the same or congruent circles, if two central angles are congruent, their arcs are congruent. In the same or congruent circles, if two minor arcs are congruent, the central angles are congruent. If I played long enough with arcs and chords, I would find that congruent arcs have congruent chords and congruent chords have congruent arcs. Those would be easily proven using the congruence theorems for triangles.

3 In the same or congruent circles, congruent chords have congruent arcs. In the same or congruent circles, congruent arcs have congruent chords. diameter that is perpendicular to a chord bisects the chord and its two arcs. To prove this theorem, we draw the picture, draw lines so triangles are formed, prove the triangles are congruent by HL Congruence Postulate, the rest falls into place nicely. : Given: Prove: diameter that is! to a chord bisects the chord and its 2 arcs Circle O B! XY O XK! YK 2! XB = YB! K X Y B Statements Reasons. Draw OX and OY Construction 2. B! XY Give 3. OK! OK Reflexive 4. OY! OX Radii of circle are! 5. OKX! OKY HL 6. XK! YK cpctc!!! 2 7.! XB! YB! 2 central! s are!, the arcs are! The only information we have about the measure of angles formed with a circle is the definition of a central angle. The measure of the central is defined to be the measure of the arc that it intercepts. So

4 if we want to find the measure of other angles, it would seem we would have to somehow the angle, such as an inscribed angle, can be related to a central angle. These theorems and postulates will allow us to find more information about the measures of angles and chords when dealing with circles. The next theorem is an example of how al this information fits together and results in more deductions. rc ddition Postulate The arc addition postulate is parallel to the segment addition postulate and the angle addition postulate. That is, an arc is equal to the sum of its parts. B arc C = arc B + arc BC C The measure of an inscribed angle is equal to half the measure of the intercepted arc. To show this relationship about inscribed angles, I m going to draw one of the rays through the center of the circle as shown below. By drawing the ray through the center, I can then construct a triangle where one of the angles is a central angle as shown below. OB is isosceles because two of the sides are radii, that means that = B; base angles of an isosceles triangle are congruent. OC is a central angle, but it is also an exterior angle of a triangle, which means that it is equal to the sum of the two remote interior angles. With that background, let s look at the proof of this theorem.

5 Given: The measure of an inscribed! is half the measure of the intercepted arc. B! BC inscribed Prove:! BC = 2 C! O C Statements Reasons. Draw O Construction 2. OB! O Radii 3.!!! B 2 sides of are!,! s opposite are! 4.! OC =! +! B Ext! = 2 remote int! s 5.! OC =! B +! B Sub 6.! OC = 2! B D-Prop 7.! OC =! B DPE 2 8.! OC!! C 9. 2 C! =! B Sub Central!, arc That proof was a special case because I drew my ray through the center of the circle. What would have happened if I did not? B O X C

6 gain, always go back to what you know. I could construct a ray from B going through the center of the circle Ray BO. Now I can use the information I have just proven, plus I know the ngle ddition Postulate; that BC = BX + XBC. That information will allow us to find the measure of an arc formed by an inscribed angle or the measure of an inscribed angle as shown below. S X 40 F H T V 70 rc SH = 80 X = 85 Corollary If two inscribed angles intercept congruent arcs, the angles are congruent. 2 and 2 both intercept arc B, = 2 B Corollary If a quadrilateral is inscribed in a circle, the opposite angles are supplementary. Corollary n angle inscribed in a semicircle is a right angle. The intercepted arc of a semicircle is 80

7 When a secant ray and a tangent ray are drawn from a point on a circle, the measure of the angle formed is equal to half the measure of the intercepted arc. 3 hº! 3 = 2 h When two secants intersect in the interior of a circle, the measure of the angle is equal to half the sum of the measures of the arcs intercepted by that angle and its vertical angle. hº 4 kº! 4 = (h + k) 2 To prove this theorem, I will continue to use the strategies I have used before. First, I will draw the picture with the information given to me. Second, I will add lines so I can relate this to problems I have solved before, and third I will label the diagram. In this proof, I will be able to construct a triangle by connecting two points, that triangle will have an exterior angle formed (the angle I want to find), and there will be two inscribed angles formed. The relationship between the exterior angles and the two remote interior angles is the basis for our proof. Let s start, first the picture and the line that connects the points X and W. Label the angles.

8 When 2 secants intersect in a circle, the! formed is = to 2 arcs formed by the vertical!. the sum of the Given: XY & ZW intersect Z Prove:! = 2 (! XZ +! 2 YW ) 3 W X Y Statements Reasons. Draw XW Construction 2.! =! 2 +! 3 Ext! of = sum of 2 remote int! s 3.! 2 = 2 ZX! Inscribed! = 2 intercepted arc! 3 = 2 YW! 4.! = 2 ZX! + 2 YW! Substitution in step 2 5.! = 2 ( ZX! + YW! ) Distributive Prop Notice the importance of the triangle theorems in these proofs. To find the measure of, take half the sum of the intercepted arcs 40 = ½ ( ) = ½ (60) = 80 20

9 When two secant rays, a secant ray and a tangent ray, or two tangent rays are drawn to a circle from an exterior point, the measure of the angle formed is equal to half the difference of the measures of the intercepted arcs. 5 hº kº! 5 = (k h) 2 To prove that theorem, I would draw the picture, draw a line and start labeling. Let s look. Notice by drawing BC, I have formed two inscribed angles and a triangle. 2 = + 5 = ½ h and 2 = ½ k Finding 5 is just a matter of substituting those values for angles and 2 into the first equation. C 2 k h 5 P B D T T = ½ (90 40) T = 25

10 tangent to a circle is perpendicular to the radius drawn to the point of tangency. (The converse of that theorem is true also.) In the same or congruent circles, if two chords are congruent, they are equally distant from the center. (Converse is true) To prove that theorem, again you would draw the picture, try to make triangles, prove the triangles are congruent, then use cpctc. When two chords intersect within a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the other chord. a d c b ab = cd When 2 chords intersect, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other. Given: Chords XY & ZW Prove: a b = c d Z X a c K d b W Y Statements Reasons. Draw XZ and WY Construction 2.! X!! W Inscribed! s intercept! Z!! Y same arc 3. XKZ and YKW are Vert Def. Vertical 4. XKZ ~ WKY Postulate 5. a d = c b ~ s proportion 6. ab = cd Prop of Proportion

11 2 6 Find x. x 6 Using the previous theorem, we know the products of the segments are equal. That means that 2 x = 6 6 or 2x = 36. x = 3 If two secants are drawn to a circle from an exterior point, the product of the lengths of one secant and its external segment is equal to the product of the other secant and its external segment. r x s y r x = s y If 2 secants are drawn to a circle from an exterior pt, the product of the lengths of one secant segment and its external segment is equal to the product of the other secant and its external segment. Given: Prove: secants PX and PY PX PY = PZ PW Z X Y W P

12 Statements Reasons. Draw XW and ZY Construction 2.! X!! Z Inscribed!, same arcs 3.! P!! P Reflexive 4. XPW ~ ZPY Postulate 5. PX PZ = PW PY ~ s, sides in proportion 6. PX PY = PZ PW Prop of Proportion If a tangent and a secant are drawn to a circle from an exterior point, the square of the length of the tangent segment is equal to the product of the lengths of the secant segment and its external segment m u t t² = m u

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

### Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion

Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.

efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center

### The Inscribed Angle Alternate A Tangent Angle

Student Outcomes Students use the inscribed angle theorem to prove other theorems in its family (different angle and arc configurations and an arc intercepted by an angle at least one of whose rays is

### circle the set of all points that are given distance from a given point in a given plane

Geometry Week 19 Sec 9.1 to 9.3 Definitions: section 9.1 circle the set of all points that are given distance from a given point in a given plane E D Notation: F center the given point in the plane radius

### Geometry Chapter 10 Study Guide Name

eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.

### The measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures

8.1 Name (print first and last) Per Date: 3/24 due 3/25 8.1 Circles: Arcs and Central Angles Geometry Regents 2013-2014 Ms. Lomac SLO: I can use definitions & theorems about points, lines, and planes to

### Inscribed Angle Theorem and Its Applications

: Student Outcomes Prove the inscribed angle theorem: The measure of a central angle is twice the measure of any inscribed angle that intercepts the same arc as the central angle. Recognize and use different

### Geometry SOL G.11 G.12 Circles Study Guide

Geometry SOL G.11 G.1 Circles Study Guide Name Date Block Circles Review and Study Guide Things to Know Use your notes, homework, checkpoint, and other materials as well as flashcards at quizlet.com (http://quizlet.com/4776937/chapter-10-circles-flashcardsflash-cards/).

### CIRCLE DEFINITIONS AND THEOREMS

DEFINITIONS Circle- The set of points in a plane equidistant from a given point(the center of the circle). Radius- A segment from the center of the circle to a point on the circle(the distance from the

### Circle geometry theorems

Circle geometry theorems http://topdrawer.aamt.edu.au/geometric-reasoning/big-ideas/circlegeometry/angle-and-chord-properties Theorem Suggested abbreviation Diagram 1. When two circles intersect, the line

### Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.

### GEOMETRY FINAL EXAM REVIEW

GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.

### circumscribed circle Vocabulary Flash Cards Chapter 10 (p. 539) Chapter 10 (p. 530) Chapter 10 (p. 538) Chapter 10 (p. 530)

Vocabulary Flash ards adjacent arcs center of a circle hapter 10 (p. 539) hapter 10 (p. 530) central angle of a circle chord of a circle hapter 10 (p. 538) hapter 10 (p. 530) circle circumscribed angle

### Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: Activity 24

Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: ctivity 24 esources: Springoard- Geometry Unit Overview In this unit, students will study formal definitions of basic figures,

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Test to see if ΔFEG is a right triangle.

1. Copy the figure shown, and draw the common tangents. If no common tangent exists, state no common tangent. Every tangent drawn to the small circle will intersect the larger circle in two points. Every

### Unit 3: Circles and Volume

Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,

### Unknown Angle Problems with Inscribed Angles in Circles

: Unknown Angle Problems with Inscribed Angles in Circles Student Outcomes Use the inscribed angle theorem to find the measures of unknown angles. Prove relationships between inscribed angles and central

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### A convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.

hapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.

### Geometry: Euclidean. Through a given external point there is at most one line parallel to a

Geometry: Euclidean MATH 3120, Spring 2016 The proofs of theorems below can be proven using the SMSG postulates and the neutral geometry theorems provided in the previous section. In the SMSG axiom list,

### Chapter Review. 11-1 Lines that Intersect Circles. 11-2 Arcs and Chords. Identify each line or segment that intersects each circle.

HPTR 11-1 hapter Review 11-1 Lines that Intersect ircles Identify each line or segment that intersects each circle. 1. m 2. N L K J n W Y X Z V 3. The summit of Mt. McKinley in laska is about 20,321 feet

### of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent.

2901 Clint Moore Road #319, Boca Raton, FL 33496 Office: (561) 459-2058 Mobile: (949) 510-8153 Email: HappyFunMathTutor@gmail.com www.happyfunmathtutor.com GEOMETRY THEORUMS AND POSTULATES GEOMETRY POSTULATES:

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

### Warm Up #23: Review of Circles 1.) A central angle of a circle is an angle with its vertex at the of the circle. Example:

Geometr hapter 12 Notes - 1 - Warm Up #23: Review of ircles 1.) central angle of a circle is an angle with its verte at the of the circle. Eample: X 80 2.) n arc is a section of a circle. Eamples:, 3.)

### Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency.

CONDENSED LESSON 6.1 Tangent Properties In this lesson you will Review terms associated with circles Discover how a tangent to a circle and the radius to the point of tangency are related Make a conjecture

### ABC is the triangle with vertices at points A, B and C

Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### BC AB = AB. The first proportion is derived from similarity of the triangles BDA and ADC. These triangles are similar because

150 hapter 3. SIMILRITY 397. onstruct a triangle, given the ratio of its altitude to the base, the angle at the vertex, and the median drawn to one of its lateral sides 398. Into a given disk segment,

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### Chapter 4 Circles, Tangent-Chord Theorem, Intersecting Chord Theorem and Tangent-secant Theorem

Tampines Junior ollege H3 Mathematics (9810) Plane Geometry hapter 4 ircles, Tangent-hord Theorem, Intersecting hord Theorem and Tangent-secant Theorem utline asic definitions and facts on circles The

### 10-4 Inscribed Angles. Find each measure. 1.

Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

### c.) If RN = 2, find RP. N

Geometry 10-1 ircles and ircumference. Parts of ircles 1. circle is the locus of all points equidistant from a given point called the center of the circle.. circle is usually named by its point. 3. The

### MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014

EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle

### Basics of Circles 9/20/15. Important theorems:

Basics of ircles 9/20/15 B H P E F G ID Important theorems: 1. A radius is perpendicular to a tangent at the point of tangency. PB B 2. The measure of a central angle is equal to the measure of its intercepted

### Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

### Intro to Circles Formulas Area: Circumference: Circle:

Intro to ircles Formulas rea: ircumference: ircle: Key oncepts ll radii are congruent If radii or diameter of 2 circles are congruent, then circles are congruent. Points with respect to ircle Interior

### Geometry Sample Problems

Geometry Sample Problems Sample Proofs Below are examples of some typical proofs covered in Jesuit Geometry classes. Shown first are blank proofs that can be used as sample problems, with the solutions

### Lesson 1: Introducing Circles

IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### Warm-up Tangent circles Angles inside circles Power of a point. Geometry. Circles. Misha Lavrov. ARML Practice 12/08/2013

Circles ARML Practice 12/08/2013 Solutions Warm-up problems 1 A circular arc with radius 1 inch is rocking back and forth on a flat table. Describe the path traced out by the tip. 2 A circle of radius

### Math 531, Exam 1 Information.

Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

### CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:

GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships

### Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

### 206 MATHEMATICS CIRCLES

206 MATHEMATICS 10.1 Introduction 10 You have studied in Class IX that a circle is a collection of all points in a plane which are at a constant distance (radius) from a fixed point (centre). You have

# 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### 0810ge. Geometry Regents Exam 0810

0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

### Geometry in a Nutshell

Geometry in a Nutshell Henry Liu, 26 November 2007 This short handout is a list of some of the very basic ideas and results in pure geometry. Draw your own diagrams with a pencil, ruler and compass where

### Sec 1.1 CC Geometry - Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB.

Sec 1.1 CC Geometry - Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB. A B C **Using a ruler measure the two lengths to make sure they have

### Math 311 Test III, Spring 2013 (with solutions)

Math 311 Test III, Spring 2013 (with solutions) Dr Holmes April 25, 2013 It is extremely likely that there are mistakes in the solutions given! Please call them to my attention if you find them. This exam

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

### #2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent.

1 Geometry Proofs Reference Sheet Here are some of the properties that we might use in our proofs today: #1. Definition of Isosceles Triangle says that If a triangle is isosceles then TWO or more sides

### Chapter 6 Quiz. Section 6.1 Circles and Related Segments and Angles

Chapter 6 Quiz Section 6.1 Circles and Related Segments and Angles (1.) TRUE or FALSE: The center of a circle lies in the interior of the circle. For exercises 2 4, use the figure provided. (2.) In O,

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### 2006 Geometry Form A Page 1

2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

### A quick review of elementary Euclidean geometry

C H P T E R 0 quick review of elementary Euclidean geometry 0.1 MESUREMENT ND CONGRUENCE 0.2 PSCH S XIOM ND THE CROSSR THEOREM 0.3 LINER PIRS ND VERTICL PIRS 0.4 TRINGLE CONGRUENCE CONDITIONS 0.5 THE EXTERIOR

### 10-7 Special Segments in a Circle. Find x. Assume that segments that appear to be tangent are tangent. 1. SOLUTION: 2. SOLUTION: 3.

Find x. Assume that segments that appear to be tangent are tangent. 1. 2. 3. esolutions Manual - Powered by Cognero Page 1 4. 5. SCIENCE A piece of broken pottery found at an archaeological site is shown.

### San Jose Math Circle February 14, 2009 CIRCLES AND FUNKY AREAS - PART II. Warm-up Exercises

San Jose Math Circle February 14, 2009 CIRCLES AND FUNKY AREAS - PART II Warm-up Exercises 1. In the diagram below, ABC is equilateral with side length 6. Arcs are drawn centered at the vertices connecting

### 3.1 Triangles, Congruence Relations, SAS Hypothesis

Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)

### 6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 1. If, find. A rhombus is a parallelogram with all four sides congruent. So, Then, is an isosceles triangle. Therefore, If a parallelogram

### Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

### Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

### Geo 9 1 Circles 9-1 Basic Terms associated with Circles and Spheres. Radius. Chord. Secant. Diameter. Tangent. Point of Tangency.

Geo 9 1 ircles 9-1 asic Terms associated with ircles and Spheres ircle Given Point = Given distance = Radius hord Secant iameter Tangent Point of Tangenc Sphere Label ccordingl: ongruent circles or spheres

### 10-7 Special Segments in a Circle. Find x. Assume that segments that appear to be tangent are tangent. 1. SOLUTION: ANSWER: 2 SOLUTION: ANSWER:

Find x. Assume that segments that appear to be tangent are tangent. 1. 3. 2 5 2. 4. 6 13 esolutions Manual - Powered by Cognero Page 1 5. SCIENCE A piece of broken pottery found at an archaeological site

### Centroid: The point of intersection of the three medians of a triangle. Centroid

Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

### Unit 3 Circles and Spheres

Accelerated Mathematics I Frameworks Student Edition Unit 3 Circles and Spheres 2 nd Edition March, 2011 Table of Contents INTRODUCTION:... 3 Sunrise on the First Day of a New Year Learning Task... 8 Is

### 55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.

Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit

### Unit 10 Geometry Circles. NAME Period

Unit 10 Geometry Circles NAME Period 1 Geometry Chapter 10 Circles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** 1. (10-1) Circles and Circumference

### Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle.

Geometry Unit 0 Notes ircles Syllabus Objective: 0. - The student will differentiate among the terms relating to a circle. ircle the set of all points in a plane that are equidistant from a given point,

### CONJECTURES - Discovering Geometry. Chapter 2

CONJECTURES - Discovering Geometry Chapter C-1 Linear Pair Conjecture - If two angles form a linear pair, then the measures of the angles add up to 180. C- Vertical Angles Conjecture - If two angles are

### 1 Solution of Homework

Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

### 6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 3. PROOF Write a two-column proof to prove that if ABCD is a rhombus with diagonal. 1. If, find. A rhombus is a parallelogram with all

### Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### The Protractor Postulate and the SAS Axiom. Chapter The Axioms of Plane Geometry

The Protractor Postulate and the SAS Axiom Chapter 3.4-3.7 The Axioms of Plane Geometry The Protractor Postulate and Angle Measure The Protractor Postulate (p51) defines the measure of an angle (denoted

### Test on Circle Geometry (Chapter 15)

Test on Circle Geometry (Chapter 15) Chord Properties of Circles A chord of a circle is any interval that joins two points on the curve. The largest chord of a circle is its diameter. 1. Chords of equal

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

### Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

### 10.5 and 10.6 Lesson Plan

Title: Secants, Tangents, and Angle Measures 10.5 and 10.6 Lesson Plan Course: Objectives: Reporting Categories: Related SOL: Vocabulary: Materials: Time Required: Geometry (Mainly 9 th and 10 th Grade)

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, :15 a.m. SAMPLE RESPONSE SET

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. SAMPLE RESPONSE SET Table of Contents Question 29................... 2 Question 30...................

### Geometry Chapter 9. Circle Vocabulary Arc Length Angle & Segment Theorems with Circles Proofs

Geometry hapter 9 ircle Vocabulary rc Length ngle & Segment Theorems with ircles Proofs hapter 9: ircles Date Due Section Topics ssignment 9.1 9.2 Written Eercises Definitions Worksheet (pg330 classroom

### Circle theorems CHAPTER 19

352 CHTE 19 Circle theorems In this chapter you will learn how to: use correct vocabulary associated with circles use tangent properties to solve problems prove and use various theorems about angle properties

### 12-1. Tangent Lines. Vocabulary. Review. Vocabulary Builder HSM11_GEMC_1201_T Use Your Vocabulary

1-1 Tangent Lines Vocabulary Review 1. ross out the word that does NT apply to a circle. arc circumference diameter equilateral radius. ircle the word for a segment with one endpoint at the center of a

### Name Geometry Exam Review #1: Constructions and Vocab

Name Geometry Exam Review #1: Constructions and Vocab Copy an angle: 1. Place your compass on A, make any arc. Label the intersections of the arc and the sides of the angle B and C. 2. Compass on A, make

1. Determine whether each quadrilateral is a Justify your answer. 3. KITES Charmaine is building the kite shown below. She wants to be sure that the string around her frame forms a parallelogram before

### MATH STUDENT BOOK. 8th Grade Unit 6

MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals